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A B S T R A C T   

The mystery about the mechanistic basis of disulfidptosis has recently been unraveled and shows promise as an 
effective treatment modality for triggering cancer cell death. However, the limited understanding of the role of 
disulfidptosis in tumor progression and drug sensitivity has hindered the development of disulfidptosis-targeted 
therapy and combinations with other therapeutic strategies. Here, we established a disulfidptosis signature 
model to estimate tumor disulfidptosis status in approximately 10,000 tumor samples across 33 cancer types and 
revealed its prognostic value. Then, we characterized disulfidptosis-associated molecular features and identified 
various types of molecular alterations that correlate with both drug-resistant and drug-sensitive responses to anti- 
tumor drugs. We further showed the vast heterogeneity in disulfidptosis status among 760 cancer cell lines across 
25 cancer types. We experimentally validated that disulfidptosis score-high cell lines are more susceptible to 
glucose starvation-induced disulfidptosis compared to their counterparts with low scores. Finally, we investi
gated the impact of disulfidptosis status on drug response and revealed that disulfidptosis induction may enhance 
sensitivity to anti-cancer drugs, but in some cases, it could also lead to drug resistance in cultured cells. Overall, 
our multi-omics analysis firstly elucidates a comprehensive profile of disulfidptosis-related molecular alterations, 
prognosis, and potential therapeutic therapies at a pan-cancer level. These findings may uncover opportunities to 
utilize multiple drug sensitivities induced by disulfidptosis, thereby offering practical implications for clinical 
cancer therapy.   

1. Introduction 

Maintenance of the oxidation-reduction (redox) balance is vital for 
cell survival [1]. Cancer cells often experience elevated levels of 
oxidative stress compared to non-tumor cells, primarily due to genetic 

mutations and metabolic reprogramming [2]. To ensure cellular life and 
proliferation, cancer cells must maintain sufficient glutathione (GSH) 
levels to counteract excessive intracellular reactive oxygen species 
(ROS) [1,3,4]. During the GSH synthesis process, cysteine is the key 
substrate with low content and needs to be supplied through multiple 
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pathways. Most tumor cells mainly rely on solute carrier family 7 
member 11 (SLC7A11) to transport extracellular cystine into the cyto
plasm and reduce it to cysteine using nicotinamide adenine dinucleotide 
phosphate (NADPH). Therefore, SLC7A11 is considered a critical 
oncogene in maintaining cell survival and antioxidant defense of cancer 
cells [5]. However, recent studies have proposed an unexpected role of 
SLC7A11 in inducing cell death under glucose deprivation conditions, 
termed “disulfidptosis” [6,7]. 

Research on disulfidptosis began in 2017, when Gan and his team 
found that SLC7A11 overexpression increased glucose dependence in 
cancer cells and triggered cell death upon glucose starvation [8]. In 
2020, they further indicated that protein regulator of cytokinesis 1 
(PRC1) inhibition coupled with activating transcription factor 4 (ATF4) 
induction promotes cell death under glucose starvation conditions [9]. 
Meanwhile, they demonstrated that key enzymes, including phospho
gluconate dehydrogenase (PGD), glucose-6-phosphate dehydrogenase 
(G6PD), transaldolase 1 (TALDO1), and transketolase (TKT) involved in 
the glucose-pentose phosphate pathway (PPP), could rescue glucose 
deprivation-induced cell death in SLC7A11high cancer cells [10]. In 
2023, Gan and his team introduced the term disulfidptosis to define this 
unknown cell death [6], and found glycogen synthase 1 (GYS1), 3-oxoa
cyl-ACP synthase, mitochondrial (OXSM), nicotinamide adenine dinu
cleotide hydrogen (NADH): ubiquinone oxidoreductase core subunit S1 
(NDUFS1), NADH: ubiquinone oxidoreductase subunit A11 (NDUFA11), 
nucleotide binding protein-like (NUBPL), leucine rich pentatricopeptide 
repeat containing (LRPPRC), SLC7A11, solute carrier family 3 member 2 
(SLC3A2), ribophorin I (RPN1), and NCK associated protein 1 (NCKAP1) 
as important participant hits in disulfidptosis through genome-wide 
CRISPR/Cas9 lose-of-function screening analysis [6]. Notably, glucose 
starvation is a prerequisite for disulfidptosis in SLC7A11high cancer cells, 
and as expected, inhibition of glucose uptake by glucose transporter 1/3 
(GLUT1/3) inhibitors leads to glucose starvation and disulfidptosis in 
SLC7A11high cancer cells both in vitro and in vivo [6,10]. 

Biologically, SLC7A11high cancer cells enhance antioxidant defense 
capabilities by increasing cystine import and GSH synthesis. This 
beneficial effect consumes large amounts of NADPH, which is provided 
by glucose through the PPP [1]. Therefore, when glucose supply is 
insufficient, tumor cells will experience NADPH depletion and abnormal 
accumulation of intracellular cystine and other disulfide molecules such 
as γ-glutamyl-cystine and glutathionyl-cysteine, which results in disul
fide stress and aberrant disulfide bonding among actin cytoskeleton 
proteins, leading to actin network collapse and cell death [6]. This 
process was verified through direct observation of disulfidptosis-related 
F-actin contraction and detachment from the plasma membrane by 
co-staining and unbiased bio-orthogonal chemical proteomic analyses 
[6]. Cystine is the common amino acid with extremely low solubility, 
and its large accumulation can lead to the formation of highly toxic 
crystals in the intracellular lysosomes. However, no clear cystine crystal 
was observed in cells under disulfide stress through transmission elec
tron microscopy [10]. Additionally, elevated ATP levels, and inability of 
ROS scavengers to rescue the cell death ruled out the possibility of cell 
death associated with ATP depletion and ROS accumulation. Thus, this 
novel form of regulated cell death (RCD) is distinct from other existing 
forms of cell death, and shed light on new frontiers in RCD and reveal 
novel mechanisms by which organisms counteract malignant progres
sion of tumors. 

RCD plays fundamental roles in cancer therapeutics, including 
apoptosis, necroptosis, autophagy-dependent cell death, pyroptosis, 
ferroptosis, and cuproptosis [11–13]. Like other RCDs, the elucidation of 
disulfidptosis will provide a critical framework for understanding and 
targeting this unique cell death in cancer therapy [7]. However, current 
research on disulfidptosis is still limited to the molecular level, and the 
disulfidptosis status in large populations remains unclear. The hallmark 
of disulfidptosis status is F-actin contraction and detachment from the 
plasma membrane, which is difficult to detect in human physiological 
and pathological conditions. Therefore, it is urgent to develop a robust 

predictive signature to assess tumor disulfidptosis status in large-scale 
cancer patients and explore the impact of disulfidptosis on molecular 
alternations across multiple dimensions. In this study, we innovatively 
constructed a disulfidptosis signature to estimate the disulfidptosis sta
tus and observed that patients with active disulfidptosis status had 
significantly better survival. We next depicted the molecular charac
teristics of disulfidptosis across different cancer types from a 
multi-omics perspective. Moreover, we analyzed the correlation be
tween disulfidptosis status and sensitivities to anti-cancer drugs, and 
experimentally validated the sensitization to several drugs by disul
fidptosis induction in cancer cells. Our findings highlight the role of 
disulfidptosis in patient prognosis and provide biological insights into 
the consideration of cancer combination therapeutic strategies based on 
disulfidptosis. 

2. Materials and methods 

2.1. Estimating disulfidptosis status across cancer samples by a gene 
signature 

A total of 23 disulfidptosis-related genes were collected from pub
lished articles (Table S1) [6,9,10]. Then these genes were divided into 
two categories according to their regulatory direction, including pro
moting disulfidptosis genes and inhibiting disulfidptosis genes. The 
disulfidptosis score model to represent the disulfidptosis status was 
establish based on the expression data for genes of core promoting 
disulfidptosis components (pro) including SLC7A11, SLC3A2, RPN1, 
NCKAP1, cytoplasmic FMR1 interacting protein 1 (CYFIP1), WASP 
family member 2 (WAVE2), abl interactor 2 (ABI2), haematopoietic 
stem/progenitor cell protein 300 (HSPC300), Rac family small GTPase 1 
(RAC1), ATF4; and negative core components (anti) of NUBPL, 
NDUFA11, LRPPRC, OXSM, NDUFS1, GYS1, G6PD, PGD, TALDO1, TKT, 
PRC1, GLUT1, GLUT3. We calculated enrichment score (ES) of 
pro-disulfidptosis genes and anti-disulfidptosis genes using single sam
ple gene set enrichment analysis (ssGSEA) in the R package ‘GSVA’ [14], 
the disulfidptosis score to computationally dissect the disulfidptosis 
status of the tissue samples, and cancer cell line was defined by the 
differences of ssGSEA score between the ES of pro-disulfidptosis genes 
minus anti-disulfidptosis genes. The disulfidptosis score model was 
validated in six independent datasets with known glucose starved status 
from the Gene Expression Omnibus (GEO): GSE209636, GSE184452, 
GSE121378, GSE62663, GSE16157, and GSE95097. Wilcoxon rank sum 
test was used to assess the statistical difference between glucose star
ved/GLUT1 inhibitor and normal conditions in different cancer cell 
lines. 

2.2. Integration of multi-omics data and clinical data for TCGA samples 

Multi-omics data including mRNA expression, miRNA expression, 
protein expression, somatic mutations, somatic copy number alteration 
(SCNA) and clinical data across 33 cancer types were downloaded from 
The Cancer Genome Atlas (TCGA) data portal (https://portal.gdc.cancer 
.gov/) [15]. The tumor purity of TCGA-tumor samples was obtained 
from TIMER: Tumor Immune Estimation Resource (http://cistrome.org/ 
TIMER/download.html) and https://doi.org/10.5281/zenodo.253193 
[16,17]. 

2.3. Stratification and multi-omics analysis of tumor samples from TCGA 
pan cancer cohort 

TCGA pan cancer samples were divided into three parts based on the 
disulfidptosis score distribution of tertiles, defining the top and bottom 
samples as disulfidptosis-score high and disulfidptosis-score low sam
ples, respectively. We retained a total of 26 cancer types with≥30 
samples in both disulfidptosis score-high and disulfidptosis score-low 
groups for further analysis. METAbolic Flux balance analysis 
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(METAFlux) was used to calculate the glucose metabolic fluxes to 
investigate the association between the glucose uptake level and disul
fidptosis status across cancer types [18]. We further used the matching 
weights (MW) method of propensity score matching (PSM) algorithm to 
balance the effects of potential confounders [19,20], including age, 
gender, tumor purity, race, tumor stage, and examined the balance by 
comparing standardized difference before and after PSM (standardized 
difference <0.05). Subsequently, we compared the molecular difference 
of multi-omics between high disulfidptosis score and low disulfidptosis 
score in TCGA cohorts. In order to decrease random noise in feature 
identification, permutation test was repeated 100 times via randomly 
selecting the high disulfidptosis score or low disulfidptosis score sam
ples. Significant features for four molecular types were identified by the 
criterion: mRNA expression |fold change| > 2, FDR <0.05; miRNA 
expression |fold change| > 1.5, FDR < 0.05; somatic mutation and 
SCNA: FDR <0.05; total protein and DNA methylation: |difference| >
0.1, FDR < 0.05. 

2.4. Differential abundance (DA) score 

The DA score evaluates the differential regulation of a metabolic 
pathway between groups with high and low disulfidptosis scores. First, 
by performing Pearson correlation analysis, we identified 167 metabo
lites that were significantly positively correlated (pos_cor) with disul
fidptosis score (Rs > 0.18, FDR <0.05) and 135 metabolites that were 
significantly negatively correlated (neg_cor) with disulfidptosis score 
(Rs < − 0.18, FDR <0.05). The DA score for each pathway is calculated 
as: 

DA score=
No.of metabolites (pos cor) − No.of metabolites(neg cor)

No.of measured metabolites in pathway 

Thus, the DA score varies from − 1 to 1. A score of − 1 indicates that 
all metabolites in a pathway are negatively correlated with disul
fidptosis, while a score of 1 indicates that all metabolites are positively 
correlated with disulfidptosis. Only pathways with 3 or more signifi
cantly altered metabolites were scored. 

2.5. Analysis of clinically actionable genes and drug response associated 
with disulfidptosis status 

The area under the dose-response curve (AUC) data and gene 
expression matrix for cancer cell lines were downloaded from the Ge
nomics of Drug Sensitivity in Cancer (GDSC) (http://www.cancerr 
xgene.org/downloads) and Cancer Cell Line Encyclopedia (CCLE). 
Imputed drug response of 138 antitumor drugs in TCGA cancer patients 
were download from a previous study [21]. The information of clinically 
actionable genes targeted by Food and Drug Administration (FDA)-ap
proved drugs was downloaded from a previous study [22]. The drug 
repurposing information with drug-target was downloaded from The 
Drug Repurposing Hub (https://clue.io/repurposing-app). To assess 
drug response in cancer cell lines, we calculated the Spearman corre
lation between the AUC and gene expression of cancer cell lines from 
GDSC for drug responsiveness (|Rs| > 0.3; FDR <0.05). To assess the 
effect of disulfidptosis status on drug sensitivity in TCGA tumor samples, 
Spearman correlation between imputed drug response and disulfidptosis 
score we calculated (|Rs| > 0.2; FDR <0.05). Among them, drug resis
tance showed a positive Spearman correlation, while drug sensitivity 
showed a negative Spearman correlation. 

2.6. Pathways enrichment analysis and miRNA-target regulatory 
networks 

In order to study the differences of different disulfidptosis status in 
cancer hallmarks pathway and Gene Ontology Biological Processes 
(GOBP). We firstly downloaded the gene set of GOBP and cancer hall
mark gene sets from the MSigDB database (https://www.gsea-msigdb. 

org/gsea/msigdb/). Then, we used the GSVA method to evaluate these 
gene sets activity (enrichment scores) of GOBP and cancer hallmark 
pathways from in each cancer sample. Finally, we calculated the dif
ferences of each pathway between the disulfidptosis-high and low 
groups and screened out the pathways with consistent and significant 
changes in various cancers. And miRNA-target pairs were downloaded 
from the miRTarBase [23]. The significantly altered miRNAs and 
mRNAs (as targets) were used to identify the miRNA-target relation
ships. Pathway Enrichment analysis of miRNA-target genes was per
formed by using the clusterProfiler Package [24]. Based on the 
miRNA-target pairs, we constructed miRNA-target regulatory net
works, where the nodes are the miRNAs, or target genes, and the edges 
are the regulatory pairs. 

2.7. Bulk RNA-seq deconvolution analysis 

Cell abundance was measured using CIBERSORT with the LM22 
matrix from Newman et al. [25] (https://cibersort.stanford.edu/) to 
quantify the relative abundance of 22 types of immune cells in TCGA 
pan-cancer. 100 times for permutation test. Expression matrix normal
ized by FPKM as the input data. 

2.8. Cell culture 

The human malignant melanoma cell lines A375 and SK-MEL-28, 
human cervical carcinoma cell line Hela, and human hepatocellular 
carcinoma cell line Huh-7 were cultured in Dulbecco’s modified Eagle 
medium (DMEM; Thermo Fisher Scientific) containing 10% fetal bovine 
serum (FBS; Biological Industries) and 1% penicillin-streptomycin so
lution at 37 ◦C in an incubator with humid air of 5% CO2. All cell lines 
were obtained from American Type Culture Collection and free of My
coplasma contamination (tested by the vendor). None of the cell lines 
have been found in the International Cell Line Authentication Com
mittee database of commonly misidentified cell lines, based on short 
tandem repeat profiling performed by the vendor. For the glucose 
deprivation experiments, cells were incubated with glucose-free DMEM 
with 10% FBS. The glucose-free DMEM (11966025) was purchased from 
Thermo Fisher Scientific. The cystine-free and glucose/cystine-double- 
deprived DMEM were customized from Procell Life 
Science&Technology. 

2.9. Chemicals 

Necrostatin-1s (HY-14622A), chloroquine (HY-17589A), Z-VAD- 
FMK (HY–16658B), liproxstatin-1 (HY-12726), dithiothreitol (HY- 
15917), etoposide (HY-13629), methotrexate (MTX, HY-14519), and 
CMK (HY-52101), GW-441756 (HY-18314), ABT-263 (HY-10087), NSC- 
87877 (HY-18756), staurosporine (HY-15141), and 2-Deoxy-D-glucose 
(2DG, HY-13966) were purchased from MedChemExpress. 

2.10. Cell viability assay 

To measure cell viability, 6000 cells per well were seeded in 96-well 
plates and allowed to adhere. For cell death inhibitor rescue experi
ments, cells were cultured with glucose-free medium with different cell 
death inhibitors for about 16 h. For drug sensitivity experiments, cells 
were cultured with glucose-free or glucose-containing DMEM in indi
cated concentrations of drugs for about 10–14 h. After treatment, the 
culture medium in each well of the plate was replaced with 100 μl fresh 
medium containing 10 μl Cell Counting Kit-8 (CCK-8) (Bimake, 
B34302). And the culture was returned to the incubator for 2–3 h at 
37 ◦C. Measure the absorbance at 450 nm using a microplate reader and 
calculate the cell viability according to the manufacturer’s instructions. 
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2.11. Cell proliferation assay 

Cell proliferation assay was performed using BeyoClick™ EdU Cell 
Proliferation Kit with Alexa Fluor 488 (Beyotime Biotechnology, 
C0071L) according to the manufacturer’s instructions. Briefly, cells (4 ×
104 cells/well) were seeded in 24-well plates and cultured with indi
cated treatments for about 12 h. Subsequently, cells were incubated with 
EdU for 2 h, fixed with 4% paraformaldehyde for 15 min, and then 
permeated with 0.3% Triton X-100 for 15 min. The cells were incubated 
with the Click Reaction Mixture in the dark for 30 min at room tem
perature, and then incubated with Hoechst (Beyotime Biotechnology, 
33342) for 10 min. Images was detected and captured by Fluorescent 
Microscopy (Nikon, ECLIPSE Ts2R), and quantification was done using 
Image J. The results are shown as the ratio of the EdU-positive cells to 
Hoechst-positive cells. 

2.12. Cell cycle 

Cell cycle was implemented by cell cycle kit (Beyotime Biotech
nology, C1052). After receiving the indicated treatments, cells were 
collected and fixed overnight in cold 70% ethanol. Then, the cells were 
stained with propidium iodide and measured by flow cytometry ac
cording to the manufacturer’s protocols. Cell cycle distribution was 
assessed by Flow Jo software (version 10.4). 

2.13. Caspase-3 activity assay 

The activity of caspase-3 was determined using the caspase-3 activity 
kit (Beyotime Biotechnology, C1116). According to the manufacturer’s 
protocol, cell lysates of SK-MEL-28 cells after indicated treatments were 
centrifuged at 12, 000×g at 4 ◦C for 15 min, and protein concentrations 
were determined by Bradford protein assay. Cellular extracts were 
incubated in a 96-well plate with Ac-DEVD-pNA (2 mM) for 6 h at 37 ◦C. 
Then caspase-3 activity was quantified in the samples with a microplate 
reader by the absorbance at a wavelength of 405 nm. 

2.14. Evaluation of apoptosis by flow cytometry 

The apoptosis ratio was analyzed using the Annexin V-FITC 
Apoptosis Detection Kit (Beyotime Biotechnology, C1062). After indi
cated treatments, the cells were washed with PBS, digested by trypsin 
(EDTA depleted), and collected by centrifugation. After being washed 
with PBS, the cells were resuspended and stained by the binding buffer 
containing PI and Annexin-V-FITC for 15 min according to the manu
facturer’s instructions, measured by flow cytometry and finally analyzed 
by Flow Jo software (version 10.4). 

2.15. LDH release assay 

Cellular cytotoxicity was monitored by LDH release assay using the 
LDH Cytotoxicity Assay Kit (Beyotime Biotechnology, C0016) according 
to the manufacturer’s instructions. Briefly, cells were seeded in 96-well 
plates and then cultured with indicated treatments. Subsequently, the 
supernatants were collected and transferred to a new plate and incu
bated with Reaction Mixture in the dark for 30 min at room temperature. 
Absorbance at 490 nm was measured using a microplate reader to 
determine the amount of LDH released from cells. 

2.16. Statistical analysis 

Wilcoxon rank sum test was used to compare the differences. 
Assessment of statistical significance (p-value) for the association be
tween disulfidptosis-biased mRNA expression and methylation patterns 
was calculated by Fisher’s exact test. Univariate Cox regression model 
was used to calculate the hazard ratio (HR) of disulfidptosis score. 
Survminer package was used to determine the cutoff point of survival 

information for each dataset based on the association between disul
fidptosis score and patient overall survival (OS) time, progression free 
survival (PFS) time, disease free survival (DSS) time and the log-rank 
test was used to determine the significance of the differences. To find 
the maximum rank statistic and reduce the calculated batch effect, the 
“surv-cutpoint” function was used to dichotomy disulfidptosis score and 
all potential cutting points were repeatedly tested, then the patient 
samples were divided into the high-disulfidptosis score group and the 
low-disulfidptosis score group according to the maximum selected log- 
rank statistics. Kaplan-Meier comparative survival analyses for prog
nostic analysis were generated, and the log-rank test was used to 
determine the significance of the differences. Univariate Cox regression 
model was used to calculate the hazard ratio (HR) of the disulfidptosis 
status (the high-disulfidptosis score group and the low-disulfidptosis 
score group). All statistical analysis was two-side. The experimental 
data was analyzed by GraphPad Prism software and presented as mean 
± SD. P values of <0.05 were considered statistically significant and 
represented as *p < 0.05, **p < 0.01, ***p < 0.001, and ****p <
0.0001. All experimental data were obtained from at least three inde
pendent biological replicates. 

3. Results 

3.1. Identification of a gene signature to estimate disulfidptosis status 
across cancer samples 

To estimate the disulfidptosis status in tumor patients, we firstly 
collected 23 genes coding disulfidptosis regulators and markers from 
current relevant research [6,9,10], including 10 positive regulators and 
13 negative regulators of disulfidptosis (Fig. 1A, Table S1). Next, we 
collected 6 independent gene expression datasets of cancer cell lines of 
multiple cancer types under glucose starved/GLUT1 inhibitor-treated 
and control conditions. To dissect the complexity and heterogeneity of 
disulfidptosis levels, we then used the ssGSEA algorithm to calculate the 
disulfidptosis scores based on the enrichment score (ES) of 
pro-disulfidptosis genes calculated by ssGSEA minus that of the 
anti-disulfidptosis genes (see Methods) [26]. Notably, the disulfidptosis 
scores can accurately distinguish the disulfidptosis status in tumor cell 
lines, characterized by higher disulfidptosis scores in cells under GLUT1 
inhibition or glucose starvation, compared with control cells in all 6 
independent datasets (Fig. 1B). Consistently, GLUT1 inhibitor BAY-876 
or glucose starvation has been reported to induce intracellular disul
fidptosis in SLC7A11high cells [6]. To further simulate this state in cancer 
patient samples, we divided approximately 10,000 tumor samples into 
two groups: “high-SLC7A11/low-GLUT1” and “low-
SLC7A11/high-GLUT1” according to the expression level of SLC7A11 
and GLUT1 across 33 cancers from TCGA. We observed that patients in 
high-SLC7A11/low-GLUT1 group have a significantly higher disul
fidptosis scores than those in low-SLC7A11/high-GLUT1 group 
(Fig. 1C). Furthermore, we calculated glucose metabolic fluxes using 
METAFlux, a framework for inferring metabolic fluxes from bulk or 
single-cell transcriptome data [18], to investigate the association be
tween the glucose uptake level and disulfidptosis status across cancer 
types. As expected, we observed the glucose uptake level was signifi
cantly lower in patients with high disulfidptosis score across tumor 
lineages, comparing differences in glucose uptake levels between the 
disulfidptosis score-high and disulfidptosis score-low groups (Fig. S1). 
These results demonstrate the robustness of the 23-gene signature to 
define disulfidptosis status across different cancer types. 

3.2. Clinical relevance of the disulfidptosis signature across cancer types 

Furthermore, we compared the differences in disulfidptosis levels 
between tumor and normal tissues (Fig. 2A). Of note, significant dif
ferences were found in most cancers, such as lung squamous cell carci
noma (LUSC), lung adenocarcinoma (LUAD), uterine corpus 
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endometrial carcinoma (UCEC), and lower disulfidptosis levels were 
observed in most tumors compared to normal tissues, except for head 
and neck squamous cell carcinoma (HNSC). Then, we evaluated the 
disulfidptosis levels of over 10,000 samples across 33 cancer types from 

TCGA. The distribution of disulfidptosis level was different in most of 
cancer types. Low-grade glioma (LGG), glioblastoma (GBM) and pros
tate adenocarcinoma (PRAD) exhibited higher disulfidptosis levels, 
whereas lymphoid neoplasm diffuse large B-cell lymphoma (DLBC) and 

Fig. 1. Validation of a gene signature for estimating disulfidptosis status among cancer samples. (A) Cell model diagram of positive and negative disulfidptosis 
regulators. (B) Disulfidptosis scores of cancer cell lines under glucose deprivation/fasting-mimicking/CLUT1 inhibitor-treated conditions (navy blue) and control 
diets conditions (magenta) in six datasets. Wilcox test was used to assess the difference. (C) Difference of disulfidptosis score between “high-SLC7A11/low-GLUT1” 
and “low-SLC7A11/high-GLUT1” groups among 33 cancer types. Pie charts show the percentage of cancer types with significant (magenta) and non-significant (grey) 
alteration. Wilcox test was used to assess the difference. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version 
of this article.) 

D. Zhao et al.                                                                                                                                                                                                                                    



Redox Biology 68 (2023) 102966

6

acute myeloid leukemia (LAML) showed lower disulfidptosis levels 
(Fig. 2B). These results reflect the varying sensitivities to disulfidptosis 
across tumor types and suggest which tumor types may benefit from 
disulfidptosis-targeted therapy. In addition, we analyzed the difference 
of disulfidptosis scores among cancer types based on body location/ 
system. We observed the cancer types located in the neurologic system 
(including LGG, GBM) had the highest disulfidptosis score, whereas 
tumors in the hematologic/blood system (such as LAML and DLBC) had 

the lowest disulfidptosis score (Fig. S2A). The brain relies on glucose as 
its main energy source and maintains a high level of glucose metabolic 
state at all times [27]. However, due to the presence of the blood-brain 
barrier, glucose concentrations in the brain interstitial fluid may only 
reach 20–30% of circulating levels [28]. Thus, neurological tumors, 
such as LGG and GBM, may be more susceptible to experiencing glucose 
starvation, leading to a high disulfidptosis status. In contrast, hema
tologic/blood system tumors have an abundant supply of glucose and 

Fig. 2. The clinical relevance of disulfidptosis across cancer types. (A) The different disulfidptosis score between paired normal and tumor tissues among cancers. (B) 
Disulfidptosis scores based on the 23-mRNA abundance signature for 33 tumor types, sorted by the median disulfidptosis score for each tumor type. (C) Association of 
disulfidptosis status with patient overall survival times (OS), progression free survival times (PFS) and disease free survival times (DSS) based on both univariate Cox 
proportional hazards models in different cancer types. Color means the hazard ratio; size means statistical significance at a given FDR. (D) Kaplan-Meier curves show 
that patients with higher disulfidptosis score (red) exhibited better overall survival compared to patients with lower disulfidptosis score across cancer types. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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thus do not experience glucose starvation [29], resulting in a low 
disulfidptosis status. This indicates that the process of disulfidptosis is 
possible closely related to physiological discrepancies in different parts 
of the body, which may be due to differences in the expression of 
transporters and metabolic environment. We further analyzed the rela
tionship between tumor staging and disulfidptosis score. As shown in 
Figs. S2B–S2C, significant differences in disulfidptosis score were also 
observed among different tumor stages in cancer types. In BLCA, BRCA, 
KIRC, and THCA, tumor stage I exhibited the highest disulfidptosis 
score, while stage IV had the lowest disulfidptosis score (Figs. S2B–S2D). 
This result highlights that clinical factors such as tumor staging have 
tumor-specific effects on disulfidptosis score and helps explain why 
patients with high disulfidptosis scores tend to have better prognosis. 

To assess the clinical relevance of disulfidptosis, we examined the 

correlations of disulfidptosis status classification with the OS, PFS and 
DSS of cancer patients. We consistently observed that disulfidptosis 
score-high tumors were associated with a better prognosis across various 
cancer types by using the Cox proportional hazards model (Fig. 2C) and 
performing survival analysis (Fig. 2D, Fig. S3A–B), such as skin cuta
neous melanoma (SKCM, log-rank test, P = 9.8 × 10− 4; Fig. 2D), and 
pancreatic adenocarcinoma (PAAD; log-rank test, P = 3.6 × 10− 4; 
Fig. 2D). These results suggest that disulfidptosis has potential prog
nostic power and might play critical roles in cancer survival. 

3.3. Global landscape of multi-omics alterations associated with 
disulfidptosis status across tumor types 

To explore global landscape of molecular alterations associated with 

Fig. 3. Overview of six molecular patterns associated with disulfidptosis across cancer types. (A) The overview of integrated analysis of disulfidptosis-related multi- 
omics and drug response across different cancer types. (B) Number of each altered molecular feature (mRNA, miRNA, methylation, mutation, protein, and SCNA) and 
total altered molecular features in disulfidptosis score-high (red) and disulfidptosis score-low (green) groups from TCGA tumor samples. Pie plot in the upper panel 
means the percentage of cancer types with significantly altered disulfidptosis-related features in each molecular data. Pie plot in the left panel means the percentage 
of molecular layers with significantly altered disulfidptosis-related features in each cancer type. The navy-blue point denotes the percentage of significant features 
over the total features in each cancer. SCNA, somatic copy number alterations. (C) Pie charts display percentages of genes with both significant disulfidptosis-related 
mRNA expression and DNA methylation patterns. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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disulfidptosis, samples from TCGA were classified into disulfidptosis 
score-high, score-intermediate, and score-low groups using the distri
bution of score tertiles. For the accuracy of statistical analysis, tumor 
types with less than 30 samples in each group were excluded for sub
sequent analysis. PSM algorithm was applied to balance the confounders 
[20], including age at initial pathologic diagnosis, sex, race, pathologic 
stage, histological type, and tumor purity (Fig. S4A). In general, we 
identified a large number of molecular alterations related to disul
fidptosis in 26 cancer types, including mRNA, miRNA, protein, 
methylation, mutation, and SCNA (Fig. S4B). The workflow of our study 
is depicted in Fig. 3A. 

The impacts of disulfidptosis status on molecular alterations varied 
significantly across different cancer types (Fig. 3B). For example, mRNA 
expression showed the highest number of variations (8912 mRNA var
iations), ranging from 33 genes in pheochromocytoma and para
ganglioma (PCPG) to 5709 genes in thymoma (THYM), whereas SCNAs 
exhibited minimal variation, with only 79 alterations in 26 cancer types, 
ranging from 1 SCNAs in kidney chromophobe (KICH) to 29 SCNAs in 
breast cancer (BRCA). The degree of molecular alterations affected by 
disulfidptosis status differed across tumor types. For example, several 
cancer types, including THYM, SKCM, STAD, and LUAD, showed a larger 
number of variations between the disulfidptosis score-high and score- 
low groups in all 6 molecular layers, while PCPG, KICH, ovarian se
rous cystadenocarcinoma (OV) demonstrated minimal variations, 
limited to partial molecular levels. The total number of molecular al
terations across multiple layers also varied greatly. For example, THYM 
had various molecular alterations across six molecular layers, including 
5709 mRNAs, 520 miRNAs, 105 proteins, 4799 methylation probes, 1 
gene mutation and 2 SCNAs, whereas PCPG only showed 2 molecular 
layers changes including 33 mRNAs and 11 miRNAs (Fig. 3B; Fig. S4B). 
These differences may be attributed to tumor heterogeneity and tar
geting disulfidptosis could be more suitable for the treatment of certain 
tumors (e.g., THYM, BRCA and SKCM). Subsequently, we analyzed the 
specific changes and proportions of methylation in different tumors 
under the influence of disulfidptosis (Fig. 3C). The results indicated that 
HNSC is more likely to experience reduced methylation, while PAAD 
exhibited an increased methylation pattern. Furthermore, the mRNA 
expression of disulfidptosis-biased genes tended to be contrary to their 
DNA methylation levels, in line with the concept that hypomethylation 
generally leads to overexpression of gene, while hypermethylation re
sults in gene silencing [30,31]. 

In addition, we also investigate the global metabolism alterations 
associated with disulfidptosis in cancers. To this end, we collected a 
clear cell renal cell carcinoma (ccRCC) cohort containing patient tran
scriptome data and 571 metabolite data and calculated the disulfidptosis 
score for each sample to explore the impact of disulfidptosis on patient 
metabolism [32]. By performing Pearson correlation analysis, we iden
tified 167 metabolites that were significantly positive correlated with 
disulfidptosis score (Fig. S4C; Rs > 0.18, FDR <0.05) and 135 metabo
lites that were significantly negative correlated with disulfidptosis score 
(Fig. S4C; Rs < − 0.18, FDR <0.05). As stated previously, disulfidptosis 
occurs when the synthesis of NADPH is inhibited under glucose starva
tion. Overexpression of SLC7A11 at this time will lead to an increase in 
cystine pumping into cells, causing the accumulation of disulfide com
pounds, and triggering cell death caused by protein folding errors. 
Consistent with this process, we observed that a high disulfidptosis score 
was positively correlated with cystine abundance level while negatively 
correlated with glucose abundance level, suggesting the robustness of 
the disulfidptosis score model for defining disulfidptosis status 
(Fig. S4D). Among the disulfidptosis-related metabolites, we found 
several interesting metabolites that vary with the disulfidptosis state and 
deserve further exploration in the future. For example, glucose 6-phos
phate is negatively correlated with the disulfidptosis score, and we 
speculate that this may be due to its role in NADPH generation through 
shuttling into the PPP of glucose catabolism [10]. Similarly, lactate also 
exhibits a negative correlation with disulfidptosis score, which may be 

attributed to its contribution to the production of NADPH by isocitrate 
dehydrogenase 1 under glucose-deprived conditions [33]. On the con
trary, phenylacetylglutamine is positively correlated with the disul
fidptosis score, which may be due to the fact that cells in a high 
disulfidptosis state consume a large amount of glutamate when trans
porting cystine, thus being highly dependent on glutamine uptake [1]. 
In addition, 3-methylglutarylcarnitine is a metabolite of branched-chain 
amino acids (BCAAs), which can provide energy for tricarboxylic acid 
(TCA) cycle and oxidative phosphorylation to maintain abnormal pro
liferation of tumor cells. This may be an important method of energy 
compensation in tumor cells experiencing glucose starvation and is 
positively correlated with the disulfidptosis score [34] (Fig. S4F). 

Additionally, we explored the changes in metabolic pathways asso
ciated with disulfidptosis status. Through differential abundance (DA) 
analysis, we observed that metabolites negatively correlated with 
disulfidptosis were more enriched in pathways such as glycogen meta
bolism (DA score = − 1), sphingosines metabolism (DA score = − 1) and 
fructose, mannose, galactose, starch, and sucrose metabolism (DA score 
= − 0.6), while metabolites that positively correlated with disulfidptosis 
were more enriched in pathways such as fatty Acid, dihydroxy (DA 
score = 1), phosphatidylethanolamine (DA score = 0.67) and glycer
olipid metabolism (DA score = 0.5) (Fig. S4G). Overall, our results 
provide a global landscape of molecular alterations associated with 
disulfidptosis status across various tumor types. 

3.4. Association between disulfidptosis and mRNA expression and 
signaling pathway 

To investigate the manners by which disulfidptosis exert biological 
processes, we focused on the significantly altered pathways across 
different cancers. The results showed that the changing trends of various 
functional pathways remain consistent in 26 cancer types (Fig. 4A-B). As 
previously reported, actin cytoskeleton organization formed the most 
prominent interaction cluster in the disulfidptosis process, and 
increasing NADPH supply could rescue disulfidptosis [6]. Pathways 
associated with positive regulation of actin nucleation, alpha actinin 
binding, and actin cytoskeleton reorganization, were strikingly enriched 
in disulfidptosis score-high samples. In contrast, energy 
metabolism-related pathways such as NADH dehydrogenase complex 
assembly, oxidoreduction coenzyme metabolic process and adenosine 
triphosphate (ADP) metabolic process were commonly enriched in 
disulfidptosis score-low samples across cancer types (Fig. 4A). To 
explore the potential mechanisms underlying disulfidptosis in cancer 
pathogenesis, we also analyzed the relationship between cancer hall
mark pathway activity calculated by GSVA algorithm (details see the 
Methods) and disulfidptosis. Disulfidptosis is characterized by glucose 
starvation and a lack of redox substrates. Consistent with this status, 
ROS pathway, glycolysis, and oxidative phosphorylation were all found 
to be downregulated in the disulfidptosis score-high samples, thus 
confirming the accuracy of our analysis (Fig. 4B). Additionally, we 
observed that pathways involving ultraviolet (UV) response signaling, 
transforming growth factor (TGF) beta signaling were likely to be 
upregulated in disulfidptosis score-high samples, whereas pathways 
related to MYC targets v1/2, fatty acid metabolism, PI3K/AKT/MTOR 
signaling, and DNA repair were prone to be upregulated in disulfidptosis 
score-low samples (Fig. 4B). These findings suggest that alterations in 
signaling pathways may be related to disulfidptosis status in cancer 
patients, and their specific interactions require further investigation. 

To assess the roles of disulfidptosis-related features in drug response, 
we focused on 137 genes with differential mRNA levels between disul
fidptosis score-high and score-low samples in at least 5 cancer types. We 
calculated the correlations between the expression of these genes in 
1074 cancer cell lines and the AUC values of 252 anti-tumor drugs tar
geting multiple cancer-related pathways obtained from the CCLE and 
GDSC databases. The results demonstrated that 137 disulfidptosis- 
related genes in 19 cancer signaling pathways were significantly 
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associated with the sensitivity of 180 anti-tumor drugs (|Rs| > 0.3, FDR 
<0.05), and most genes (86.8%; n = 119) were related to sensitization of 
anti-tumor drugs (Fig. 4C). The related pathways included the cyto
skeleton signaling pathway, chromatin signature, cell cycle, DNA 
replication, EGFR signaling pathway, MAPK signaling pathway, PI3K 
signaling pathway, and RTK signaling pathway (Fig. 4C and Fig. S5). For 
instance, the MAPK signaling pathway has been reported to modulate 
drug efficacy through ERK, and JNK and p38 signaling pathway [35]. 
We found that 32 genes in the MAPK signaling pathway are associated 
with the sensitization of 10 anti-tumor drugs (Rs < − 0.3, FDR <0.05; 
Fig. S5A), and 37 genes in the MAPK signaling pathway are associated 
with the resistance of 12 anti-tumor drugs (Rs > 0.3, FDR <0.05; 
Fig. S5A). Regulation of the cytoskeleton signaling pathway has been 
reported to enhance drug resistance in multiple cancer types through 
sub-families of proteins including microtubules, actin, and intermediate 

filaments [36–38]. We found that 32 genes in the cytoskeleton signaling 
pathway are associated with the sensitization of 5 anti-tumor drugs (Rs 
< − 0.3, FDR < 0.05; Fig. S5B), and 39 genes in the cytoskeleton 
signaling pathway are associated with the resistance of 6 anti-tumor 
drugs (Rs > 0.3, FDR < 0.05; Fig. S5B). Taken together, these results 
show extensive interactions between disulfidptosis-related molecular 
features and drug responses, which broaden a comprehensive perspec
tive for exploring therapeutic strategies via targeting genes in signaling 
pathways. 

3.5. Regulatory network of disulfidptosis-related miRNAs, target genes 
and proteins 

To further understand the potential regulatory network in disul
fidptosis, we analyzed differences in miRNA expression among different 

Fig. 4. Relationships between disulfidptosis and Signaling Pathways and drug response. (A–B) Heatmap showing normalized difference for Gene sets activity in Gene 
Ontology Biological Processes (GOBP) (A) and cancer hallmark pathways activity (B) between high- and low-disulfidptosis score tumor tissues. (C) Spearman’s rank 
correlation between disulfidptosis-related mRNA expression levels in different signaling pathways and drug sensitivity (AUC value) across 1074 cancer cell lines. The 
red dots indicate disulfidptosis-related genes; the bar plot denotes the number of drugs correlated with the genes. The grey circle denotes cancer-related signaling 
pathway; the orange dots along the grey circle indicate drugs targeting pathways and the point size shows the number of genes correlated with drug sensitivity (|Rs| 
> 0.3, FDR <0.05); the magenta and green lines indicate positive and negative correlation, respectively. AUC, Area Under Curve; FDR, False discovery rate. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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disulfidptosis status (Fig. S6A) and constructed a miRNA-target regula
tory network to investigate the impacts of miRNAs on disulfidptosis. 34 
miRNAs significantly differentially expressed in at least four cancers 
between disulfidptosis score-high and score-low samples were identified 
(Fig. S6A), and enrichment analysis of the signaling pathways of their 
target genes was performed (Fig. 5A, Fig. S6B). Intriguingly, the 
expression of most miRNAs was significantly down-regulated in disul
fidptosis score-high samples, while their target genes were significantly 
up-regulated (Fig. 5A). These target genes are mainly enriched in the 
terms related to the regulation of actin cytoskeleton, B cell receptor 

(BCR), T cell receptor (TCR), chemokine signaling pathway, p53 
signaling pathway and other immune-regulated signaling pathways 
(Fig. 5A). Among them, hsa-miR-183-5p and hsa-miR-7-5p are closely 
associated with the regulation of actin cytoskeleton and may serves as 
important regulators of actin network collapse in the disulfidptosis 
process [39,40] (Fig. 5A). Furthermore, the expression of 
hsa-miR-155-5p and hsa-miR-93-5p was found to be reduced in tumors 
with high disulfidptosis status and significantly associated with activa
tion of the BCR and TCR pathways (Fig. 5A) [41–46]. The above results 
provide valuable insights into the mechanism by which miRNA 

Fig. 5. Disulfidptosis-related miRNA and protein signatures. (A) Significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched by mRNAs in the 
miRNA-target regulatory network. The magenta line indicates an upregulate of miRNA in the high disulfidptosis score group, and the green line indicates a 
downregulate of miRNA the high disulfidptosis score group. Yellow dots correspond to miRNA-targeted genes highly expressed in the high disulfidptosis score group, 
and purple dots correspond to miRNA-targeted genes highly expressed in the disulfidptosis score group. The circle represents a signaling pathway enriched with 
targeted genes. Statistical analysis was performed using a propensity score algorithm to identify disulfidptosis-related miRNAs and proteins; details are given in the 
Methods. (B) Heatmap at the bottom panel display alterations of protein or protein phosphorylation in disulfidptosis score-high samples in at least three cancer types. 
Color represents the degree of difference between the disulfidptosis score-high vs low groups. Statistical analysis was performed using a propensity score algorithm to 
identify disulfidptosis-associated proteins (details are given in the Methods). The barplot at the upper panel shows the accumulated number of drugs positively 
(purple) or negatively (dark green) correlated with disulfidptosis-related proteins in different cancer types. The correlation was performed by Spearman’s rank 
correlation. (C) Altered signaling pathways based on functional proteomics data of reverse-phase protein arrays in the disulfidptosis score-high group vs. the 
disulfidptosis score-low group for multiple cancers. Color indicates the difference in pathway score; point size indicates FDR for pathway score. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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regulates BCR and TCR, thereby affecting immune cell infiltration in 
different disulfidptosis status. To further explore the relationship be
tween disulfidptosis and immune cell infiltration, we used the CIBER
SORT tool to calculate the infiltration degree of 22 immune cell types 
across pan-cancer samples. As expected, we found a real correlation 
between disulfidptosis and certain immune cell populations. For 
example, disulfidptosis was positively correlated with the infiltration of 
resting memory CD4 T cells, B cells, mast cells, and plasma cells, and 
negatively correlated with the infiltration of regulatory T cells (Tregs), 
follicular helper T cells, and M0 macrophages (Fig. S6C). Therefore, our 
study reveals the possible impact of disulfidptosis on the tumor micro
environment, and the specific mechanism requires further exploration. 

To explore the potential impact of disulfidptosis on protein expres
sion, we collected proteins from functional proteomics data on TCGA 
reverse-phase protein arrays, including key total and phosphorylated 
proteins associated with cancer. The results showed that 119 proteins 
were significantly related to the disulfidptosis process in at least three 
cancer types (Fig. 5B, bottom panel). Among these, programmed cell 
death 4 (PDCD4), a novel tumor suppressor known to inhibit cell 
growth, tumor invasion, and metastasis [47], was significantly upre
gulated in disulfidptosis-score high samples in seven cancer types. 
Additionally, transferrin receptor (TFRC), a specific ferroptosis marker, 
was significantly downregulated in disulfidptosis-score high samples in 
eight cancer types [48], and Cyclin B1 (CCNB1), a protein essential for 
cell proliferation, was significantly downregulated in 
disulfidptosis-score high samples in nine cancer types [49] (Fig. 5B). 
Furthermore, disulfidptosis-related proteins were correlated with the 
response to anti-tumor drugs (Fig. 5B up panel). Of these, Yes1 associ
ated transcriptional regulator (YAP) was negatively correlated (drug-
sensitive) with the response to PHA665752 in 4 cancer types, which is a 
selective and ATP-competitive c-Met kinase inhibitor targeting the RTK 
signaling pathway, but positively correlated (drug-resistant) with 
CCT018159, a HSP90 inhibitor (Fig. S6D). Moreover, we examined the 
pathway scores based on protein expression in 10 cancer-associated 
signaling pathways. We found that the RAS/MAPK, hormone ER, hor
mone AR, RTK, and PI3K/AKT signaling pathways were upregulated, 
while epithelial mesenchymal transition (EMT), cell cycle, and apoptosis 
pathways were downregulated in disulfidptosis score-high samples 
(Fig. 5C). These results elucidate the related proteins that may play 
important roles in the process of disulfidptosis and provide an important 
direction for further research into the detailed mechanisms underlying 
disulfidptosis. 

3.6. Disulfidptosis-related somatic copy number alterations across cancers 

Given that SCNAs largely mediate aberrant gene expression, we 
explored the effects of amplification and deletion on disulfidptosis 
regulator expression across various cancer types (Fig. S7A-C). The re
sults showed that SCNAs varied in different tumor types, which may be 
an important reason for tumor heterogeneity. For example, RAC1, a key 
molecule involved in promoting lamellipodia formation and disul
fidptosis in SLC7A11high cells [6], is mainly located on chromosome 
7p22.1. We found that 7p22.1 copy number amplification leads to RAC1 
overexpression mostly in GBM and testicular germ cell tumors (TGCT) 
(Frequency as 80% and 83%), while 7p22.1 copy number deletion leads 
to RAC1 low expression mostly occurred in OV (Frequency as 43%) 
(Fig. S7A-C). Subsequently, we investigated the global pattern of 
disulfidptosis-related SCNAs in tumors and identified 112 significantly 
altered SCNAs in 23 cancer types, containing 82 deletions in 22 cancer 
types with 280 genes located in these regions and 32 amplifications in 
17 cancer types with 87 genes located in these areas (Fig. 6A). 
Furthermore, 14 clinically actionable genes were harbored in these 
altered SCNAs (Fig. 6B), and they were targeted by 30 anti-tumor drugs 
of three categories, including targeted therapy, hormone therapy and 
immunotherapy (Fig. 6C). For example, 2q37.3 deletion is the most 
frequent SCNA in the disulfidptosis score-high samples of three cancers 

(SKCM, UCEC and BRCA; Fig. 6A). The programmed cell death protein 1 
(PDCD1), as the target of nivolumab and pembrolizumab for cancer 
immune checkpoint inhibitors, is located in the 2q37.3 region in SKCM, 
UCEC and BRCA (Fig. 6B). Phosphatase and tensin homolog (PTEN), as a 
negative regulator of GLUT1 [50], is located in the 10q23.31 deletion 
region in disulfidptosis score-high samples of PRAD and BRCA (Fig. 6B). 
Cyclin dependent kinase inhibitor 2A (CDKN2A), located in the 9p23 
deletion region in disulfidptosis score-high samples of kidney clear cell 
carcinoma (KIRC) and LGG (Fig. 6B), was found to regulate the forma
tion of homotypic cell-in-cell structures correlated with F-actin rear
rangement [51]. Notably, CDKN2A is targeted by the CDK inhibitor 
palbociclib (Fig. 6C), and loss-of-function CDKN2A alterations had an 
effect on the response and survival in patients treated with immuno
therapy in multiple studies [52]. Fibroblast growth factor receptor 1 
(FGFR1), located in the 8p11.21 amplification region in disulfidptosis 
score-high samples of rectum adenocarcinoma (READ), was known to 
induce rapid reorganization of the actin cytoskeleton and stimulate the 
formation of stress fibers [53]. These results highlight that there exists 
heterogeneity in the effect of SCNAs on disulfidptosis across tumor 
types, and disulfidptosis-associated SCNAs are associated with tumor 
response to anti-tumor drugs including targeted therapy, hormone 
therapy and immunotherapy. 

3.7. Disulfidptosis status associated with drug response and their 
therapeutic liability 

To comprehensively characterize the functional effects of disul
fidptosis status on the response of current clinical drugs, we calculated 
the association analysis between the disulfidptosis score and 138 esti
mated drug susceptibility data in TCGA. The results showed that the 
number of drugs associated with disulfidptosis status ranged from 1 in 
OV to 71 in THYM (Fig. S8; FDR <0.05). Furthermore, we evaluated the 
effects of disulfidptosis on drug response using imputed drug data from 
patient samples. We found that disulfidptosis score-high cancer samples 
were more sensitive to various drugs. For example, patients with higher 
disulfidptosis score demonstrated greater sensitivity to cytarabine in 
five cancer types (Fig. S8), which is consistent with the previous 
observation that glucose uptake restriction, such as treatment with 
GLUT1 inhibitors, makes acute myeloid leukemia cells more sensitive to 
cytarabine [54]. In addition, a total of 99 clinically actionable genes 
(CAGs) were targeted by 83 clinically available drugs, including 27 
FDA-approved drugs (Fig. S9). These CAGs were altered at typically five 
different molecular levels across 26 cancer types (DNA methylation, 
mRNA expression, protein expression, somatic mutation and SCNAs) 
(Fig. S9). For example, the androgen receptor (AR) was significantly 
altered at the mRNA and protein levels in 12 cancer types, including 
PRAD. The AR, targeted by anti-androgen drugs (enzalutamide and 
flutamide), has been consistently reported to promote the progression of 
prostate cancer [55]. Moreover, previous studies identified a negative 
regulatory domain in the AR hinge region that interacts with the 
actin-binding cytoskeletal protein-filamin A (FLNa) [55], suggesting AR 
as a potential disulfidptosis-related gene. Overall, we found that disul
fidptosis might also contribute to drug resistance, suggesting that 
disulfidptosis has a complex impact on drug responses, and the com
bined therapies need to be based on preliminary experiments and 
in-depth studies of the mechanism (Figs. S8–S9). 

To directly validate our multi-omics findings in vitro, we firstly 
investigated whether glucose starvation-induced disulfidptosis differs 
between disulfidptosis score-high and score-low cell lines based on the 
Gan et al.’s findings. We obtained the gene expression matrix for cancer 
cell lines from GDSC. We then assessed disulfidptosis levels in each 
cancer cell line and divided the cancer cell lines into high- and low- 
disulfidptosis score group based on the median disulfidptosis score 
(Fig. 7A, Details see Table S2). In order to determine whether cell lines 
with different disulfidptosis scores have different sensitivities to low 
glucose, we selected 4 cancer cell lines for subsequent experimental 
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verification based on currently available materials. We tested two 
disulfidptosis score-low cell lines including the human cervical carci
noma cell line Hela and the human hepatocellular carcinoma cell line 
Huh-7. We found that glucose starvation for 16 h could not trigger cell 
death in Hela and Huh-7 cells (Fig. 7B). Conversely, glucose depletion 
for 16 h triggered a striking decrease in cell viability in disulfidptosis 
score-high melanoma cell lines (A375 and SK-MEL-28) (Fig. 7C). 
Notably, glucose starvation-induced cytotoxicity could be largely abro
gated by the disulfide-reducing agent dithiothreitol (DTT), but not by 
inhibitors of ferroptosis (liproxstatin-1), apoptosis (Z-VAD-FMK), nec
roptosis (necrostatin-1s), or autophagy (chloroquine) (Fig. 7C). To 
further corroborate this finding, we conducted lactate dehydrogenase 
(LDH) release experiments as a direct indicator of cell death. We found 
that treating SK-MEL-28 cells with glucose-free medium induced a sig
nificant increase in LDH release, and this increased cell death could be 
completely abolished by DTT (Fig. 7D). 2DG, a glucose analog, has been 
reported to produce NADPH through the PPP and further inhibit disul
fidptosis [6,10]. Consistent with this finding, treatment with 2DG 
significantly mitigated cytotoxicity induced by glucose deprivation in 
disulfidptosis score-high melanoma cell lines A375 and SK-MEL-28, but 
not in disulfidptosis score-low Hela and Huh-7 cells (Fig. S10A). The 
extensive import of cystine and its subsequent reduction to cysteine 
contribute to NADPH depletion and disulfidptosis during glucose 

starvation [6,10]. Therefore, the short-term removal of cystine from the 
culture medium could rescue disulfidptosis. As expected, we observed 
that removal of cystine from the culture medium indeed suppressed 
glucose deprivation-induced cytotoxicity in A375 and SK-MEL-28 cells, 
whereas Hela and Huh-7 cells showed minimal response (Fig. S10B). 
Prolonged culturing of A375 and SK-MEL-28 cells in cystine-depleted 
medium eventually resulted in significant cell death, which could be 
rescued by the ferroptosis inhibitor liproxstatin-1 (Fig. S10C), further 
supporting the well-established notion that cystine depletion induces 
ferroptosis in cancer cells over a long period of time [10]. Furthermore, 
glucose depletion neither inhibited cell proliferation nor promoted cell 
cycle arrest in SK-MEL-28 cells (Fig. 7E and F). Likewise, glucose star
vation did not induce apoptosis in SK-MEL-28 cells detected by 
caspase-3 activity and Annexin V/PI apoptosis assays (Fig. 7G and H). 
Therefore, our data strongly suggest that glucose deprivation-induced 
cytotoxicity is not associated with inhibition of cell proliferation or 
increased apoptosis but drives a unique form of cell death known as 
disulfidptosis in A375 and SK-MEL-28 melanoma cells. 

Subsequently, we predicted the effect of disulfidptosis on drug 
sensitivity in melanoma (Fig. 7I and S10D). For drug compounds that 
predicted increased sensitivity under disulfidptosis status, we selected 
three drugs (etoposide, methotrexate, and CMK) for subsequent exper
iments, excluding OSI.906 due to unavailability. Consistent with our 

Fig. 6. Disulfidptosis-related SCNAs among cancer types. (A) Disulfidptosis-related SCNAs across multiple cancers. The upper bar denotes the number of cancer types 
with amplifications (magenta) or deletions (green); the right bar denotes the number of amplifications (magenta) or deletions (green) in each cancer. Upper triangles 
denote the disulfidptosis score-high; Inverted triangles denotes the disulfidptosis score-low. (B) Chromosome plot displays locations of disulfidptosis-related SCNAs 
with significant alterations or harbored genes in the disulfidptosis score-high group vs. the disulfidptosis score-low group. Magenta indicates amplification in the 
disulfidptosis score-high group; green indicates amplification in the disulfidptosis score-low group. Pink indicates deletion in the disulfidptosis score-high group; light 
blue indicates deletion in the disulfidptosis score-low group. The purple label shows clinical actionable genes (CAGs). (C) FDA-approved drugs targeting CAGs in 
disulfidptosis-related SCNAs. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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computational prediction, SK-MEL-28 cells became significantly sensi
tive to etoposide, methotrexate and CMK under the glucose starvation- 
induced disulfidptosis status compared with normal conditions 
(Fig. 7J). Moreover, A375 cells also tend to be more sensitive to meth
otrexate and CMK in the context of glucose deprivation-triggered 
disulfidptosis (Fig. S10E). Among the drug compounds that predicted 
decreased sensitivity under disulfidptosis conditions, we chose three of 
the top seven drugs (GW-441756, ABT-263, and NSC-87877), excluding 
others due to unavailability. Consistently, glucose starvation-induced 
disulfidptosis status conferred resistance to GW-441756, ABT-263, and 
NSC-87877 in SK-MEL-28 cells (Fig. 7K). Taken together, these results 
suggest that disulfidptosis induction could indeed affect the sensitivity 
of tumor cells to anti-tumor drugs, and the combination of disulfidptosis 
inducers and anti-tumor drugs may provide an alternative direction for 
cancer therapy. 

4. Discussion 

Disulfidptosis is a groundbreaking discovery in the field of RCD, 
uncovering a novel mechanism for organisms to combat malignant 
progression of tumors [7]. Therefore, elucidating the effect of disul
fidptosis on molecular alternations is crucial for the development of 
effective therapeutic strategies. The hallmark of disulfidptosis is F-actin 
contraction and detachment from the plasma membrane, which is not 
easily detectable under human physiological and pathological condi
tions [6]. Hence, it is urgent to establish a robust predictive signature for 
assessing tumor disulfidptosis status in large-scale cancer patients and 
explore the impact of disulfidptosis on molecular alternations in multi
ple dimensions. 

In this study, we first proved the stability of a 23 gene signature for 
defining disulfidptosis status across various cancer types [6,9,10]. Our 
findings show the extensive heterogeneity exists in disulfidptosis levels 
within and across cancer types. The location and staging of tumors may 
be one of the potential causes of the phenomenon, suggesting that tumor 
location and staging should be considered when developing treatment 
strategies targeting disulfidptosis. Thus, this may provide a reference for 
selecting accurate cancer patients to use disulfidptosis targeting drugs in 
future prospective trials. Based on above signatures, we stratified cancer 
patients into disulfidptosis score-high, score-intermediate, and 
score-low groups and PSM algorithm was applied to eliminate the in
fluence of confounding factors on the analysis [19,20,26]. Subsequently, 
we identified molecular alternations at multidimensional levels, 
including mRNA, miRNA, protein, methylation, mutation, and SCNA, in 
patients with different disulfidptosis status across 26 cancer types. 
Importantly, we found that disulfidptosis is associated with cancer pa
tient prognosis and drug sensitivity. Our comprehensive analysis pro
vides a strong multi-omics foundation for the clinical translation of 
disulfidptosis, as demonstrated by previous rigorous research [20,26]. 

Particularly, we observed that 99 out of 121 (81.8%) clinically 
actionable genes exhibited significant alterations, resulting in altered 

sensitivity of patients to 83 clinical drugs under the influence of disul
fidptosis. These drugs contain 27 FDA-approved anti-tumor drugs, 
covering a variety of treatment types such as immunotherapy, chemo
therapy, hormone therapy and targeted therapy. Possibly due to the 
tumor heterogeneity, disulfidptosis had differential effects on molecular 
alterations in different tumor types, but the majority of clinically 
actionable genes were biased towards patients with active disulfidptosis 
status, suggesting that disulfidptosis-targeted treatment had synergistic 
effects on multiple cancer treatments and thus had the potential to 
combine currently clinically actionable genes to develop new thera
peutic strategies. At present, there are limited studies on disulfidptosis 
[6,9,10,56], so we directly validate our multi-omics findings in vitro. As 
expected, disulfidptosis score-high cell lines, such as melanoma cells, 
were more susceptible to glucose starvation-induced cell death, which 
could be abolished by the disulfide reducing agent DTT. Previous studies 
indicated that glucose uptake supports cell proliferation, and its deple
tion could induce apoptosis [57,58]. Here, we found that glucose star
vation had no effect on cell proliferation and apoptosis in melanoma 
cells within a short induction time. This discrepancy may be attributed 
to differences in the glucose-free induction time and cancer types 
because glucose starvation could induce rapid cell death as disul
fidptosis in disulfidptosis-sensitive cells, while cause apoptosis with 
much delayed kinetics in disulfidptosis-resistant cells [6]. We further 
found that glucose depletion-induced disulfidptosis status enhances cell 
sensitivity to certain anti-tumor drugs (etoposide, methotrexate, and 
CMK). These findings could facilitate the development of relevant clin
ical treatments based on disulfidptosis status. 

There are still several limitations in our research. Firstly, although 
disulfidptosis status can be directly evaluated by specific inhibitors or 
co-staining, this method is challenging in large-scale patient samples. 
Therefore, here we assessed the disulfidptosis status of patients by a 23 
gene signature and verified its robustness in 6 glucose-starved datasets, 
which still hold significant biological significance. Secondly, although 
we collected about 10,000 tumor samples from 33 cancer types, only 26 
tumor types were finally included in the follow-up study due to the small 
number of samples in some tumor types. Further studies are needed to 
explore the effect of disulfidptosis on the tumors not analyzed in this 
study. Finally, our observations lack further validation in more rigorous 
clinical settings due to the limited data from most clinical trials. None
theless, our study emphasizes the significance of monitoring tumor 
disulfidptosis status in future clinical studies. 

5. Conclusion 

In conclusion, we firstly uncover a comprehensive profile of 
disulfidptosis-related molecular alterations at the pan-cancer levels and 
provide opportunities to utilize multiple drug sensitivities induced by 
disulfidptosis through multi-omics analysis. Our work highlights the 
important clinical application potential of disulfidptosis and lays the 
foundation for developing personalized treatment strategies for pan- 

Fig. 7. Disulfidptosis-related molecular features in clinically actionable genes and drug response associated with disulfidptosis in vitro. (A) Disulfidptosis scores for 
25 types of cancer that including 760 cancer cell lines. Cancer types are sorted by the median disulfidptosis score (horizontal black line) for each cancer type. Each 
dot represents one cancer cell line. Sample sizes for each cancer type are listed near the bottom. The horizontal black dotted line means the median value of 
disulfidptosis score in all the 760 cancer cell lines that divide all the cancer cell lines into disulfidptosis score-high (red) and disulfidptosis score-low (green) groups. 
(B–C) Relative cell viability in the HeLa, Huh-7 (B; Green label; Disulfidptosis-score low), A375 and SK-MEL-28 (C; Red label; Disulfidptosis-score high) cells cultured 
in glucose-containing (+Glucose) or glucose-free (-Glucose) medium with or without indicated concentrations of liproxstatin-1 (Lip-1), Z-VAD-FMK (Z-VAD), 
necrostatin-1s (Nec-1s), chloroquine (CQ), and dithiothreitol (DTT) for about 16 h. (D) LDH release analysis of SK-MEL-28 cells after indicated treatments for about 
14 h. (E) Representative EdU staining images and the ratio of EdU positive SK-MEL-28 cells after indicated treatments for about 12 h. The nuclei were stained with 
Hoechst (blue). Scale bar, 50 μm (200 × ). (F) Cell cycle distribution of SK-MEL-28 cells after indicated treatments for about 12 h. (G) Apoptosis analysis of SK-MEL- 
28 cells by flow cytometry at 14 h after receiving indicted treatments and stained by PI and Annexin V. (H) Caspase-3 activity of SK-MEL-28 cells after indicated 
treatments for about 14 h. STS, staurosporine, the apoptosis inducer. (I) Drug response associated with the disulfidptosis status in SKCM. The green point denotes 
drug sensitivity; the magenta point denotes drug resistance. (J–K) Dose-response curves for relative cell viability of etoposide, methotrexate, CMK (E; drug sensi
tivity), GW-441756, ABT-263, and NS-87877 (F; drug resistant) in glucose-containing (+Glucose) and glucose-free (-Glucose) conditions in the SK-MEL-28 cells. 
Quantification data are presented as mean ± SD and compared with one-way ANOVA in B–H and two-way ANOVA in J-K. NS, not significant; *, P < 0.05; **, P <
0.01; ***, P < 0.001; ****, P < 0.0001. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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