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Abstract
Background  Glycolytic metabolism in the brain of pediatric patients, imaged with [18F]  fluorodeoxyglucose-positron emis-
sion tomography (FDG-PET) is incompletely characterized.
Objective  The purpose of the current study was to characterize [18F]FDG-PET brain uptake in a large sample of pediatric 
patients with non-central nervous system diseases as an alternative to healthy subjects to evaluate changes at different pedi-
atric ages.
Materials and Methods  Seven hundred ninety-five [18F]FDG-PET examinations from children < 18 years of age without 
central nervous system diseases were included. Each brain image was spatially normalized, and the standardized uptake 
value (SUV) was obtained. The SUV and the SUV relative to different pseudo-references were explored as a function of age.
Results  At all evaluated ages, the occipital lobe showed the highest [18F]FDG uptake (0.27 ± 0.04 SUV/year), while the 
parietal lobe and brainstem had the lowest uptake (0.17 ± 0.02 SUV/year, for both regions). An increase [18F]FDG uptake 
was found for all brain regions until 12 years old, while no significant uptake differences were found between ages 13 
(SUV = 5.39) to 17 years old (SUV = 5.52) (P < 0.0001 for the whole brain). A sex dependence was found in the SUVmean 
for the whole brain during adolescence (SUV 5.04–5.25 for males, 5.68–5.74 for females, P = 0.0264). Asymmetries in [18F]
FDG uptake were found in the temporal and central regions during infancy.
Conclusions  Brain glycolytic metabolism of [18F]FDG, measured through the SUVmean, increased with age until early ado-
lescence (< 13 years old), showing differences across brain regions. Age, sex, and brain region influence [18F]FDG uptake, 
with significant hemispheric asymmetries for temporal and central regions.
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Introduction

Pediatric neurodevelopment is a dynamic and complex pro-
cess driven by multiple physiological changes, including 
myelinization, synaptic genesis, pruning, hormonal, and 
neurotransmission changes which are expected to impact 
glycolytic metabolism. Neuroimaging is an excellent tool 
for evaluating these changes during brain development in a 
noninvasive way [1–3].

Knowledge of the normal patterns of brain metabolism 
during childhood is essential to understand brain develop-
ment and for identifying pathological alterations of meta-
bolic and morphologic brain changes by imaging [4–11]. 
For example, imaging has demonstrated diagnostic utility 
in diseases such as epilepsy, autism, brain tumors, and 
psychiatric disorders [8, 12–17]. Despite the usefulness 
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of neuroimaging in pediatric patients, there is a paucity 
of information about normal and abnormal brain structure 
and function.

The most used radiotracer in positron emission tomog-
raphy (PET) imaging worldwide to assess, indirectly, glyc-
olytic metabolism is [18F]fluoro-2-deoxy-D-glucose ([18F]
FDG-PET), which is most commonly used for staging and 
monitoring response to treatment of neoplasms. In recent 
years, the use of quantitative methods and automatic seg-
mentation has led to a growing number of applications of 
[18F]FDG-PET for brain imaging, including the study of 
resting-state brain connectivity [18–21]. Furthermore, the 
diagnosis of psychiatric and neurological disorders has 
benefited from using [18F]FDG-PET imaging in children 
[22–25].

Quantitative or semiquantitative analysis of pediatric 
brain [18F]FDG-PET images could help discriminate abnor-
mal from normal uptake. Such analyses are complicated by 
slight normal variations in locoregional uptake which may 
be misinterpreted as a pathological condition. Therefore, 
normal uptake references are necessary for pediatric brain 
[18F]FDG-PET uptake. However, the study of normal brain 
metabolism in childhood is complex for two main reasons: 
(1) from an ethical standpoint, healthy pediatric subjects 
cannot be exposed to ionizing radiation and (2) a consid-
erably large number of subjects is necessary to optimally 
characterize the age-related changes in brain metabolism 
[26, 27].

Efforts to characterize brain changes during childhood 
have been performed using absolute and relative values of 
regional brain uptake, using a variety of developmental mod-
els, including linear [28–30], polynomial, and transcendental 
functions [26, 31]. It has been reported that [18F]FDG uptake 
in the cerebral cortex tends to be higher at an early age due 
to neuronal proliferation and overpopulation, followed by 
synaptic stability and a decrease during adolescence char-
acterized by synaptic pruning [32, 33]. Likewise, pediatric 
metabolic brain connectivity [34] has been studied in order 
to evaluate integration and functional segregation trajecto-
ries. Studies on cortical anatomical development [35] and 
functional networks [36] in childhood have also been per-
formed. These previous studies have reported an increase 
in [18F]FDG-PET uptake with age. However, most studies 
have had limited sample sizes or included limited age ranges.

The purpose of the current study was to characterize 
[18F]FDG-PET brain uptake in a large sample of pediatric 
patients with non-central nervous system diseases as an 
alternative to healthy subjects to evaluate changes at dif-
ferent pediatric ages: infancy (0–4 years old), childhood 
(5–11 years old), and adolescence (12–19 years old) [37, 
38]. Semiquantitative measurement with the standardized 
uptake value (SUV) was used to analyze the metabolism at 
each age [39].

Methods

This research project retrospectively included data 
acquired for clinical indications. Ethics approval was 
obtained from the Ethics in Research Committee of the 
Research Division, School of Medicine, Universidad 
Nacional Autónoma de México (UNAM) under the refer-
ence number SR1132014. This study was performed in 
accordance with the ethical standards of the 1964 Decla-
ration of Helsinki and its later amendments. In addition, 
written informed consent was obtained from each child’s 
parents or guardians, permitting the use of data for both 
clinical and research purposes.

Image acquisition

Whole-body [18F]FDG-PET/CT scans were acquired on 
a Siemens Biograph Truepoint 64 (Siemens Medical Sys-
tems, USA). Verification of the cross-calibration between 
the PET scanner and the dose calibrator was periodically 
performed by using a uniform phantom filled by a 18F solu-
tion as part of the quality control of the scanner. Each sub-
ject received a weight-adapted dose of 6.95 ± 1.87 MBq/
kg of [18F]FDG intravenously after fasting for at least 6 h; 
patients < 2 years old fasted for approximately 4 h. Patients 
that required sedation for clinical imaging had nothing to 
eat or drink after midnight before the examination. In all 
cases, the patients fasted during the 1-h [18F]FDG uptake 
period. When required, anesthesia was administered during 
the scan acquisition, after the biodistribution period of the 
radiopharmaceutical.

Once the radiopharmaceutical was administered, patients 
remained in the preparation room and rested for approxi-
mately 70 min (range 60 to 79 min). A transmission CT scan 
(35 mAs, 120 kVs, slice thickness of 3 mm) was used for 
attenuation correction, followed by a PET emission scan for 
2 min/bed position from the skull to the proximal third of 
the thigh. PET images were reconstructed with an ordered 
subset expectation maximization algorithm 2D (3–4 itera-
tions, 15 subsets, Gaussian filter of 8–10 mm). The voxel 
size of the image was 4.07 × 4.07 × 3 mm3.

Patient selection

The imaging database of the PET/CT Unit of the School 
of Medicine at the UNAM, Research Division, was used 
as the source of analyzed data in the present research with 
whole-body [18F]FDG-PET/CT studies performed on pedi-
atric patients younger than 18 years of age between January 
2010 and February 2019 included. A senior M.D. specialist 
(NE, 18 years experience) reviewed the clinical information 
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of each patient in order to select the sample of subjects for 
the present analysis.

The following cases were excluded from the study: 
patients with a history or presence of a neurological disease, 
central nervous system (CNS) involvement by neoplasms 
or infections, surgery or biopsy at brain level, diabetes, vas-
culitis, and prior or current treatment with chemotherapy 
or intrathecal radiotherapy. Additionally, examinations 
were excluded for incomplete clinical data, images that 
did not cover the entire brain, presence of artifacts, uptake 
times > 80 min, follow-up studies of the same patient, images 
with SUVmean outlier values based on a robust regression, 
and outlier removal test [40] with a Q = 5%.

Image processing

Brain images for the selected patients were extracted from 
the whole-body PET/CT images using the PMOD v.3.806 
software (PMOD Technologies LLC). Once the brain images 
were obtained, spatial normalization and co-registration pro-
cedures were performed through SPM12 v. 9.11 (Institute 
of Neurology, London, UK) [41]. Normalized images were 
segmented using the Hammers N30R83 atlas implemented 
in PMOD [42] to obtain the 3D volume of interest (VOI) of 
83 cortical and subcortical brain structures and were scaled 
to their SUV using the injected dose and the weight of each 
patient. The average SUV (SUVmean) was obtained in each 
structure for all subjects. In addition, an average FDG uptake 
brain map (in terms of SUVmean) was created for each age 
group through all the subject’s data (freely available).

Statistical analysis

A linear regression analysis and standard deviation of the 
SUVmean values by age was performed to investigate the rela-
tionship of the [18F]FDG uptake across the pediatric age 
ranges. To evaluate the effect of age on [18F]FDG uptake 
in each region, an ANOVA test was performed with multi-
ple Tukey–Kramer post hoc comparisons between SUVmean 
values and age groups. Multiple linear and non-linear 
models were proposed for each region to model the age 
effect on regional glycolytic brain metabolism. The mod-
els considered were linear, quadratic, cubic, exponential 
( y = y0e

K∗age ), and power law ( y = A ∗ ageB + C∗ ageD ) at 
95% prediction interval. The optimal model for each brain 
region was determined through the lowest Akaike informa-
tion criterion (AIC), root mean square error (RMSE) value, 
and coefficient of determination ( R2 ) closest to unity.

The sex effect on the [18F]FDG brain uptake in each 
region was evaluated using a two-way ANOVA test and 
post hoc multiple comparisons (Bonferroni), comparing the 
SUVmean of males and females in each age group.

In addition, for each age group, the regional SUVmean nor-
malized to pseudo-references was evaluated using previously 
reported regions [26, 28, 31]: cerebellum, brainstem, and the 
whole brain. Relative SUV ( SUVrel ) was defined as the ratio 
of the SUVmean to the SUVmean of the pseudo-reference.

The effect of laterality on the [18F]FDG uptake was evalu-
ated from the values of the 37 paired brain structures in each 
age group, and the structures whose absolute percentage dif-
ference of SUVmean between left- and right-sided was more 
than 5% ( ||ΔSUVL,R

|
|> 5%) were evaluated. First, a normal-

ity test (Kolmogorov Smirnov, n > 50 and Shapiro Wilk, 
n < 50) was performed for this evaluation. Subsequently, 
once the type of distribution of the data was known, the 
corresponding statistical tests were performed (paired t-test 
or Wilcoxon’s test).

In order to avoid systematic bias in the [18F]FDG uptake 
semi-quantification due to the large number of patients with 
Hodgkin’s lymphoma in this sample, an unpaired t-test with 
Welch’s correction was performed to compare the mean 
regional SUVmean values of this group of patients to other 
included patients.

All statistical analyses were carried out using GraphPad 
Prism v. 8.0.1 and R Studio v.1.4.1717 (R-Project.org) with 
p < 0.05 (α = 5%) considered significant for all inference 
testing.

Results

A total of 1593 whole-body [18F]FDG-PET/CT studies were 
performed during the study period. Based on exclusion cri-
teria (Fig. 1), imaging data from 795 patients (328 females 
and 467 males) were included in the analysis, with a median 
age of 13 years. The most common diagnoses of the study 
sample were Hodgkin lymphoma (346/795), non-Hodgkin 
lymphoma (88/795), testicular/ovarian germ cell tumors 
(55/795), rhabdomyosarcoma (42/795), and osteosarcoma 
(35/795). Figure 2 shows the age and sex distribution of 
patients.

Average [18F]FDG brain uptake for evaluated ages

Figure 3 shows images of the average [18F]FDG brain uptake 
for all the evaluated ages. Glycolytic metabolism is observed 
to increase with age [28]. On average across all age groups, 
the occipital lobe showed 24% higher uptake than the whole 
brain average, followed by the cingulate gyrus (10%) and 
parietal lobe structures (6%). The uptake in the brainstem 
was 29% lower than the average whole brain, followed by 
the temporal lobe (18%) and the cerebellum (8%). The 
structures with more variability were the cingulate gyrus 
(CV = 31.81%), central structures (CV = 31.3%), and occipi-
tal lobe (CV = 30.9%). There was no significant difference in 
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regional SUV
mean

 (p > 0.9999) for any of the studied regions 
between subgroups of patients with Hodgkin’s lymphoma 
and without Hodgkin’s lymphoma.

SUVmean changes associated with age and sex

The semiquantitative data obtained from the different brain 
regions and ages are shown in Fig. 4. As age increases, there 
is an increase in the SUVmean with a monotonic trend in all 
brain structures. In addition, a continuous increase in the 
[18F]FDG brain uptake is observed between ages 0 and 12, 
which corresponds to infant, preschool, and school-age chil-
dren, while in 13-year-old children and up, uptake is rela-
tively constant in different brain regions.

Based on linear regression analysis, the regions with the 
highest and the lowest [18F]FDG uptake are the occipital 
lobe (0.27 ± 0.04 SUV/year, R2=0.9231) and the parietal 
lobe (0.17 ± 0.02 SUV/year, R2=0.9241), respectively. Other 
structures with relatively high [18F]FDG uptake were the 
cuneus (0.31 ± 0.05 SUV/year, R2=0.9290), followed by 

the lingual gyrus (0.28 ± 0.04 SUV/year, R2=0.9207) and 
inferior frontal gyrus (0.27 ± 0.04 SUV/year, R2=0.9352), 
while the amygdala (0.15 ± 0.02 SUV/year, R2=0.9627), hip-
pocampus (0.16 ± 0.02 SUV/year, R2=0.959), and brainstem 
(0.16 ± 0.02 SUV/year, R2=0.9665) had a relatively lower 
[18F]FDG uptake. On average, SUV of the whole brain 
changed at the rate of 0.22 ± 0.03 SUV/year with R2=0.9396. 
Table 1 shows normal values of regional FDG uptake by 
semiquantitative measurement.

For most brain regions, no statistically significant dif-
ferences were found in [18F]FDG uptake by age between 
infant and preschool age. Similarly, in middle adolescence 
(13–17 years old), most regions have no significant differ-
ences from the average SUV. However, significant differ-
ences were observed when comparing the average SUV in 
the 0 to 12 age group to the average SUV of older subjects 
(> 12 years old).

For most age groups, females had a higher average [18F]
FDG brain uptake than males in all lobes and whole brain 
(Fig. 5). Figure 6 graphically depicts the significance of 
lobar differences in [18F]FDG uptake by sex according to 
patient age. Significant differences by sex were apparent at 
ages of 7, 13, 16, and 17 years old.

Adjustment models on regional SUVmean associated 
with age

According to age, the optimal SUVmean models were cubic 
in 7 regions (frontal, parietal, occipital lobe, insula, cerebel-
lum, cingulate gyrus, brainstem) and quadratic in 3 regions 
(temporal lobe, central structures, whole brain) (Fig. 7). 
Table 2 summarizes the fit parameters and model consid-
eration data. A considerable increase in SUVmean is observed 
in the models throughout infancy to middle adolescence, 
after which the increase diminishes. In addition, the curve 
associated with the model in the occipital lobe was above 
all other regions, while the curve associated with the model 

Fig. 1   Population sample flow 
diagram

Fig. 2   Age and sex distribution of the included patients
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in the brainstem was below the others. The results suggest 
that model curve peaks are outside the pediatric age range 
(< 17 years old).

Relative changes in the regional SUVmean

The relative regional-level changes in the [18F]FDG uptake 
relative to three pseudo-references, whole brain, brainstem, 
and cerebellum is shown in Fig. 8. Since the occipital lobe 
had the highest uptake throughout the pediatric range, the 
SUVrel trajectory is above the brain regions. When the SUV 
is normalized by the brainstem, the parameter trajectories 
do not have a stable trend but rather increase with age (up 
to 4 years) and then decrease. On the other hand, the other 
pseudo-references have a stable behavior and are close to 
unity (0.5 < SUVrel<1.5) with age.. The temporal lobe and 
brainstem showed the lowest values throughout the age 
range, regardless of the chosen pseudo reference.

Assessment of laterality

Table 3 shows the structures for which significant differences 
(p < 0.001) in SUVmean value were identified between the 
hemispheres. This effect was found in infants and preschool 
age (< 6 years old), particularly in temporal areas, frontal 
structures, and central structures. The caudate nucleus and 
substantia nigra were the structures that showed significant 

SUVmean differences from the range of 1 to 6 years of age. No 
significant differences were found in beyond 6 years of age.

Discussion

This work characterizes brain [18F]FDG uptake at different 
pediatric ages, as a step toward defining reference values for 
normal uptake (brain atlases) and identification of neurologi-
cal diseases in children. Our results are consistent with the 
findings of other authors in terms of demonstrating greater 
uptake of [18F]FDG in the occipital lobe [29, 30, 34] and 
frontal structures of children’s brains [28, 43]. Previous stud-
ies have reported that structures of the occipital lobe (infe-
rior occipital and occipitotemporal gyrus) and cerebellum 
have a wide range of variability [29, 31]. However, that vari-
ability may be due to non-standard uptake practices includ-
ing patients being awake or in a family member’s presence in 
the biodistribution room versus in rooms with low light and 
minimal stimulation during the uptake/biodistribution stage.

In all brain structures, we have shown an increase in [18F]
FDG uptake until the age of 10, which may reflect synaptic 
proliferation during this period [44]. The known accelerat-
ing loss of gray matter density thereafter may explain the 
constancy in the SUVmean at the ages from 13 to 17. Accord-
ing to Fig. 4, there are significant changes up to the age of 
13, which could be related to the synaptic pruning and gray 

Fig. 3   Average [18F]FDG-PET brain uptake image (in terms of SUV) displayed as sagittal, transverse, and coronal brain sections. Numbers indi-
cate years of age
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matter loss [4]. Results from Hua et al. 2015 [31] show that 
the monotonous growth of the uptake depends on the brain 
region and is also restricted until school age (< 12 years old), 
followed by a fall or stability in the region of adolescence 
(evaluating by linear spline adjustments). This work had 
similar results to Shan et al. 2014 [28] with fewer patients 
(N = 115) in younger pediatric age groups. 

Our results show greater dependence of [18F]FDG uptake 
on sex during adolescence (> 13 years old) in accordance 
with changes due to pubertal development [45]. In most of 
the brain regions, females had higher uptake of [18F]FDG 
than males. This finding is consistent with [26, 28] previous 
reports [10, 11, 46–48]. Noteworthy, a trend of high uptake 
of [18F]FDG in the female brain that remains from adulthood 
to older ages has also been reported [43, 49]. Interestingly, 
in the present study, significant differences in SUVmean were 
noted at adolescent ages, as previously reported [28], and 
also in infancy. The sex dependence of SUVmean increased 

as the subjects grew older, particularly at 7 and 10 years of 
age, and adolescent ages (13–17 years old). In addition, the 
parietal lobe had the most significant impact on the signifi-
cance of sex dependence on SUVmean at most ages assessed. 
This is an interesting finding considering that in this brain 
region, somatosensory, emotional, and language function are 
carried out [48].

The best fitting model for the temporal changes of SUV in 
most of the brain regions evaluated was a cubic approxima-
tion. These models may be helpful to estimate the normal 
SUVmean of [18F]FDG at any age and brain region. According 
to the models, the maximum points of the curves in each 
region are outside the pediatric age range. This conflicts with 
prior studies suggesting that these maximums occur between 
10 and 15 years of age [26, 28].

Use of pseudo-references to normalize SUV has been 
evaluated using the cerebellum [28], the whole brain 
[26, 34], and the brainstem [26, 30]. There is still debate 

Fig. 4   Trends in the average [18F]-FDG uptake ( SUV
mean

 ) in the different brain regions by age
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regarding which is the optimal reference given age depend-
ence. When normalizing region uptake with the whole brain, 
the results are consistent with other authors [26] who have 
found that the normalized SUV values remain constant along 
ages with low variability at regional levels. Shan et al. [28] 
previously showed a quadratic behavior of the SUV val-
ues when normalized with the cerebellum. In contrast, our 
results show a constant trend. For clinical application, the 
best brain pseudo-reference to normalize the SUV values 
is likely the cerebellum as there is no sex dependence in 

cerebellar uptake, and if there is a hypermetabolic area, the 
SUVrel with the whole brain would underestimate the ratio 
and would not be independent of age.

Our results demonstrate asymmetry in [18F]FDG uptake 
at early ages (infancy and preschool) in certain cerebral 
regions, including frontal (orbital and frontal gyrus), 
temporal (parahippocampal gyrus as reported previously 
[29]), occipital (lingual gyrus), and central (nucleus 
accumbens, pallidum, substantia nigra) structures. These 
results are consistent with the development of functional 

Fig. 5   Comparison of whole brain and lobar SUVmean changes in male (M) and female (F) groups

Fig. 6   Matrix of P-values 
(scaled by color) for comparison 
of lobar SUV

mean
 by sex (male 

vs. female) at each year of age

Fig. 7   Fitting curves for SUVmean trend (solid line) by age for whole brain and lobes (left) and subcortical as well as caudal structures (right). 
The 95% prediction interval for each curve is represented by the dashed line bands
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brain laterality along with age [47, 50]. Associations with 
handedness could not be assesses as data related to this 
were not available for the included sample.

This study is limited by its retrospective design and the 
inclusion of pediatric patients with extracranial diseases 
but without CNS involvement as surrogates of healthy 
children. Effects of this design include a limited sample 
of patients under the age of 4 and inclusion of patients 
imaged under anesthesia. While anesthesia decreases gly-
colytic metabolism, it was administered only for the scan 
acquisition, not during the uptake/biodistribution phase 
which is the period that largely determines the patterns 
of [18F]FDG uptake in the brain. In addition, SUV values 
calculated from whole-body protocol examinations have 
been assumed to be equal to those calculated based on 
dedicated brain examinations. This is despite differences 
in the spatial resolution of these different examinations 
which may result in different values.

Conclusions

We have characterized [18F]FDG uptake in the brain of a 
large sample of children without known CNS disease and 
have generated average maps by age to potentially serve as 
normal atlases of brain FDG uptake. There is a relatively 
monotonic increase in SUVmean in most brain regions from 
infancy to early adolescence (< 13 years old), followed by 
stable behavior up to 17 years. Impacts of age, sex, and 
brain structure on SUVmean were also observed.
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Fig. 8   Changes in regional SUVmean normalized to brainstem, cerebellum, or whole brain

Table 3   Paired structures that showed asymmetry (P < 0.001) in indi-
vidual left ( −) and right( +) SUVmean . The percentage difference in 
SUVmean between the two sides is shown in each resulting age group

Age (years) Structures ΔSUVL,R

1 Parahippocampal gyrus  − 7.14
Temporal superior gyrus  − 13.5
Lateral orbital gyrus  − 10.51
Accumbens nucleus  + 5.19
Pallidum  + 8.99

2 Frontal inferior gyrus  − 5.26
Temporal superior anterior part gyrus  − 22.7
Lingual gyrus  − 6.33

3 Pallidum  + 7.34
Frontal medial gyrus  − 6.46
Lateral orbital gyrus  − 6.87
Lingual gyrus  − 8.61

4 Pallidum  + 9.7
Accumbens nucleus  + 10.29

5 Pallidum  + 7.98
Accumbens nucleus  + 8.48

6 Accumbens nucleus  + 7.45
Temporal superior anterior part gyrus  − 6.05
Lingual gyrus  − 5.25

1–6 Caudate nucleus  + 9.85
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