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SUMMARY

Exploring the clinical relevance of diverse immune cell types within the tumor
microenvironment is pivotal for unraveling cancer intricacies and developing
treatments. Here, we present a protocol for using tumor immune microenviron-
ment illustration based on gene pairs, an R package to deduce cell-cell interac-
tions, unveiling the association between immune cell relative abundance and pa-
tient prognoses from bulk gene expression and survival data. We describe steps
for harnessing cell-typemarkers derived from single-cell RNA sequencing data to
map the tumor immune microenvironment across a spectrum of cancer types.
For complete details on the use and execution of this protocol, please refer to Li
et al. (2023).1
BEFORE YOU BEGIN

The tumor microenvironment comprises a complex interplay between cancerous and non-cancerous

cells, prominently immune cells. These immune cells encompass both those combatting cancer and

those promoting cancer, collectively shaping the tumor immune microenvironment (TIME).2,3

Recent investigations underscore the remarkable impact of TIME on patient prognoses.4,5 However,

dissecting these interactions proves intricate due to their interwoven nature, often resulting in con-

flicting interpretations.

TimiGP (Tumor Immune Microenvironment Illustration based on Gene Pairs) is a computational

method that aims at bridging this void.1 This method constructs a network delineating interactions

between immune cells from survival statistics and bulk transcriptomics. These interactions spotlight

specific associations correlated with favorable patient outcomes, suggesting pivotal immune cell

types steering anti-tumor responses.

The adaptability of TimiGP extends to analyses of diverse interaction scales beyond immune cells,

using the cell typing results from single-cell RNA sequencing (scRNA-seq). Employing TimiGP across

an assortment of solid tumor types unveils distinctive prognostic roles assumed by immune cells
STAR Protocols 4, 102742, December 15, 2023 ª 2023 The Authors.
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across different cancers. This advancement elevates our comprehension of TIME, potentially chart-

ing courses for personalized therapeutic interventions.

In this protocol, we provide step-by-step instructions to use the TimiGP R package (v1.2.0) to dissect

the association between TIME and prognosis.
Computational requirements for TimiGP

1. Computational Requirements:
# I

if(

ins

}

# I

# h

2

a. RAM: Minimum recommended RAM 8 GB.

b. R Version: Minimum required R version 4.0.0.

c. Dependencies: In addition to the base R installation, TimiGP relies on several external R

packages to ensure its functionality and enhance its capabilities. These dependencies will

be automatically installed during the setup process to streamline the installation and config-

uration of the TimiGP environment. The required external R packages include:

i. ‘survival’: survival analysis.

ii. ‘dplyr’: data manipulation.

iii. ‘doParallel’ and ‘foreach’: parallel computing.

iv. ‘ggplot2’, ‘circlize’, and ‘RColorBrewer’: data visualization.
Installation of TimiGP R package

Timing: 5 min

2. Install the TimiGP R package. Troubleshooting 1.

Note: TimiGP R package is not available on the standard R repositories (CRAN). It is public on

GitHub under GNUGeneral Public License v3.0. ‘devtools’ is a package that provides tools for

package development, including installing packages from GitHub. If you don’t have the ‘dev-

tools’ package installed, you need to install it first, and then use the ‘install_github()‘ function

from the ‘devtools’ package to install the TimiGP package directly from its GitHub repository

"CSkylarL/TimiGP".
nstall devtools from CRAN if not already installed.

!require(devtools)){

tall.packages("devtools")

nstall TimiGP R package from GitHub:

ttps://github.com/CSkylarL/TimiGP
Note: In the above code block, the ’#’ symbol is used to indicate comments, which are not

executable as code.

Note: When you install this package, rest assured that the installation process includes the

automatic resolution of all required dependencies. The installation of the TimiGP R package,

along with its dependencies, takes a total of 5 minutes. However, if the dependencies are

already installed, the installation time for the TimiGP R package alone is reduced to just 30

seconds.

devtools::install_github("CSkylarL/TimiGP")
STAR Protocols 4, 102742, December 15, 2023
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3. Load the package.

Note: If the TimiGP R package has been successfully installed, it should be able to load the

package into the R session using the ‘library()‘ function. Troubleshooting 2
4. Check the package version.

Note: This protocol is for the package version v1.2.0.

library(TimiGP)
packageVersion("TimiGP")

# return
# [1] ‘1.2.0’
Overview of internal data

5. The TimiGP R package has several internal data objects that contain preprocessed and curated

information necessary for various analyses and functions within the package. These data objects

include:
a. Example of input data: the transcriptomic profile, and survival statistics of TCGA (The Cancer

Genome Atlas) metastatic melanoma samples (TCGA_SKCM06),6 which is preprocessed to

the input format for TimiGP analysis.

i. ‘SKCM06rna‘: This dataset contains the transcriptome profile for 368 TCGA_SKCM06

samples, which is bulk RNA-seq data for 20,501 genes with RSEM-normalization.

ii. ‘SKCM06info‘: This dataset provides survival statistics for 368 TCGA_SKCM06 samples,

including the overall survival event and time.

b. Cell-type markers (Table 1).

Note: The cell-type markers provided by TimiGP are HUGO (Human Genome Organization)

nomenclature for gene naming.
i. ‘CellType_Bindea2013_cancer‘: This dataset containsmarkers of immune cell types along

with markers for one cancer cell type, generated by Bindea et al.7 The special cytotoxic

cell markers (e.g., GZMH, GZMA, KLRB1, KLRK1, GNLY, etc.), typically associated with

anti-tumor immune responses, serve as a positive control, while the tumor cell markers

(e.g., KRT13, RBP1, CCND1, S100A2, KLK6, etc.) are included as a control for pro-tumor

cell types.

ii. ‘CellType_Charoentong2017_Bindea2013_Xu2018_Immune‘: This dataset compiles im-

mune cell types and their associated markers published by Charoentong et al.,8 Bindea

et al.,7 and Xu et al.9 Compared to ‘CellType_Bindea2013_cancer‘, ‘Bindea2013‘ solely

comprises immune markers while omitting cancer-related markers. In contrast, ‘Charoen-

tong2017‘ is characterized by a broader diversity of mutually exclusive cell-subtype

markers, while ‘Xu2018‘, the modified cell-type markers developed by Xu et al., are

more concise, utilizing only 47 genes to represent a total of 17 distinct cell types. These

markers are supplemented with additional well-known immune stimulators, inhibitors,

and checkpoints. The comprehensive marker set is saved as ‘Immune_Marker_n1293‘.

iii. ‘CellType_Newman2015_LM22‘: This dataset provides markers specific to immune cell

types, utilizing the LM22 signature generated by CIBERSORT.10 These markers are valu-

able for characterizing various immune cells with activated and resting status.
STAR Protocols 4, 102742, December 15, 2023 3



Table 1. Features of internal cell-type markers

Data
Cell-type
marker

No. Cell
types No. Markers Source

Mutually
exclusive Resolution Generating codes Reference

CellType_Bindea2013_
cancer

Bindea2013
_cancer

22 539 Bulk
transcriptomic
profile

No Immune cells
include cytotoxic
cells, plus
tumor cells

https://github.com/CSkylarL/TimiGP/
blob/master/inst/extdata/build_
CellType_Bindea2013_cancer.R"build_
CellType_Bindea2013_
cancer.R

Bindea et al.
(2013)7

CellType_
Charoentong2017_
Bindea2013_Xu2018_
Immune

Bindea2013 21 502 No Immune cell
types

https://github.com/CSkylarL/TimiGP/
blob/
master/inst/extdata/build_CellType_
Charoentong2017_Bindea2013_
Xu2018_Immune.R"build_CellType_
Charoentong2017_Bindea2013_Xu2018_
Immune.R

Bindea et al. (2013)7

Charoentong2017 28 782 Yes Charoentong
et al. (2017)8

Xu2018 17 47 No Xu et al. (2018)9

CellType_Newman2015_
LM22

Newman2015 22 547 No Immune cells with
activated and resting
status

https://github.com/CSkylarL/TimiGP/
blob/master/inst/extdata/build_CellType_
Newman2015_LM22.R"build_CellType_
Newman2015_LM22.R

Newman et al.
(2015)10

CellType_Zheng2021_
Tcell

Zheng2021 40 389 scRNA-seq No T cell subtypes https://github.com/CSkylarL/TimiGP/
blob/master/inst/extdata/build_CellType_
Zheng2021_Tcell.R"build_CellType_
Zheng2021_Tcell.R

Zheng et al. (2021)11

CellType_Tirosh2016_
melanoma_TME

Tirosh2016 6 391 Yes Melanoma, Stroma,
and Immune
cells

https://github.com/CSkylarL/TimiGP/
blob/master/inst/extdata/build_CellType_
Tirosh2016_melanoma_TME.R"build_
CellType_Tirosh2016_melanoma_TME.R

Tirosh et al. (2016)12
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iv. ‘CellType_Zheng2021_Tcell‘: This dataset encompasses markers for 40 distinct T cell

subtypes generated from scRNA-seq performed by Zheng et al.,11 enabling the high-res-

olution analysis of diverse T cell populations.

v. ‘CellType_Tirosh2016_melanoma_TME‘: This dataset offers insights into the cell types

present in the tumor microenvironment of metastatic melanoma, along with their associ-

ated markers. It includes melanoma-specific cancer cells, stroma cells, andmajor immune

cell types derived from the scRNA-seq study conducted by Tirosh et al.12

c. Example of intermediate results.

Note: "Intermediate results" refer to pivotal interim outcomes generated during the TimiGP

analysis. These intermediate results act as checkpoints or reference points within the analysis,

aiding users in both understanding the process and efficiently testing individual components

of the TimiGP code.
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i. ‘Bindea2013c_COX_MP_SKCM06‘: This dataset contains ‘TimiCOX()‘ function results us-

ing ‘CellType_Bindea2013_cancer‘ for the analysis of TCGA_SKCM06 data, revealing the

association between each marker pair and favorable prognosis.

ii. ‘Bindea2013c_enrich‘: This dataset provides an example result of ‘TimiEnrich()‘ and ‘Timi-

PermFDR()‘ functions, allowing for enrichment analysis and defining immune cell interactions.
KEY RESOURCES TABLE
T or RESOURCE SOURCE IDENTIFIER

and algorithms

Li et al.1 https://github.com/CSkylarL/TimiGP

) R CRAN https://cran.r-project.org/

ackage (v1.1.2) Wickham et al.13 https://cran.r-project.org/web/packages/dplyr/index.html

R package (v2.4.5) Wickham et al.14 https://cran.r-project.org/web/packages/devtools/index.html

el R package (v1.0.17) Analytics and Weston15 https://cran.r-project.org/web/packages/doParallel/index.html

package (v1.5.2) Wallig and Weston16 https://cran.r-project.org/web/packages/foreach/index.html

package (v3.5–5) Therneau and Grambsch17 https://cran.r-project.org/web/packages/survival/index.html

R package (v3.4.3) Wickham18 https://cran.r-project.org/web/packages/ggplot2/index.html

rewer R package (v1.1–3) Neuwirth and Neuwirth19 https://cran.r-project.org/web/packages/RColorBrewer/index.html

package (v0.4.13) Gu et al.20 https://cran.r-project.org/web/packages/circlize/index.html

d data

-seq of metastatic melanoma cohorts
ancer Genome Atlas (TCGA_SKCM06)

Akbani et al.6 https://gdac.broadinstitute.org/

markers: Bindea2013 Bindea et al.7 https://doi.org/10.1016/j.immuni.2013.10.003
STEP-BY-STEP METHOD DETAILS

Here we describe step-by-step details to apply the TimiGP1 R package to TCGA metastatic mela-

noma data (TCGA_SKCM06) using the cell type markers developed by Bindea et al.7 The code

file is available in the example folder (example01). This folder also Includes the step-by-step details

to use other cell-type annotations (example02‒05).

Step 1: Data preprocessing

Timing: <1 s

TimiGP requires three inputs: (1) markers representing cell types, (2) transcriptomic profiles, and (3) sur-

vival statistics encompassing events (such as death or recurrence) and the corresponding time-to-event
STAR Protocols 4, 102742, December 15, 2023 5
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within the identical study cohort. We start with a series of systematic steps to prepare input data for

TimiGP analysis. The process begins with the loading of input example data of TCGA_SKCM06 samples,

including ‘SKCM06info0 for survival statistics and ‘SKCM06rna0 for transcriptomic profiles. Next, the ‘Cell-

Type_Bindea2013_cancer‘ cell type annotation data is loaded as the third input for subsequent analyses.

This data preprocessing step involves preparing the clinical and transcriptomic data for TimiGP anal-

ysis. These steps ensure that the data is in a suitable format and quality for subsequent analysis. The

preprocessing includes two main functions: ‘TimiCheckEvent()‘ and ‘TimiPrePropress()‘, both of

which are described below.

1. Clear the workspace and load the TimiGP R package.
rm(list=ls())
Note: Before commencing your analysis, you can use the ‘setwd()‘ function to specify a directory

path within the parentheses, effectively changing your current working directory in R. As shown

below, replacing " Your/Directory/Path/" with the actual path will adjust your working directory

to the specified location, facilitating smoother file read and write operations from that directory.

library(TimiGP)
2. Load the survival statistics dataset and transcriptome profile of TCGA_SKCM06 data.

a. The transcriptome profile, labeled as ‘SKCM06rna0, encompasses a data frame from 20,501

genes (row) collected from a total of 368 metastatic melanoma samples (column). Each row

in this dataset corresponds to a specific gene, and each column corresponds to a unique pa-

tient identifier (Figure 1A).

b. The ‘SKCM06info0 dataset offers critical clinical information related to survival statistics for a

cohort of 368 patients with metastatic melanoma. This dataset is organized in a data frame

format, which comprises 368 rows, with each row corresponding to a unique patient identifier.

The first column provides the event (indicating patient death) and the second column shows

the time (measured in days) to the event (Figure 1B).

Note: Events (e.g., deaths, recurrences, etc.) are encoded as "1." These represent the occur-

rence of the event of interest within the observation time. Censoring, which occurs when there

is incomplete data due to subjects not experiencing the event by the end of the study or being

lost to follow-up, is encoded as "0." These represent the cases where the event of interest did

not occur within the observation time.

Note: Considering the statistic power of survival analysis, the minimum advisable cohort size

for this analysis is 30.

Note: Please structure your data in a manner similar to the input example provided, ensuring it

aligns with the showcased format, which will facilitate seamless further analysis.

setwd("/Your/Directory/Path/")
data("SKCM06info")

data("SKCM06rna")

6 STAR Protocols 4, 102742, December 15, 2023



Figure 1. The format to input data

(A) The formats of transcriptomic data; (B) the formats of survival statistics data; (C) the format of cell-type marker data.

The screenshot displays white text on a black background within the terminal, with additional manual annotations in

red text, arrow, or box.
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3. Load cell type annotations.

a. The ‘CellType_Bindea2013_cancer‘ data provides immune cell types and their associated

marker genes, as annotated by Bindea et al. in 2013.7 This data is organized in a data frame

format, comprising 545 rows and 3 columns (Figure 1C). Here are the 3 columns:
da

#

#

ge

#

#

i. "CellType": representing immune and cancer cell types;

ii. "Gene": denoting the marker gene associated with each cell type;

iii. "Dataset": indicating the source of the annotation.

Note: It is flexible to utilize alternative cell type annotations included in the package or create

custom cell type annotations in the same standardized format. This allows the user to tailor the

analysis to various resolutions or specific research inquiries, adapting the cell type information

to suit the unique aspects of your investigation. We recommend 5‒30 markers per cell type,

considering the balance between computational efficiency and the robustness of results.

Mutually exclusive markers between cell types are preferable but not mandatory.
ta("CellType_Bindea2013_cancer")

The ’geneset’ variable will now hold this data,

making it accessible for further analysis and exploration.

neset <- CellType_Bindea2013_cancer

Extract unique marker genes from the ’geneset’ data frame

These unique marker genes will be used for subsequent analysis
4. Preprocess the data using functions ‘TimiCheckEvent()‘ and ‘TimiPrePropress()‘ functions.

marker <- unique(geneset$Gene)
a. The ‘TimiCheckEvent()‘ function is designed to filter and clean survival statistics for analysis. It

takes a data frame containing event and time-to-event information as input. The function

performs the following tasks:
STAR Protocols 4, 102742, December 15, 2023 7
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i. Removes records with missing events or time-to-event data.

ii. Filters out records with abnormal time-to-event values less than or equal to 0.

iii. Returns the filtered survival information data frame.

This function ensures that the clinical data is free from missing values and inappropriate

time-to-event values, which are crucial for accurate survival analysis.

b. The ‘TimiPrePropress()‘ function preprocesses transcriptomic profile data for analysis. It takes

marker gene list(‘marker‘), transcriptomic data(‘rna‘), selected cohort(‘cohort‘), and two

optional normalization parameters as input. The function performs the following tasks:

i. Extracts the transcriptomic data for the selected cohort and marker genes. Trouble-

shooting 3.

ii. Removes genes with low expression based on a threshold. The threshold determines the

minimum percentage of samples with non-zero expression required for a gene to be

considered sufficiently expressed. Genes with expression values above this threshold in

at least 50% of the samples are retained, while those falling below this threshold are

filtered out due to low expression levels. If no genes meet the threshold, an error mes-

sage is displayed, and the analysis is halted. Otherwise, it updates the transcriptomic

data by keeping only the genes that meet the expression threshold, and a message is

printed to inform the user about the number of filtered-out markers with low expressions.

iii. Optionally performs log transformation and gene-wise median normalization. If ‘log =

TRUE‘, log transformation will be performed; the default value is ‘‘TRUE’’. If ‘GMNorm =

TRUE‘, gene-wise median normalization will be performed; he default value is ‘‘TRUE’’.

The approach of log transformation and gene-wise median normalization is advisable

when working with gene expression data that span multiple orders of magnitude, as it

can enhance the detection of subtle gene expression differences and mitigate the impact

of extreme values. Additionally, enabling gene-wise median normalization (‘GMNorm =

TRUE‘) is recommended when capturing logical relations between marker pairs, while

disabling it (‘GMNorm = FALSE‘) is suitable for more sensitive analyses aimed at

capturing continuous relationships between markers. More details regarding marker

pair relations can be found in the next step.

iv. Returns the preprocessed transcriptomic profile data frame.

This function ensures that the transcriptomic data is appropriately filtered, transformed,
o <- T

<- Ti

orm=T

STAR
and normalized, preparing it for subsequent analysis steps.
imiCheckEvent(SKCM06info)

miPrePropress(marker = marker, rna = SKCM06rna, cohort = rownames(info), log = TRUE,

RUE)
Step 2: Define and select marker gene pair matrix

Timing: 5 s

TimiGP is based on the hypothesis that the ratios of expression between Immune Marker Gene Pairs

(IMGPs) encapsulate the relative proportions of immune cell infiltration and capture pivotal immune

interactions. So first, TimiGP establishes the Marker Pair Score (MPS). This score is formulated by

evaluating the expression disparities between IMGPs using the ‘TimiGenePair()‘ function.

5. Generate Marker Pair Score (MPS) using the ‘TimiGenePair()‘ function.
a. The ‘TimiGenePair()‘ function captures and assesses the logical or continuous relationship

between pairs of markers (genes) based on transcriptomic profile data (‘rna‘) preprocessed

by the ‘TimiPrePropress()‘ function. This function can be used to generate a matrix of Marker

Pair Scores, which indicates whether the expression of one gene is greater than or less than

the expression of another gene.

b. It offers both logical and continuous analysis options.
Protocols 4, 102742, December 15, 2023



Figure 2. TimiGP results comparison between continuous relation-based analysis (optional), and logical relation-based analysis (default)

(A and B) Output screenshots of marker pair scores using the logical relation-based approach (A) and using the continuous-relation-based approach (B).

(C and D) Chord diagram of cell-cell interactions identified using the logical relation-based approach (C) and the continuous relation-based approach

(D).

(E and F) Bar plot of the favorability score to prioritize critical cell type related to favorable (orange) or unfavorable (blue) prognosis using logical

relation-based approach (E) and using continues-relation-based approach (F). The default mode represents a more conservative analysis while the

optional feature provides a more sensitive choice. In the continuous relation-based analysis, more statistically significant prognostic pairs (8.56%

compared to 1.25% in the logical relation-based analysis) are selected by the Cox regression. Accordingly, the identified cell interactions (n = 113) using

ll
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Figure 2. Continued

this approach almost double compared to the default analysis (n = 54). However, the original interactions tend to be the most significant interactions

among those identified by the continuous relation-based approach (C, D). The two cell-cell interaction networks resulted in very similar prioritized cell

types (cells are sorted according to their favorability scores calculated based on their topological features in the network) (E, F). The screenshot displays

white text on a black background within the terminal, with additional manual annotations in red text, arrow, or box. Abbreviation of cell types: T, T cell;

Th, helper T cell; Th1, type 1 Th; Th2, type 2 Th; Tfh, follicular Th; Tcm, central memory T cell; Tem, effector memory T cell; cytotoxic, cytotoxic cell

(common cytotoxic markers of anti-tumor CD8 T cells, Tgd, and NK cells); NK, natural killer cell; DC, dendritic cell; iDC, immature DC; aDC, activated

DC; Mast, mast cell; Tumor, tumor cell.
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i. By default (‘cont = FALSE‘), it captures the logical relationship between marker pairs and

produces a matrix of Marker Pair Scores indicating whether the expression of gene A is

greater (1 or ‘‘TRUE’’) or less (0 or FALSE) than that of gene B (Figure 2A).

ii. Optionally, it can capture the continuous relationship between marker pairs by setting

‘cont = TRUE‘, producing a matrix of Marker Pair Scores representing the difference be-

tween the expression levels of gene A and gene B(Figure 2B).
Note: If continuous relation analysis is selected (‘cont = TRUE‘), the function checks whether

gene-wise median normalization has been applied and recommends setting ‘GMNorm =

FALSE‘ in the ‘TimiPrePropress()‘ function and then re-running this function.

Optional: In this protocol, we focus on the logical relation-based analysis (default, ‘cont =

FALSE‘), which represents a more conservative analysis and results in a list of high-confident

cell-cell interactions. Enabling the continuous relation option will preserve more gene pairs

and have a higher statistical power in the subsequent survival analysis. Therefore, the optional

approach is more sensitive to identifying prognostic gene pairs and cell-cell interactions

(Figures 2C‒2F). The step-by-step details for this optional approach are available in the

example06, which includes the code to repeat Figures 2B, 2D, and 2F.
mps <- TimiGenePair(rna=rna, cont=FALSE)
Step 3: Choose gene pairs associated with a favorable prognosis

Timing: 2 min

The next step of the TimiGP algorithm involves the selection of gene pairs linked to a positive prog-

nosis. TimiGP employs univariate Cox regression to carry out this selection process, that is, the ‘Ti-

miCOX()‘ function.

6. Perform univariate Cox regression using the ‘TimiCOX()‘ function.

a. Description: The ‘TimiCOX()‘ function is designed to identify marker pairs associated with

favorable prognosis using univariate Cox regression analysis. This function takes a matrix of

Marker Pair Scores (‘mps‘), a data frame containing event and days-to-event information

(‘info‘), and an optional parameter for adjusting p-values (‘p.adj‘). It performs Cox regression

analysis for eachmarker pair as a variable and processes the results to identify pairs associated

with favorable prognoses.

b. Parameters:
i. ‘mps‘: A matrix of Marker Pair Scores, where each row represents a marker pair and each

column corresponds to a sample. This is the output of the ‘TimiGenePair()‘ function, which

is generated in Step 2.

ii. ‘info‘: A data frame with two columns, where the first column represents event status (0 for

censored, 1 for event occurrence) and the second column represents time to event. This is

the output of the ‘TimiCheckEvent()‘ function.
AR Protocols 4, 102742, December 15, 2023
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Figure 3. Output screenshots of the ‘TimiCOX()‘ function

‘TimiCOX()‘ returns a list of two data frames: (A) updated ‘‘mps’’ where gene pair and marker pair score are reversed if

the original one (Figure 2A) is associated with poor prognosis.

(B) ‘‘cox_res’’: the result of survival analysis. The screenshot displays white text on a black background within the

terminal, with additional manual annotations in red text, arrow, or box.
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iii. ‘p.adj‘: A string specifying the method for adjusting p-values. Options include "holm"

(Holm’s step-down procedure), "hochberg" (Hochberg’s step-up procedure), "hommel"

(Hommel’s method), "bonferroni" (Bonferroni correction), "BH" (Benjamini-Hochberg

procedure), "BY" (Benjamini-Yekutieli procedure), "fdr" (False Discovery Rate control),

or "none" (No adjustment, p-values are not adjusted). The default is "BH".

iv. ‘parallel‘: A logical value indicating whether to enable parallel computing. If set to ‘‘TRUE’’,

the function will utilize parallel processing using the ‘foreach’ and ‘doParallel’ packages to

speed up computations. The default value is ‘‘FALSE’’, meaning that parallel computing is

disabled by default. When enabled, the function will distribute tasks across multiple CPU

cores to improve efficiency.

Note: Depending on the specific conditions of your analysis, particularly the number of

markers and the choice of CPU cores, the computational time for this step can vary signifi-

cantly. If parallel computing is disabled (default, ‘parallel = FALSE‘), this step typically takes

around 5minutes to complete. The computation time may increase if a larger number of cell-

type markers are provided. For instance, if there are more than 1000 markers, the process

could take more than 30 minutes to finish with this default mode. To expedite the computa-

tion, enabling parallel computing by setting the ‘parallel = TRUE‘ and specifying the number

of CPU cores to use can potentially reduce the execution time. Keep in mind that the effec-

tiveness of parallelization may vary depending on the task and hardware.

v. ‘core‘: A numeric value specifying the number of CPU cores to use for parallel execution, when

parallel computing is enabled (i.e., when ‘parallel‘ is set to ‘‘TRUE’’). The default value is 1.

Note: In this protocol, ‘core = 200 is set for the parallelization of the specified task. The choice

of the number of cores is highly task-dependent, and it’s crucial to consider several factors
STAR Protocols 4, 102742, December 15, 2023 11
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whenmaking this decision. These factors include hardware limitations, such as the number of

physical cores available in the CPU, operating system constraints, the availability of system

resources, and the computational load, which can vary based on the number of markers

included in the analysis. In many cases, using a more conservative range, such as 2 to 4 cores,

proves to be sufficient for efficient and balanced performance.

c. Return: The function returns a list with two elements (Figure 3):

i. ‘‘mps’’: The first element is the modified marker pair score matrix, where the values of

marker pairs associated with poor prognosis have been reversed, and the pair direction

and values of the marker pair score have been changed accordingly. For each marker

pair, themps of 1 is associated with a favorable prognosis in the updatedmatrix (Figure 3A).

ii. ‘‘cox_res’’: The second element is a data frame containing the results of the Cox regression

analysis, including three columns: Hazard Ratio (HR), P-Value (PV), and Adjusted P-Value

(QV) for each marker pair (row name) (Figure 3B).
Run the TimiCOX function

es <- TimiCOX( mps = mps,

nfo = info,

.adj = "BH",

arallel = T,

ore = 20)

Extract the ’mps’ and ’cox_res’ objects from the ’res’ result

ps <- res$mps

ox_res <- res$ cox_res

Now you can use the ’cox_res’ variable for further analysis

u

a

Optional: The above intermediate results ‘cox_res‘ has been renamed as ‘Bind-

ea2013c_COX_MP_SKCM060 and saved as an example data. The data can be loaded by

the below codes:
ta(Bindea2013c_COX_MP_SKCM06)
7. Determine the condition and cutoff to select the prognostic pairs.

Note: By default, the condition is adjusted P value and the cutoff is 0.05. It is influenced by the

quality of the survival information. High-quality survival information, including a large cohort

size (e.g., > 200) and a reasonable number of events, is preferred to ensure the statistical po-

wer of survival analysis. We recommend the percentage of prognostic gene pair within the

range of 1%–5%. If you aim for more conservative results, you can choose a stricter cutoff,

e.g., adjusted P value < 0.01 by setting ‘GPcondition <- "QV’’‘ and‘GPcutoff <- 0.01‘. Other-

wise, if you desire more sensitive outcomes and conservative results, you can choose a lenient

cutoff, e.g., P value < 0.05 by setting ‘GPcondition <- "PV"‘ and ‘GPcutoff <- 0.05‘. Trouble-

shooting 4

cox_res <- Bindea2013c_COX_MP_SKCM06
Count the number of marker pairs with Adjusted P-value (QV) less than 0.05

m(cox_res$QV < 0.05) # Returns 2773

STAR Protocols 4, 102742, December 15, 2023



# Calculate the percentage of significant marker pairs relative to the total number of marker

pairs

round(sum(cox_res$QV < 0.05)/ nrow(cox_res) * 100, 2) # Returns 2.52

# Set up a variable to define the condition for selecting marker pairs based on the Adjusted

P-value.

GPcondition <- "QV"

# Set up a variable to define the cutoff value for the Adjusted P-value.

GPcutoff <- 0.05

ll
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# GP represents Gene Pair
Step 4: Construct the directed gene-gene network

Timing: <1 s

Utilizing the prognostic significance of IMGPs, TimiGP establishes pairwise associations between

each favorable and unfavorable gene (nodes), creating a directed gene-gene network. The direction

of the edges captures the connection between gene expression levels and their influence on patient

prognosis. To illustrate, an edge from gene x to gene y (x/y) signifies that a higher relative expres-

sion of gene x (favorable gene) compared to gene y (unfavorable gene) correlates with a better

prognosis.

8. Construct the directed gene-gene Network and export the files for Cytoscape21 visualization us-

ing the ‘TimiGeneNetwork()‘ function.
a. The input data ‘resdata‘ of the ‘TimiGeneNetwork()‘ function is the cox regression results

‘cox_res‘ generated from ‘TimiCOX()‘ function.

b. The ‘TimiGeneNetwork()‘ function uses three parameters to determine themarker pairs asso-

ciated with a good prognosis for the gene-gene network.

i. ‘condition‘: A value in one of "PV" (P.Value) and "QV" (Adjusted P.Value), which is the

column name of resdata, which contains information related to statistical significance.

The default value is "QV".

ii. ‘cutoff‘: This parameter refers to a threshold value associated with the ’condition’. It is

used as a filter for gene-gene interactions. Gene pairs with a value less than this cutoff

will be considered significant and included in the gene-gene network. The default value

is 0.05.

iii. ‘select‘: This parameter is a character vector that can contain the names of selected gene

pairs. These gene pairs are based on the row names in the ‘resdata‘ data structure. By

default, this parameter is set to "NULL", indicating that no specific gene pairs are

selected. However, if you manually choose gene pairs using this parameter, the auto-

matic filtering based on the ’cutoff’ and ’condition’ will be overridden for those selected

pairs. Troubleshooting 4.

Note: Default selection includes all gene-gene interactions with an adjusted p-value < 0.05.

c. The ‘TimiGeneNetwork()‘ function returns a list of network-required data that can be further

modified within R. There are three elements in the list: 1) ‘‘network’’, 2) ‘‘node’’, and 3) ‘‘edge’’

(Figure 4). Each element is a data frame. This function can also export these data by setting

‘export = TRUE‘ (default) and generates below three network files that can be imported to

Cytoscape for network analysis and visualization. Those files are saved to the specific location

provided through the ‘path‘ parameter.
STAR Protocols 4, 102742, December 15, 2023 13



Figure 4. Output screenshots of the ‘TimiGeneNetwork()‘ function

TimiGeneNetwork returns a list of three data frames: (A) ‘‘network’’, (B) ‘‘node’’, (C) ‘‘edge’’. The type of interaction is

‘‘TimiGP’’ representing gene-gene interaction exported by the TimiGP method. The screenshot displays white text on

a black background within the terminal, with additional manual annotations in red text, arrow, or box.

ll
OPEN ACCESS

14 ST

Protocol
i. Network file (gene_network.sif): A simple interaction file exported from ‘‘network’’, a data

frame containing information about the network structure. It has 3 columns: 1) ‘‘Source’’:

Source gene in an interaction (favorable gene); 2) ‘‘Interaction’’: the type of interaction; 3)

‘‘Target’’: Target gene in an interaction(unfavorable gene).

ii. Node attributes file (gene_node.txt): A file exported from ‘‘node’’, a data frame contain-

ing information about nodes (genes) in the gene network. It is the same as the input cell-

type annotation ‘geneset‘ (Figure 1C), which has three columns: 1) ‘‘CellType’’: Type of

cell associated with the marker gene; 2) ‘‘Gene’’: The gene itself; 3) ‘‘Dataset’’: The data-

set or source from which the gene information is derived.

iii. Edge attributes file (gene_edge.txt): A file exported from ‘‘edge’’, a data frame contain-

ing information about edges (interactions) in the gene network. It has six columns: 1)

‘‘Key’’: A key that represents a unique identifier for the interaction between genes; 2)

‘‘HR’’ (Hazard Ratio), 3) ‘‘PV’’ (P-value), 4) ‘‘QV’’ (Adjusted P-value): cox regression results
AR Protocols 4, 102742, December 15, 2023
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of the interaction obtained from the input ‘resdata‘ (Figure 3B); 5) ‘‘Favorable.Gene’’: One

of the interacting genes (source); 6) ‘‘Unfavorable.Gene’’.0: The other interacting gene

(target).
Note: If ‘export = TRUE‘ but ‘path = NULL‘, those files will be exported to the current working

directory.

d. The ‘TimiGeneNetwork()‘ function generates node information based on two parameters.
i. ‘dataset‘: This parameter specifies the dataset to be used for generating the gene network

files. It expects a value from a predefined set of options: "Bindea2013_Cancer," "Im-

mune3," "Newman2015," "Tirosh2016," "Zheng2021," or "Other." The first five options

are accompanied by preset configurations linked to internal cell-type annotations utilized

for the analysis. Specifically, these options correspond to: ‘CellType_Bindea2013_

cancer‘, ‘CellType_Charoentong2017_Bindea2013_Xu2018_Immune‘, ‘CellType_New-

man2015_LM22, CellType_Zheng2021_Tcell‘, and ‘CellType_Tirosh2016_melanoma_TME‘,

respectively. If you want to use a different dataset or customize node attributes, please

choose "Other" and then provide ‘geneset‘.

ii. ‘geneset‘: This parameter is a data frame that contains information about cell markers. It

should have at least three columns: the first column represents cell types, the second col-

umn represents marker genes, and the optional third column represents the name of the

dataset. The ‘geneset‘ parameter is used in conjunction with the dataset parameter. If you

choose "Other" for the dataset, you need to provide a ‘geneset‘ data frame to define the

cell markers for node attributes.
T <- TimiGeneNetwork( resdata = cox_res,

= NULL,

t = "Bindea2013_Cancer",

t = NULL,

ion = GPcondition,

= GPcutoff,

= TRUE,

"./")

lay the first few rows of the ’network’ component in the NET object

eneNET$network)

lay the first few rows of the ’node’ component in the NET object

eneNET$node)

lay the first few rows of the ’edge’ component in the NET object

eneNET$edge)
Step 5: Identify cell-cell interactions by enrichment analysis

Timing: 3 s

TimiGP performs enrichment analysis to statistically determine cell-cell interactions that are more

prevalent in the gene-gene network compared to random occurrences. The resulting cell-cell

interactions offer an understanding of how the varying abundance of cells in the TIME relates to

prognosis. This step operates under the immunological premise that the equilibrium between
STAR Protocols 4, 102742, December 15, 2023 15
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pro- and anti-tumor cells might dictate the TIME’s efficacy or suppressive nature, influencing prog-

nosis as a result.

The ‘TimiEnrich()‘ function is designed to perform the enrichment analysis by assessing the signifi-

cance of inter-interactions within a given gene pair set and cell pair dataset. This section includes

step-by-step details to prepare input of the ‘TimiEnrich()‘ function and explain its outputs.

9. Select marker pairs significantly associated with good prognosis. Troubleshooting 4.

Note: It selects gene-gene interaction of interest (e.g., x/y) that a higher x-to-y ratio is asso-

ciated with a positive prognosis, which is thought associated with specific cell-cell interac-

tions. The ‘GPcondition‘ and ‘GPcutoff‘ are determined previously.
10. Prepare marker pairs background for enrichment analysis using the ‘TimiBG()‘ function.

Note: The ‘background‘ would be the entire set of gene pairs available for analysis, which pro-

vides context for evaluating whether the gene-gene interaction is more prevalent than what

would be expected by chance. Therefore, the background includes both directions of avail-

able gene pairs, such as x/y and y/x. Considering previous intermediate results only

have one direction (x/y), TimiGP provides an additional function, ‘TimiBG()‘, to prepare

the background. The ‘TimiBG()‘ function takes a vector of marker pairs connected by under-

scores as input (e.g., x_y) and produces background gene pairs by generating complementary

pairs (x_y and y_x). The resulting background pairs provide a foundation for subsequent

analysis.

GP <- rownames(cox_res)[which(cox_res[,GPcondition] < GPcutoff)]
11. Generate marker pair annotations of all pairwise cell combinations using the ‘TimiCellPair()‘

function.

background <- TimiBG(marker.pair = row.names(cox_res))
16
a. Description: The function ‘TimiCellPair()‘ generates a predefined annotation set used by

enrichment analysis that includes available pairwise cell combination, potentially as cell-

cell interactions, which is denoted by marker pairs. In the annotation, a cell interaction X

/Y is defined by a list of marker pairs that point from the markers of cell X (e.g., x1, x2) to

the markers of cell Y (e.g., y1, y2) as below:

Cell X / Cell Y = {x1 / y1, x1 / y2, x2 / y1, x2 / y2,...};

Cell Y / Cell X = {y1 / x1, y1 / x2, y2 / x1, y2 / x2,...}

b. Parameters:

i. ‘geneset‘: A data frame of cell-type annotation, which is the same one used to generate

markers for the ‘TimiPrePropress()‘ function. As mentioned previously, in this protocol, its

internal cell-type markers ‘CellType_Bindea2013_cancer‘ are loaded by the ‘data()‘

function.

ii. ‘dataset‘: If the ‘geneset‘ has a third column representing dataset names, the function

handles the case where there are multiple datasets. It allows you to specify a dataset

for analysis using this optional parameter. This may be needed when using ‘CellType_

Charoentong2017_Bindea2013_Xu2018_Immune‘ which contains three different im-

mune cell-type annotations. More details and relevant codes were provided in the

example02.
STAR Protocols 4, 102742, December 15, 2023
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iii. ‘core‘: The function utilizes parallel processing for certain operations using the ‘foreach’

and ‘doParallel’ packages. This parameter is an integer specifying the number of CPU

cores used for parallel execution, which can speed up the analysis when dealing with

large amounts of cell types. The default value is 1.

c. Return: The function returns a data frame where each row contains a cell pair and its associ-

ated marker pairs. It has below two columns: (Figure 5A).

i. ‘‘Cell.Pair’’: This column represents the combination of two different cell types that are

possibly interacting or being considered together. The cell types are separated by an un-

derscore ("_").

ii. ‘‘Marker.Pair’’: This column represents the combination of two marker genes associated

with the corresponding cell pair. The marker genes are separated by an underscore ("_").

Note: An underscore separator "_" is used to replace the arrow "/" in the package consid-

ering programming readability and compatibility.
ll_pair <- TimiCellPair(geneset = geneset, core = 20)
12. Perform enrichment analysis using the ‘TimiEnrich()‘ function.
a. Description: The ‘TimiEnrich()‘ function is designed to perform enrichment analysis. It is used

to compare the frequency of gene-gene-directed interaction that belongs to a particular cell-

cell interaction with what would be expected by chance. If a statistically significantly higher

number of gene pairs from the network are found within a cell-cell interaction ‘geneset‘

compared to random chance, it suggests that the cell-cell interaction is enriched in the

gene-gene network, implying potential prognostic and immunological relevance.

b. Parameters:

i. ‘gene‘: A vector of gene symbols or gene pair for which enrichment analysis will be per-

formed. This parameter specifies the set of gene pairs that you want to analyze for enrich-

ment within the provided gene interactions. It’s selected in the previous step in the

section.

Note: The ’gene’ parameter should be in a consistent gene identifier format with the tran-

scriptome data and cell type annotation.

ii. ‘background‘: A vector of background genes or pairs. This parameter defines the back-

ground against which enrichment is assessed. It represents the universe of gene pairs

from which the gene-gene interaction is derived. It’s prepared in the previous step in

the section.

iii. ‘geneset‘: A data frame with two columns: the first column represents cell pairs, and the

second column represents gene pairs. This parameter contains the potential interactions

or relationships between cell types and genes that you want to analyze for enrichment. It’s

generated in the previous step in the section.

iv. ‘p.adj‘: A string specifying the method for adjusting p-values. Enrichment analysis often

involves multiple hypothesis testing, so p-values need to be adjusted to control the false

discovery rate. Options include "holm" (Holm’s step-down procedure), "hochberg"

(Hochberg’s step-up procedure), "hommel" (Hommel’s method), "bonferroni" (Bonfer-

roni correction), "BH" (Benjamini-Hochberg procedure), "BY" (Benjamini-Yekutieli pro-

cedure), "fdr" (False Discovery Rate control), or "none" (No adjustment, p-values are

not adjusted). The default value is "BH".

v. ‘core‘: An integer that indicates the number of cores for parallel execution. This function

enables parallel execution via the ‘foreach’ and ‘doParallel’ packages, which can speed

up the analysis when dealing with a large number of cell types. The default value is 1.
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Figure 5. Output example of ‘TimiCellPair()‘, ‘TimiEnrich()‘, ‘TimiPermFDR()‘, and ‘TimiDotplot()‘ functions

(A) Output screenshots of ‘TimiCellPair()‘ function; (B) Output screenshots of ‘TimiEnrich()‘ function; (C) Appended new column "Permutation.FDR" by

‘TimiPermFDR()‘ function.

(D) Dot plot generated by the ‘TimiDotplot()‘ function. The screenshot displays white text on a black background within the terminal, with additional

manual annotations in red text, arrow, or box.
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vi. ‘pair‘: A logical value that controls the type of enrichment analysis conducted by the function.

It allows the function to cater to two types of enrichment analyses: one focusing on interac-

tions between cell pairs and the other focusing on enrichment within individual cell types.

The default value is ‘‘TRUE’’, that is, the enrichment analysis will be conducted on cell pairs,

which is the TimiGP analysis described in this protocol. The results will provide insights into

cell-cell interactions. When the parameter is set to ‘‘FALSE’’, the function performs traditional

enrichment analysis. The results will not distinguish between different cell types and will pro-

vide insights into enriched gene sets within individual cell types. For this traditional enrich-

ment analysis, other parameters should be changed accordingly. The ‘gene‘ and ‘back-

ground‘ are gene symbols instead of gene pairs. ‘geneset‘ is a data frame representing

general cell types(1st column) and their associated marker gene(2nd column), e.g., internal

cell-type markers ‘CellType_Bindea2013_cancer‘ loaded by ‘data()‘ function.

c. Return: The function returns a data frame of enrichment results including below 12 columns

(Figure 5B).

i. ‘‘Index’’: The index serves as a unique identifier for each cell-cell interaction in the enrich-

ment analysis results. Unlike the ‘‘Rank’’ (2nd column), which might be shared among in-

teractions with the same p-value, the ‘‘Index’’ is a distinctive identifier that ensures each

interaction is uniquely labeled. This unique index can be used as a reference point to

specifically identify and distinguish each cell-cell interaction in subsequent analyses, vi-

sualizations, or discussions.

ii. ‘‘Rank’’: The rank of the cell-cell interactions is determined based on their p-values.

When multiple interactions have the same p-value, the ties are resolved using the

"min" method, meaning that the lowest rank among the tied interactions is assigned

to all of them. A smaller p-value corresponds to a smaller rank, indicating higher statis-

tical significance. In essence, the rank helps prioritize and order the interactions based

on their level of significance.

iii. "Cell.Interaction", "Favorable.Cell.Type", and "Unfavorable.Cell.Type": This "Cell.Interac-

tion" column represents the interaction or relationship between two cell types (cell pair) that

are the subject of the analysis. Each row corresponds to the analysis of a specific cell-cell

interaction (e.g., cell X_cell Y), providing statistical insight into the relationship between

these two cell types. If the "cell X_cell Y" is statistically significantly enriched, it suggests

an interaction from cell X to cell Y, indicating that a high X/Y ratio is associated with a favor-

able prognosis. In this context, the "Favorable.Cell.Type" column spotlights Cell X, which is

favorably poised to embody an anti-tumor cell character linked with optimistic prognostic

outcomes. Conversely, the "Unfavorable.Cell.Type" column spotlights Cell Y, indicative of

a pro-tumor cell type more inclined toward less favorable clinical outcomes.

iv. "No.Total.IMGP": The number of immune marker gene pairs (IMGP) associated with the

provided cell pair. It reflects the total count of gene interactions that are relevant to the

specific cell-cell interaction being analyzed.

v. "No.Shared.IMGP": The count of gene-gene interactions that are shared within the pro-

vided cell pair. It indicates howmany of the gene-gene interactions in the total count are

specific to the interaction between the two cell types.

vi. "Enrichment.Ratio": This ratio represents the degree of enrichment for the shared gene

interactions within the given cell pair. It indicates how much more frequently these

shared interactions occur than would be expected by chance.

vii. "P.Value": The p-value associated with the enrichment analysis. It quantifies the statis-

tical significance of the observed enrichment. A lower p-value suggests stronger evi-

dence against the null hypothesis of no enrichment.
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viii. "Adjust.P.Value": This columnprovides the adjusted p-value, which takes into consideration

themultiple testing issues when analyzingmultiple interactions. It’s often used to control the

false discovery rate and provides a more stringent assessment of significance.

ix. "Shared.IMGP" and "Total.IMGP": These columns contain concatenated lists of gene

interaction pairs that are shared and total, respectively, within the specific cell pair.

They provide insight into the representative gene-gene interactions contributing to

the cell-cell interaction.
TimiEnrich( gene = GP,

round = background,

et = cell_pair,

= "BH",

20,

TRUE)
13. Determine the condition and cutoff to define the cell-cell interaction.
Note: By default, the cell-cell interaction is defined as a pairwise cell-cell combination whose

adjusted P value (condition) is less than 0.05 (cutoff). The percentage of cell-cell interaction is

usually around 10%. Troubleshooting 5.
t the number of marker pairs with an Adjusted P-value less than 0.05

es$Adjust.P.Value < 0.05) # Returns 54

ulate the percentage of cell-cell interaction defined by the above condition and the

f

(sum(res$Adjust.P.Value < 0.05)/nrow(res) * 100, 2) # Returns 11.69

up a variable to define the condition for cell-cell interaction based on the Adjusted

ue.

dition <- "Adjust.P.Value"

up a variable to define the cutoff value for the Adjusted P-value.

off <- 0.05
Optional: Enhancing stringency of conditions through permutation for false discovery rate

(FDR) estimation using the ‘TimiPermFDR()‘ function. (Timing: 4 min)

# CI represents Cell-cell Interaction
The ‘TimiPermFDR()‘ function aims to make more cautious selections of cell interactions or when

there’s a need to evaluate the robustness of newly identified cell-type annotations. By permuting

sets of marker genes associated with different cell types, the function enables the assessment of

cell-type marker quality while effectively controlling the False Discovery Rate (FDR). This permuta-

tion-driven approach disrupts the intrinsic link between genes and cell types, facilitating an unbi-

ased evaluation of the interactions. The calculated FDR values for each interaction offer a reliable

measure of statistical significance, aiding researchers in identifying interactions that exhibit robust-

ness beyond random chance. Whether refining interaction selections or testing the reliability of

novel discoveries, the‘ TimiPermFDR()‘ function provides an essential avenue for enhancing the ac-

curacy and credibility of cell interaction analyses.
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‘TimiPermFDR()‘ function takes as input the results of ‘TimiEnrich()‘ function (‘resdata = res‘),

marker gene information (‘geneset = geneset‘), gene-gene interactions (‘gene = GP‘), back-

ground information (‘background = background‘) and other relevant parameters. Through a

certain number of gene set permutations (‘niter = 1000), the function generates shuffled marker

gene sets while maintaining their sizes. It then employs these shuffled sets to analyze cell inter-

actions and compute the FDR for each interaction. As a result, A new column named "Permuta-

tion.FDR" is added to the data frame of cell-cell interaction statistics generated from the ‘Ti-

miEnrich()‘ function (Figure 5C). The function also utilizes parallel computing by setting the

parameter ‘core‘.
<- TimiPermFDR( resdata = res,

eset = geneset,

e = GP,

kground = background,

er = 100,

e = 20)
Note: The intermediate results ‘res‘ after this step has been renamed as ‘Bindea2013c_enrich‘

and saved as example data, which can be loaded by the below codes:
a(Bindea2013c_enrich)
res <- Bindea2013c_enrich.
14. Visualize top interactions and enrichment statistics using the ‘TimiDotplot()‘ function.
a. Description: The ‘TimiDotplot()‘ function is designed to visualize the enrichment results

of selected cell-cell interaction. It creates a dot plot (Figure 5D) where the x-axis displays

chosen cell interactions (The arrow ‘‘/’’ is replaced by an underscore "_"), the y-axis

represents the Enrichment Ratio, and the color of the dots corresponds to the P-value

or FDR determined by the chosen condition column values, ranging from low (green)

to high (purple). Additionally, the size of the dots indicates the number of marker pairs

shared by query pairs and annotation pairs.

b. Parameters:

i. ‘resdata‘ (required): TimiGP enrichment result generated from the‘ TimiEnrich()‘ func-

tion or modified with TimiPermFDR() function.

ii. ‘select‘: A numeric vector representing the selected cell interactions based on the

"Index" column in ‘resdata‘. The default selection includes the top 5 enrichments.

iii. ‘condition‘: A character value specifying the column name in ‘resdata‘ for the color

representation of the dot plot. It can be one of "P.Value", "Adjust.P.Value", or "Per-

mutation.FDR". The default is "Adjust.P.Value".

iv. ‘cutoff‘: The maximum value for the color bar. The default is 0.05 for "Adjust.-

P.Value", but different values (0.01 for "P.Value" and 0.2 for "Permutation.FDR")

are recommended for other conditions.

c. Return: An enrichment dot plot visualizing the selected cell interactions’ enrichment re-

sults. It is a ‘ggplot2’ plot since the function requires the ‘ggplot2’ package for plotting.

The "Favorable Outcome" label is added to the top left corner of the plot, as an indicator

that the cell-cell interaction is associated with favorable clinical outcomes.
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cutoff = CIcutoff)
Step 6: Build and analyze the cell-cell interaction network

Timing: 2 s

Connecting all selected cell-cell interactions, TimiGP constructs a directed network linked to a pos-

itive prognosis. This network offers a comprehensive depiction of the association between Tumor

Immune Microenvironment (TIME) and clinical outcomes. In this network, each node signifies a spe-

cific cell type, while an edge signifies a higher relative abundance between two cell types in the TIME

associated with a favorable prognosis. This network demonstrates a hierarchical structure in terms of

degrees, referring to the number edges that are linked to each node.

Based on the degree information, TimiGP computes a favorability score, which consists of two com-

ponents, a favorable score and an unfavorable score. A higher favorable score indicates that the

corresponding cell type is generally associated with a positive prognosis and primarily functions

as anti-tumor cells in the TIME network. Conversely, a higher unfavorable score suggests an adverse

prognostic association and pro-tumor functions.

15. Construct the cell-cell network and export the files for ‘Cytoscape’ visualization using the ‘Timi-

CellNetwork()‘ function.

Note: The parameters of the ‘TimiCellNetwork()‘ function closely resemble those of the ‘Timi-

GeneNetwork()‘ function, simplifying their usage and making it straightforward to work with

both functions.
22
a. The input data ‘resdata‘ of the ‘TimiCellNetwork()‘ function is the enrichment results ‘res‘

generated from ‘TimiEnrich()‘ or modified with ‘TimiPermFDR()‘ functions.

b. The ‘TimiCellNetwork()‘ function uses three parameters to define the cell-cell interaction

from enrichment statistics.

i. ‘condition‘: A value in one of "P.Value", "Adjust.P.Value" and "Permutation.FDR", which

is the column name of ‘resdata‘, which contains information related to statistical signifi-

cance. The default value is "Adjust.P.Value".

ii. ‘cutoff‘: This parameter refers to a threshold value associated with the ’condition’.

It assists in the definition of cell-cell interactions. Cell pairs with a value less than

this cutoff will be cell-cell interaction and included in the network. The default value

is 0.05.

iii. ‘select‘: This parameter is a numeric vector denoting selected cell interactions based on

the "Index" column in ‘resdata‘. Default selection encompasses all cell-cell interactions

(adjusted p-value < 0.05). By default, this parameter is set to "NULL", indicating that

no specific cell-cell interactions are selected. However, if you manually choose cell-cell

interactions as research of interest for visualization using this parameter, the automatic

filtering based on the ‘cutoff‘ and ‘condition‘ will be overridden for those selected cell-

cell interactions. Troubleshooting 5.

Note: The default definition of cell-cell interactions is adjusted p-value (condition) < 0.05(cutoff).
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Figure 6. Output screenshots of the ‘TimiCellNetwork()‘ function

TimiCellNetwork returns a list of three data frames: (A) ‘‘network’’, (B) ‘‘node’’, (C) ‘‘edge’’. The type of interaction is

‘‘TimiGP’’ representing cell-cell interaction exported by the TimiGP method. The screenshot displays white text on a

black background within the terminal, with additional manual annotations in red text, arrow, or box.
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c. The ‘TimiCellNetwork()‘ function returns a list of network-required data that can be further

modified within R. There are three elements in the list: 1) "network", 2) "node", and 3)

"edge" (Figure 6). Each element is a data frame. This function can also export these data

by setting ‘export = TRUE‘ (default) and generating the below three network files that can

be imported to ‘Cytoscape’ for network analysis and visualization. Those files are saved to

the specific location provided through the ‘path‘ parameter.

i. Network file (cell_network.sif): A simple interaction file exported from ‘‘network’’, a data

frame containing information about the network structure. It has 3 columns: 1) ‘‘Source’’:

Source cell in an interaction (favorable cell); 2) ‘‘Interaction’’: the type of interaction; 3)

‘‘Target’’: Target cell in an interaction(unfavorable cell).

ii. Node attributes file (cell_node.txt): A file exported from ‘‘node’’, a data frame containing

information about nodes (cells) in the network. It has three columns: 1) ‘‘Key’’: This column

represents different cell types (nodes); 2) ‘‘No.Markers’’: This column contains the number

of markers associated with each cell type. 3) ‘‘Group’’: This column seems to specify the

group or category to which the cell type belongs.

iii. Edge attributes file (cell_edge.txt): A file exported from ‘‘edge’’, a data frame containing

information about edges (interactions) in the cell-cell network. It adds a ‘‘Key’’ column

that represents a unique identifier for the interaction between cells to the input ‘resdata‘

(Figures 5A and 5B).
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Note: If ‘export = TRUE‘ but ‘path = NULL‘, those files will be exported to the current working

directory.

d. The ‘TimiCellNetwork()‘ function generates node information based on three parameters.

i. ‘dataset‘: This parameter specifies the dataset to be used for generating the cell network

files. It expects a value from a predefined set of options: " ‘‘Bindea2013_Cancer", "Char-

oentong2017", Bindea2013", "Xu2018", "Newman2015", "Zheng2021", "Tirosh2016",

or "Other". The first seven options are accompanied by preset configurations linked to

internal cell-type annotations utilized for the analysis. Specifically, these options corre-

spond to: ‘CellType_Bindea2013_cancer‘, ‘CellType_Charoentong2017_Bindea2013_

Xu2018_Immune‘ (this includes three cell-type annotations), ‘CellType_Newman2015_

LM22‘, ‘CellType_Zheng2021_Tcell, and CellType_Tirosh2016_melanoma_TME‘, resp-

ectively. If you want to use a different dataset or customize node attributes, please

choose "Other" and then provide ‘geneset‘

ii. ‘geneset‘: This parameter is a data frame that contains information about cell-type

markers. It should have at least three columns: the first column represents cell types,

the second column represents marker genes, and the optional third column represents

the name of the dataset. The ‘geneset‘ parameter is used in conjunction with the dataset

parameter. If you choose "Other" for the dataset, you need to provide a ‘geneset‘ data

frame to define the cell type and its number of markers for node attributes.

iii. ‘group‘: This parameter allows the specification of custom cell-type groups when using

the "Other" ‘dataset‘ option, which enables the organization of cell types based on spe-

cific research needs. It is a vector of self-defined cell groups, whose names are all favor-

able and unfavorable cell types in selection.
lNET <- TimiCellNetwork( resdata = res,

ect = NULL,

aset = "Bindea2013_Cancer",

up = NULL,

eset = NULL,

dition = CIcondition,

off = CIcutoff,

ort = TRUE,

h = "./")

isplay the first few rows of the ’network’ component in the CellNET list

d(CellNET$network)

isplay the first few rows of the ’node’ component in the CellNET object

d(CellNET$node)

isplay the first few rows of the ’edge’ component in the NET object

d(CellNET$edge)
16. Visualize the cell-cell interaction network with chord using the ‘TimiCellChord()‘ function.

Note: Besides exporting network files using the ‘TimiCellNetwork()‘ function and visualizing

through external software, for example, ‘Cytoscape’, TimiGP provides another visualization

approach, the ‘TimiCellChord()‘ function. This function generates a chord diagram to visualize

the cell-cell interaction network.
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a. The input data ‘resdata‘ of the ‘TimiCellChord()‘ function is the enrichment results ‘res‘

generated from ‘TimiEnrich()‘ or modified with ‘TimiPermFDR()‘ functions.

b. The ‘TimiCellChord()‘ function uses three parameters to define the cell-cell interaction from

enrichment statistics.

Note: The criteria to define the cell-cell interactions of the ‘TimiCellChord()‘ function is consis-

tent with the ‘TimiCellNetwork()‘ function. So the usage of relevant parameters is the same.
i. ‘condition‘: A value in one of "P.Value", "Adjust.P.Value" and "Permutation.FDR", which

is the column name of ‘resdata‘, which contains information related to statistical signifi-

cance. The default value is "Adjust.P.Value".

ii. ‘cutoff‘: This parameter refers to a threshold value associated with the ’condition’. It assists in

the definition of cell-cell interactions. Cell pairs with a value less than this cutoff will be cell-cell

interaction and included in the network. The default value for the ’cutoff’ parameter is 0.05.

iii. ‘select‘: This parameter is a numeric vector denoting selected cell interactions based on

the "Index" column in ‘resdata‘. Default selection encompasses all cell-cell interactions

(adjusted p-value < 0.05). By default, this parameter is set to ‘‘NULL’’, indicating that

no specific cell-cell interactions are selected. However, if you manually choose cell-cell

interactions as research of interest for visualization using this parameter, the automatic

filtering based on the ‘cutoff‘ and ‘condition‘ will be overridden for those selected cell-

cell interactions. Troubleshooting 5.

Note: The default definition of cell-cell interactions is adjusted p-value (condition) < 0.05(cutoff).

c. The ‘TimiCellChord()‘ function generates a circular plot of cell-cell interactions through the

‘circlize’ package (Figure 2B).

i. Sectors (Nodes): Cell types are represented as sectors along the circumference of the cir-

cle. Each sector corresponds to a specific cell type, and the arrangement of these sectors

around the circle provides a visual representation of the relationships between different

cell types. The color of the outer ring of each sector is consistent with the color used to

represent that particular cell type. This color coding makes it easy to identify and associate

the color of the outer ring with a specific cell type, allowing viewers to quickly recognize

and interpret the plot. The inner ring, which is closer to the center of the circle, is colored

to match the unfavorable cell type to which the link points. When there is an interaction

between two cell types (e.g., a directional arrow from one favorable cell to an unfavorable

cell), the color of the inner ring corresponds to the unfavorable cell type, providing addi-

tional visual information about the interaction or relationship between these cell types. In

addition, there is a larger gap that creates more space between different groups of cells.

d. The ‘TimiCellChord()‘ function generates node information and enables customized plots

based on four parameters.

Note: The customization of the ‘TimiCellChord()‘ function is similar to the ‘TimiCellNetwork()‘

function except for the ‘color‘ parameter for visualization.
i. ‘dataset‘: This parameter specifies the dataset to be used for generating the cell network files. It

expectsavalue fromapredefinedsetofoptions:" ‘‘Bindea2013_Cancer","Charoentong2017",

Bindea2013", "Xu2018", "Newman2015", "Zheng2021", "Tirosh2016", or "Other". The first

sevenoptions are accompaniedbypreset configurations linked to internal cell-type annotations

utilized for the analysis. Specifically, these options correspond to: ‘CellType_Bindea2013_

cancer‘, ‘CellType_Charoentong2017_Bindea2013_Xu2018_Immune‘ (this includes three cell-

type annotations), ‘CellType_Newman2015_LM22‘, ‘CellType_Zheng2021_Tcell, and CellTy-

pe_Tirosh2016_melanoma_TME‘, respectively. TimiGP package provides internal visualization
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(group and color) settings for this dataset. If youwant to use a different dataset or customize the

group and color for each cell type, please choose "Other" and then provide ‘group‘ and ‘color‘.

ii. ‘group‘ and ‘color‘: These parameters allow to specify custom cell-type groups and colors

when using the "Other" ‘‘dataset’’ option, which enables organization and visualization of

cell types based on specific research needs. They are vectors of cell groups (e.g., ‘‘immune

cell’’) or colors (e.g., ‘‘blue’’ or ‘‘#deebf7’’), whose names are all favorable and unfavorable

cell types in selection.
ellChord( resdata = res,

t = NULL,

et = "Bindea2013_Cancer",

= NULL,

= NULL,

tion = CIcondition,

f = CIcutoff)
Optional: Visualize representative marker gene-gene interactions of selected cell-cell interac-

tion using the ‘TimiGeneChord()‘ function.
ec

ul

ene

AR
This function is designed to create informative chord diagrams that reveal the relation-

ships between genes enriched in favorable and unfavorable cell types in the specific

cell-cell interactions (Figure 7A). The diagram elegantly displays directional arrows, point-

ing from enriched marker genes of one cell type (favorable) to those of another (unfavor-

able), helping to elucidate gene-gene interaction behind the cell-cell interaction. From

the same input ‘resdata‘ as the ‘TimiCellChord()‘ function, users can specify the cell-cell

interaction of interest by setting the ‘select‘ parameter according to the "Index" column,

and visualize the gene-gene interaction with default or customized colors (‘color‘ param-

eter) to uniquely identify enriched marker genes. The resulting chord diagram provides a

clear and intuitive representation of gene-gene interactions within the chosen cell interac-

tion, aiding researchers in understanding the molecular underpinnings of cell-type-spe-

cific behaviors and their impact on biological processes.
t‘ the cell-cell interaction #3 according to the index

t ‘color‘

Chord(resdata = res,select = 3, color = NULL)
17. Prioritize critical prognostic cell types with favorability scores calculated by the ‘TimiFS()‘ function.
a. Description: According to the degree of the cell-cell interaction network, the ‘TimiFS()‘

function calculates favorability scores to prioritize the association of cell types with clinical

outcomes. For each cell type, the score estimates its association with both favorable clin-

ical outcome (favorable score) and unfavorable prognosis, (unfavorable score). A higher

favorable score indicates a positive prognosis and anti-tumor cell function, while a higher

unfavorable score indicates an adverse prognosis and pro-tumor function in the TIME

network.

b. Parameters: The parameters of the ‘TimiFS()‘ function are similar to those of ‘TimiCellChord()‘

and ‘TimiNetwork()‘ functions.

i. The input data ‘resdata‘ is the enrichment results ‘res‘ generated from ‘TimiEnrich()‘ or

modified with ‘TimiPermFDR()‘ functions.
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Figure 7. Output example of TimiGeneChord()‘ and ‘TimiFS()‘ functions

(A) Chord diagram of gene-gene interactions representing Cytotoxic / Tumor cell interaction; (B) Output

screenshots of ‘TimiFS()‘ function. The screenshot displays white text on a black background within the terminal, with

additional manual annotations in red text, arrow, or box.
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ii. The criteria to define the cell-cell interactions of ‘TimiFS()‘ function is consistent with the

‘TimiCellChord()‘ and ‘TimiCellNetwork()‘ functions. ‘condition‘ is a value in one of

"P.Value", "Adjust.P.Value" and "Permutation.FDR", and ‘cutoff‘ refers to a threshold

value associated with the ’condition’. The default definition of cell-cell interactions is

adjusted p-value (‘condition‘) < 0.05(‘cutoff‘).

c. Return: A data frame with information about the favorability scores of various cell types (Fig-

ure 7B). Each row in the data frame represents a different cell type, and the columns provide

the following information:

i. ‘‘Index’’: An index or identifier for each cell type, used for visualization with the ‘TimiFS-

Bar()‘ function.

ii. ‘‘Rank’’: The rank of the cell type based on the difference between its Favorable Score

and Unfavorable Score. Cell types with the highest positive differences (indicating

Favorable) are ranked higher.

iii. ‘‘Cell.Type’’: The name of the cell type.

iv. ‘‘OutDegree’’: The out-degrees of the cell type, which is the number of outgoing edges

of the cell type in the cell-cell interaction network.
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v. ‘‘Favorable.Score’’: The favorable score of the cell type calculated from out-degrees,

indicating a positive prognosis and anti-tumor cell function.

vi. ‘‘Indegree’’: The in-degree of the cell type, which is the number of ingoing edges of the

cell type in the cell-cell interaction network.

vii. ‘‘Unfavorable.Score’’: The unfavorable score of the cell type calculated from the in-de-

gree, indicating a negative prognosis and pro-tumor function.

viii. ‘‘Difference’’: The difference between the Favorable Score and the Unfavorable Score.

This value indicates whether the cell type is more favorable (positive value) or more un-

favorable (negative value) in terms of prognosis.

ix. ‘‘Group’’: The classification of the cell type based on the Difference value. If the Differ-

ence is greater than 0, the cell type is classified as "F" (Favorable). If the difference is

negative, the cell type is classified as "U" (Unfavorable).
<- TimiFS( resdata = res,

tion = CIcondition,
18. Visualize favorability scores using the ‘TimiFSBar()‘ function.

cutoff = CIcutoff)
a. Description: The ‘TimiFSBar()‘ function generates a bar plot of the favorability score of cell types,

allowing for the evaluation of their favorable and unfavorable roles in prognosis and anti-tumor

response.

b. Parameters:

i. ‘score‘: Favorability score calculated using the ‘TimiFS()‘ function.

ii. ‘select‘: A numeric vector of selected cell types according to the "Index" column in ‘re-

sdata‘. The default selection encompasses all cell types.

c. Return: A bar plot illustrating the favorability scores of different cell types, with orange bars

indicating favorable scores (positive) and blue bars indicating unfavorable scores (negative).

It is a ‘ggplot2’ plot since the function requires the ‘ggplot2’ package for plotting (Figure 2C).
alize favorability scores for selected cell types,

uding the top 5 and bottom 3 cell types.
EXPECTED OUTCOMES

The TimiGP illustrates the tumor microenvironment from the transcriptomic profile by inferring cell-

cell interactions and prioritizing the cell type important to the patient’s clinical outcomes. Therefore,

the TimiGP R package is expected to generate network files at the gene-gene (Figure 4) or cell-cell

interaction (Figure 6) level. The package also provides functions to visualize and analyze the results:

1) Dot plot showing enrichment statistics of cell-cell interactions of interest; 2) Chord diagram of cell-

cell interactions (Figure 2C); 3) Chord diagram of gene-gene interactions representing cell-cell inter-

actions of interest (Figure 7A); 4) Bar plot of the favorability score to prioritize critical cell type related

to the clinical outcome (Figure 2E).

LIMITATIONS

The TimiGP method exhibits two specific limitations. Firstly, for the effective identification of prog-

nostic gene pairs, TimiGP necessitates a substantial gene expression dataset that includes matched

survival information. The power of survival analysis relies on factors such as sample size, event per-

centage, and the accuracy of survival data. In cases where survival data quality is relatively subpar,

TimiFSBar(score, select = c(1:5, (nrow(score) - 2):nrow(score)))
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we recommend employing more lenient statistical thresholds to pinpoint prognostic gene pairs, or

alternatively, focusing on the highest-ranking gene pairs. Additionally, the TimiGP package infers

the cell-cell interaction network primarily from the prognostic value of marker pairs and does not

provide built-in tools for conducting additional analyses to account for potential confounding fac-

tors in the survival analysis.

Secondly, the identification of cell-cell interactions in TimiGP is contingent on enrichment analysis,

and its sensitivity to detect particular interactions is influenced by the number of associated marker

genes. Cell types with a limited number of marker genes may have a diminished likelihood of being

recognized as having significant interactions. Fortunately, the widespread utilization of scRNA-seq

analysis in cancer immunology has resulted in the availability of high-quality marker gene sets for the

majority of immune cell types.
TROUBLESHOOTING

Problem 1

You are using a cloud computing platform or environment where you cannot install packages from

GitHub directly using ‘devtools’.
Potential solution

� Install through the ’remotes’ package.

Compared to ‘devtools’, the ‘remotes’ package is more streamlined and efficient for package instal-

lation, including proper dependency handling.
# Install remotes from CRAN if not already installed.

if(!require(remotes)){

install.packages("remotes")

}

# Install TimiGP R package from GitHub:

# https://github.com/CSkylarL/TimiGP.
� Manually download and install.

You can manually download the package source code from the GitHub repository as a zip file or a

tarball. Then, upload the downloaded file to your cloud environment and install it using the ‘install.-

packages()‘ function.
install.packages("path/to/package.tar.gz",

repos = NULL,

type = "source")
Replace "path/to/package.tar.gz" with the actual path to the downloaded package file.

� Git clone and install.
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If the cloud environment has Git installed, you can clone the repository directly and install the pack-

age from the cloned directory.
git clone https://github.com/CSkylarL/TimiGP.git.

R CMD INSTALL TimiGP
� Docker Container.

If you are using a Docker container or another containerization platform, you can create a Docker

image with the package installed. Write a Dockerfile that installs the package using one of the above

methods, and then build and run the Docker image. For example, you can add the below codes to

your Dockerfile to install the TimiGP R package.
RUN R -e "install.packages(’remotes’)"

RUN R -e remotes::install_github("CSkylarL/TimiGP")
Problem 2

It fails to ‘library()‘ the package and return this error message ‘‘Error in library(TimiGP) : there is no

package called ‘TimiGP’’’.
Potential solution

� The error message indicates that R cannot find the package "TimiGP". If you haven’t already

installed the "TimiGP" package, please follow the protocol to install the package. If you failed

to install the package, please check the computational requirements listed in the protocol, e.g.,

update the R version greater than 4.0.0.

� If you have successfully installed the package, verify that you have not made any typos in the pack-

age name when using ‘library()‘ function. R package names are case-sensitive, so "TimiGP" and

"timiGP" are considered different packages.

� In addition, ensure that the library path where R is looking for packages is correct. You can use the

‘.libPaths()‘ function to check the library paths. Make sure the "TimiGP" package is installed in one

of those paths.
Problem 3

The ‘TimiPrePropress()‘ fails to extracts the transcriptomic data for the selected cohort and marker

genes and return this error message ‘‘No markers was found in the transcriptome. Please check

marker ID’’.
Potential solution

� If you utilize the internal cell-type marker annotation provided by TimiGP, please ensure that each

row in the transcriptome data represents genes and that the row names adhere to the HUGOgene

nomenclature.

� In the case of external cell-type marker annotation, it is vital to confirm that the "Gene" column in

your cell-type annotation follows the same format as the row names in your transcriptome data.

For example, if both utilize Ensembl IDs, ensure consistency between them.
Problem 4

It fails to select the prognostic marker pairs with statistical significance for subsequent analysis.
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Potential solution

� The survival information may have poor quality (e.g., low percentage of events, small cohort size),

so we suggested a P-value ranking-based selection of gene pairs. You can choose the top 1%–5%

gene pairs ranked by P value for subsequent analysis, though they might not be able to reach sta-

tistical significance after multiple testing corrections.
Problem 5

It fails to obtain more than 5 cell-cell interactions for subsequent analysis.
Potential solution

� Check if the cell type annotation is consistent throughout this analysis.

� If custom cell type annotation is used but fails, the analysis can be repeated with the internal cell

type markers with controls (‘CellType_Bindea2013_cancer‘) to check if the result is caused by the

poor quality of custom cell type annotation.

� Check the cohort size and thepercentageof events, if any of themare small, thedata qualitymaybe

poor. You may want to apply the more sensitive approach to capture the continuous relationship

betweenmarker pairs by setting the ‘cont = TRUE‘ in the ‘TimiGenePair()‘ function at the beginning.

� Try a relaxed criterion and threshold (e.g., P value < 0.05) to define the cell-cell interaction.
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Chao Cheng (chao.cheng@bcm.edu).
Materials availability

This study did not generate new unique reagents.
Data and code availability

The datasets and code generated during this study are available at GitHub: https://github.com/

CSkylarL/TimiGP. The specific version v1.2.0 in this protocol for the TimiGPRpackage is also archived

in Zenodo: https://doi.org/10.5281/zenodo.8327354.
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