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Abstract

The accumulation of misfolded and aggregated proteins is a hall-
mark of neurodegenerative proteinopathies. Although multiple
genetic loci have been associated with specific neurodegenera-
tive diseases (NDs), molecular mechanisms that may have a
broader relevance for most or all proteinopathies remain poorly
resolved. In this study, we developed a multi-layered network
expansion (MLnet) model to predict protein modifiers that are
common to a group of diseases and, therefore, may have broader
pathophysiological relevance for that group. When applied to the
four NDs Alzheimer’s disease (AD), Huntington’s disease, and
spinocerebellar ataxia types 1 and 3, we predicted multiple mem-
bers of the insulin pathway, including PDK1, Akt1, InR, and sgg
(GSK-3β), as common modifiers. We validated these modifiers
with the help of four Drosophila ND models. Further evaluation
of Akt1 in human cell-based ND models revealed that activation
of Akt1 signaling by the small molecule SC79 increased cell via-
bility in all models. Moreover, treatment of AD model mice with
SC79 enhanced their long-term memory and ameliorated dysre-
gulated anxiety levels, which are commonly affected in AD
patients. These findings validate MLnet as a valuable tool to
uncover molecular pathways and proteins involved in the patho-
physiology of entire disease groups and identify potential thera-
peutic targets that have relevance across disease boundaries.
MLnet can be used for any group of diseases and is available as a
web tool at http://ssbio.cau.ac.kr/software/mlnet.
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Introduction

Neurodegenerative diseases (NDs) that cause reduced cognition

and/or motor function due to extensive loss of neuronal cells affect

millions of people worldwide (Erkkinen et al, 2018). The neuronal

loss in NDs, such as Alzheimer’s disease (AD), Parkinson’s disease

(PD), Huntington’s diseases (HD) and spinocerebellar ataxias

(SCAs), is believed to be caused by the abnormal accumulation of

misfolded or aggregated proteins (Ross & Poirier, 2004; Chiti & Dob-

son, 2017; Calabrese et al, 2022). For all NDs, autosomal dominant

disease-causing mutations have been identified (St George-Hyslop

et al, 1987, 21; Campion et al, 1995; Roos, 2010; Klein & Westen-

berger, 2012). However, with the exception of diseases caused by

CAG repeats (Gusella & MacDonald, 2006), familial forms with

disease-causing mutations represent a small minority of all cases of

a given ND type (Bertram & Tanzi, 2005). A picture has emerged

whereby multiple genetic loci are associated with specific NDs, con-

sistent with a polygenic model in which multiple genes may interact
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in a synergistic or additive way to promote disease development

(Ridge et al, 2016). Even for the case of familial NDs that are associ-

ated with a high penetrance disease-causing mutation, genetic varia-

tion has been shown to affect the phenotype. Indeed, only between 40

and 70% of the variance in the age of onset of HD and SCA can be

accounted for by the CAG repeat number in the disease-causing allele

(Wexler et al, 2004; Tezenas du Montcel et al, 2014).

As a result of these findings, significant efforts have been

undertaken in the last two decades to identify genetic modifiers of

NDs. Classically, genetic modifiers are studied in the context of a

deterministic disease-causing mutation and identified as those

genes that affect disease severity and/or age of disease onset

(Rahit & Tarailo-Graovac, 2020). A powerful and systematic way

of identifying modifier genes and pathways that impact NDs is to

perform genetic screens in invertebrate models. Disease-causing

mutant genes have been used to generate various ND models in

D. melanogaster, C. elegans, and S. cerevisiae, which have then

enabled the identification of hundreds of modifiers via high-

throughput genetic screens (Fernandez-Funez et al, 2000; Outeiro

& Lindquist, 2003; Bilen & Bonini, 2007; van Ham et al, 2008,

2009; Wang et al, 2009; Moloney et al, 2010; Bloom, 2014;

Shulman et al, 2014; Lavoy et al, 2018). Mapping of these

modifiers has shed clear light on a broad range of processes that

can modulate NDs, including RNA metabolism, protein folding,

autophagy, and apoptosis, and has sparked hope for the identifica-

tion of new targets for therapeutic intervention.

NDs belong to the ever-growing group of diseases called protei-

nopathies (Hipp et al, 2014) because intracellular protein misfolding

and aggregation are common to these diseases. Protein homeostasis

(proteostasis) is crucial to the prevention of protein aggregation and

has been demonstrated to decline with age and in proteinopathies

(Balch et al, 2008; Labbadia & Morimoto, 2015; Hipp et al, 2019).

Given the fact that protein misfolding and aggregation is common to

proteinopathies and modifiers of one proteinopathy can influence

another, e.g., a significant fraction of SCA3 modifiers in Drosophila

had similar effects in Alzheimer models, we hypothesized that there

may exist a subset of genetic modifiers that has broader relevance

and may modify several or even all proteinopathies. Such common

or generic modifiers may be central hubs in proteostatic control or

key regulators of the cellular stress response. A bioinformatics anal-

ysis that we carried out previously on existing modifier sets

revealed, however, only a small and incoherent set of modifiers that

were identified in multiple ND models (Na et al, 2013), which may

be due to the limited power and coverage of high-throughput

screens for modifiers. Therefore, we set out to develop a robust

computational framework that, with the help of data integration,

predicts protein modifiers common to multiple diseases. We believe

that identifying modifiers is not only relevant for a better under-

standing of the pathophysiology of proteinopathies but may also be

useful from a disease monitoring and therapeutic point of view.

Common modifiers may serve as biomarkers, and monitoring their

activity indicate disease risk across multiple proteinopathies. More-

over, altering the activity of the common modifiers directly or indi-

rectly may slow disease progression or delay the age of disease

onset independent of the type of proteinopathy.

The multi-layered network expansion model (MLnet), that we

introduce here, combines transcriptome, transcription-target rela-

tionship, protein–protein interaction (PPI), as well as meta-data for

the reliable identification of proteins that commonly affect multiple

diseases. Using known AD, HD, and SCA modifiers as input, MLnet

identifies many proteins in the insulin pathway as common ND

modifiers. We validate predicted modifiers in Drosophila as well as

mammalian cell models of AD, HD and SCA (Fig 1A). Following up

on these results, we then show that activation of Akt1, a central hub

in the insulin pathway, alleviates long-term memory decline and

ameliorates altered anxiety levels in the APP/PS1 transgenic AD

mouse model. Our extensive experimental testing validates the abil-

ity of MLnet to identify generic modifier proteins that are common

to a disease group.

Results

Motivated by our hypothesis that there may exist a subset of pro-

teins that modify the severity of multiple NDs, we aimed to develop

a computational framework that allows for the identification of

modifiers that are common to an entire disease group. Although

computational methods for the prediction of disease-associated

genes and proteins have been developed before (Zolotareva &

Kleine, 2019; Le, 2020; Chen et al, 2021; Ruan & Wang, 2021; Binder

et al, 2022), no prediction methods exist, to the best of our knowl-

edge, for the identification of proteins that commonly affect multiple

diseases. Therefore, we developed the multi-layered network expan-

sion model, MLnet, as a general framework for the identification of

modifier proteins common to a disease group and then used known

ND modifiers as MLnet input in order to find proteins that may have

broader relevance for proteinopathies.

MLnet model

MLnet consists of two modules (Fig 1B). The first module predicts

disease-specific modifiers while the second integrates these predic-

tions in multi-layered modifier networks. The former is necessary

because of imbalances in the knowledge of modifiers for different

diseases, i.e., there may exist specific disease types with very few

known modifiers, which will hamper any effort to identify common

ones. For example, though we could find more than 100 reliable

modifiers for AD and HD, only 36 and 59 modifiers for SCA1 and

SCA3, respectively, were available (see Methods and Protocols,

and Appendix Fig S1 for details).

▸Figure 1. Overview of the workflow and the multi-layered network expansion model.

A Workflow of this study: From the identification of disease-specific modifiers to the testing of the activation of a common modifier in an AD mouse model.
B Overall architecture of MLnet. It consists of two modules. In the first module (top), disease-specific modifiers are predicted using the well-established guilt-by-

association principle and available annotations. In the second step, the top 100 predicted disease-specific modifiers are used as seed proteins to predict common
modifiers across multiple diseases. This prediction is done by using individual protein–protein interaction disease layers (bottom), and the idea that common protein
modifiers should link disease-specific modifiers across the different layers.
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Figure 1.
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Disease-specific modifier predictions by the first module are

made by the well-established guilt-by-association principle and gene

prioritization (Zolotareva & Kleine, 2019). Specifically, the module

predicts so-far unknown disease-specific modifiers based on the

similarity between a query gene and known genetic modifiers. The

following features are used for disease-specific modifier identifica-

tion: GeneOntology (GO) annotations, InterPro domain content,

gene regulation relationships (Murali et al, 2010), gene co-

expression data (GEO), KEGG pathway associations, and sequence

similarities, which are all well-known features successfully used in

guilt-by-association approaches (Aerts et al, 2006; Zolotareva &

Kleine, 2019). Since we used six different features, a gene can have

up to six different scores depending on their information availability

and consequently up to six different ranks. To generate a consensus

list, we then integrated predicted ranks from each feature into one

single P-value via prioritization (Aerts et al, 2006). The detailed sta-

tistical calculations are explained in Methods and Protocols. From

each list of disease-specific modifiers, we then selected the proteins

encoded by the top-ranked genes as “seed” inputs for the second

module.

The second module of MLnet generates disease-specific modifier

networks by mapping “seed” proteins of each disease on the PPI

network of the model organism of interest. The module then iden-

tifies potential common modifiers by finding proteins that interact

with or are modifiers in different disease-specific modifier networks

(Fig 1B). In the simplified example provided in Appendix Fig S2,

only two layers are used. These layers are created by assuming that

PPIs are identical in each disease and by mapping seeds predicted

by the first module onto the individual PPI networks. In the first

integration step, MLnet finds proteins that interact with at least one

modifier in each layer, which in the given example is realized by the

green protein because it interacts with the blue and the red seeds

from the two layers. This protein is marked as a candidate common

modifier across the two diseases and its score is calculated (Appen-

dix Fig S2A and B). The common modifier score (c, Equation 2 in

Methods and Protocols) takes into account the ranking of the

connected modifiers (provided by module 1), the reliability of

the protein interaction data, and the degree (number of connections)

of all involved proteins. The latter is used for normalization and

aims to prevent a strong bias toward interaction hubs as common

modifiers. In the second step, proteins are selected that interact with

at least one known modifier or candidate common modifier in each

layer. In Appendix Fig S2C, four proteins (yellow, red, blue, and vio-

let) are selected as next candidate common modifiers and their

scores are calculated. In this step, the bottom right protein (cyan-

circled) is not selected, because of the constraint that proteins

should interact with at least one or more known modifiers or candi-

date common modifiers from every layer. Finally, these steps are

iterated until no more proteins are added (Appendix Fig S2D and E).

Optimal seed number determination

We tested MLnet on its ability to predict modifiers that are com-

mon across AD, HD, SCA1, and SCA3. Specifically, we used high-

confidence modifiers identified in Drosophila disease models as

inputs for MLnet: 113 modifiers for AD, 209 modifiers for HD, 36

modifiers for SCA1, and 59 modifiers for SCA3 (see Methods and

Protocols for details and Dataset EV1 for the list of modifiers).

Using these modifiers as input, MLnet outputs proteins ranked

according to their likelihood of being common modifiers. Before

assessing specific predictions further and validating them experi-

mentally, we carried out several computational tests of prediction

robustness.

The second module of MLnet uses disease-specific modifiers pro-

vided by the first module as input. Therefore, we first tested how

variations in seed numbers affect predictions (Fig 2). We tested mul-

tiple seed numbers for their ability to identify common modifiers in

a leave-one-out-cross-validation approach. In the cross-validation,

we marked experimentally identified modifiers that are common to

different disease combinations as unknown and then tested how

well they are predicted. Specifically, we excluded one of them from

the prediction pipeline (both modules) and then calculated the rank

of the excluded common modifier within the predicted common

modifiers. This process was iterated for all experimentally deter-

mined common modifiers (numbers are given in parentheses in

Fig 2) in order to evaluate the performance. As shown in Fig 2,

using the top 100 seeds showed consistently the highest perfor-

mance (Area Under the Receiver Operating Characteristics, AUROC)

in predicting experimentally validated modifiers that are common to

different NDs, and, thus, 100 seeds (predicted disease-specific modi-

fiers) were used to run the second module. The 100 seeds used to

predict common modifiers across four NDs are listed in

Dataset EV2.

Robustness of MLnet output

Next, we tested the extent of MLnet output convergence toward a

consistent set of proteins when including more disease layers, using

different combinations of disease layers or layers with alternative

modifier seeds. To this end, we predicted common modifiers using

various alternative combinations of disease and seed data and com-

pared the resulting common modifiers with those predicted when

using the standard approach (Appendix Figs S3–S5). We compared

the outputs by calculating Spearman’s correlation coefficients of

predicted common modifiers, and by counting the number of over-

lapping proteins within the top 100 predicted common modifiers

(Dataset EV3).

In the first set of robustness test, we investigated whether the

output of MLnet is dominated by modifiers from one disease layer

or a pair of disease layers. In such a case, common modifiers of that

pair of diseases should be more correlated with the output of MLnet

than common modifiers of other disease pairs. Moreover, the top

100 common modifiers should be dominated by common modifiers

of these two diseases. In other terms, leaving a disease or disease

pair out should lead to a major drop in the consistency of the data.

To test for this possibility, we predicted common modifiers for pairs

of diseases such as AD and HD (a), and SCA1 and SCA3 (b) – or

other pairings – using MLnet and then used the predicted common

modifiers from (a) and (b) as seeds in the final MLnet prediction of

common modifiers (c) (Appendix Fig S3A). We compared these

common modifiers with those predicted by using data (seeds) from

all four diseases concomitantly (d in Appendix Fig S3; the standard

approach). Predictions of common modifiers for none of the disease

pairs stand out or drop in terms of Spearman’s correlation coeffi-

cients as well as the number of overlapping proteins within the top

100. Using randomly selected proteins as seeds in this comparison
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resulted in predicted common modifier lists that did not correlate at

all (Spearman’s correlation coefficients around 0) nor overlap.

MLnet integrates data from all disease layers concomitantly.

However, it is not clear whether stepwise integration of disease

layer information leads to different results. This may be the case if

certain disease combinations have significantly different common

modifiers. If not, the gradual integration of disease layer information

should continuously increase the consistency (correlation) of the

prediction. To test these ideas, we predicted common modifiers in a

stepwise manner and compared correlation and overlap at each step

(Appendix Fig S4A), i.e., first (a) with (d), then (b) with (d) and

finally (c) with (d). Moreover, we used different orders of disease

layers in this stepwise approach. In the majority of cases (8 of 12)

gradual integration increased correlation in ranking and overlap of

predicted common modifiers among the 100 top-ranked proteins

(Appendix Fig S4B and C). Interestingly, the overall number of

overlapping proteins drops when data from the HD layer is inte-

grated last. This suggests that HD may have quite different modifiers

than the other three diseases. Nevertheless, the tests show that the

majority of common modifiers that are top-ranked by the standard

data integration of MLnet (> 50%) are also found top-ranked in an

alternative integration approach where disease data is integrated

gradually. Using randomly selected proteins as seeds in this compar-

ison resulted in predicted common modifier lists that correlated neg-

atively and had minimal overlap among the top 100 ranked

proteins.

MLnet uses predicted disease-specific modifiers from the first

module as seeds. Predictions of disease-specific modifiers are neces-

sary for certain diseases to compensate for the lack of sufficient

experimentally verified ones. We wanted to test whether using

predicted disease-specific modifiers as seeds produces results that

are significantly different from those that are generated when

Figure 2. Performance evaluation of MLnet.

The performances of MLnet in the prediction of modifiers common to different disease groups were assessed using different numbers of seed proteins. Diseases were
grouped as indicated and common modifiers for that group were predicted with MLnet. As ground truth served the intersection of high-confidence genetic modifiers
that were identified experimentally for each disease in that group. The total number of high-confidence modifiers of each ND are: 113 for AD, 209 for HD, 36 for SCA1,
and 59 for SCA3. The number of experimentally found common modifiers for each group is given in parenthesis. AUROC was calculated by leave-one-out-cross-
validation and the bars are mean � SEM (n = 3). The results for different numbers of seeds are shown as blue bars. As controls, we also assessed the performance of a
simple gene prioritization approach (N), GeneMania (G), and Endeavour (E).
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sufficient experimentally verified disease-specific modifiers are

available and used as seeds. Therefore, we used a combination of

known and predicted modifiers as seeds for MLnet and compared it

to the predictions made by MLnet when using only predicted modi-

fiers as seeds. Specifically, we used the predicted disease-specific

modifiers for SCA1 and SCA3 but known and experimentally estab-

lished modifiers for AD and HD as seeds for MLnet (Appendix

Fig S5A). We used this setup because the numbers of known high-

confidence SCA1 and SCA3 modifiers are lower than the optimal

number of seeds for MLnet. The Spearman’s correlation of the list of

common modifiers predicted by this approach (b) compared to the

standard one using only predicted modifiers (c) is 0.83, and the

number of overlapping proteins within the top 100 is 62 (Appendix

Fig S5B and C). Using randomly selected proteins as seeds in this

comparison resulted in predicted common modifier lists that corre-

lated minimally and had no overlap in the top 100 ranked proteins.

Robustness analysis in terms of bias toward hub proteins

MLnet uses the number of interactions that a query protein has to

normalize the common modifier score c (Equation 2) in order

to reduce a potential bias toward hub proteins that are more

connected in the PPI network. It needs to be stressed that the nor-

malization aims to reduce a potential bias but not prevent hub pro-

teins from being scored high. We tested whether alternative

normalizations in module 2 would prevent any heavy bias toward

interaction hubs as common modifiers and provide better prediction

results. To this end, we modified the MLnet code and calculated z-

scores for each query protein. For the z-score, we randomly selected

seed proteins with the same degree as the original seed proteins

(predicted disease-specific modifiers) in 10,000 iterations (Seed ran-

domization in Appendix Fig S6). Alternatively, we randomized the

protein–protein interactions while maintaining proteins’ interaction

degrees (Network randomization in Appendix Fig S6). As shown in

Appendix Fig S6, the integration of the alternative normalizations

using seed randomization or network randomization did not

improve performance when using a leave-one-out-cross-validation.

To confirm that the predicted common modifiers by the standard

MLnet model were not heavily biased toward high-degree proteins,

Pearson’s correlation coefficients between degrees (number of inter-

acting partners) and ranks of top 100 and 1,000 predicted common

modifiers were calculated. As shown in Appendix Fig S7, there is a

low level of anti-correlation between rank and network degree when

looking at the top 1,000 predicted common modifiers. Such low

level of correlation should be expected as common modifiers are

likely to play a central role in the network. However, this analysis

clearly shows that there is no strong bias toward high degree pro-

teins (hubs). Importantly, there is no anti-correlation between rank

and network degree among the top 100 predicted common

modifiers.

Comparison with simple prioritization methods and added value
of module 2

Finally, we assessed whether the multi-layered approach of module

2 truly improves prediction of common modifiers. To this end, we

first compared the performance of MLnet with a simple gene priori-

tization as employed in the first module. When we used the simple

prioritization approach, the AUROCs (leave-one-out-cross-

validation) of the prediction of experimentally determined common

modifiers for different combinations of diseases vary between 0.5–
0.8 (see bars N in Fig 2), but are in all cases significantly lower than

the AUROCs that are achieved when using MLnet with various seed

numbers (blue bars in Fig 2, P < 0.005).

To our knowledge, there are no computational models to predict

common modifiers across multiple diseases, but there are some

models that via prioritization find new genes/proteins associated

with a user-specified list of genes/proteins (Tranchevent et al, 2016;

Zolotareva & Kleine, 2019). Our disease-specific modifier prediction

module is similar to the prioritization models, but we include a net-

work expansion part to find common modifiers. To compare

MLnet’s performance further, we used GeneMania (Warde-Farley

et al, 2010) and Endeavour (Tranchevent et al, 2016). Specifically,

we used them to predict disease-associated proteins for each ND

and identified the overlapping proteins as common modifiers. The

resulting AUROCs are shown in Fig 2 (G and E in the graphs).

The AUROCs achieved in this way are always lower than those of

MLnet. To confirm the advance provided by MLnet further, we also

calculated Areas under the Precision-Recall Curve (AUPRC) for the

prediction of modifiers common to different disease combinations

using the optimal number of seeds (Appendix Fig S8). AUPRCs are

lower than AUROCs due to the small number of common modifiers.

More importantly, MLnet mostly outperforms the other methods,

specifically when common modifiers across more than two diseases

are predicted. In addition, AUPRCs of GeneMania and Endeavour

are very low in 4–6 cases, while MLnet shows consistent

performances.

To investigate the added value of module 2 in common modifier

identification further, we carried out additional tests. First, we

assessed whether experimentally-identified modifiers common to

different sets of disease combinations are highly ranked in the pre-

diction lists of the other diseases (module 1) not included in the set.

As shown in Dataset EV4, these experimentally established common

modifiers of different disease combinations are generally not top-

ranked in the predicted lists of the other diseases. Second, we traced

the disease-specific ranks of the top 12 common modifiers predicted

by MLnet, which we will discuss and experimentally validate in the

following sections. Most of these genes are not ranked in top 200 of

at least one of the four NDs (Dataset EV5). Thus, taking just the top

ranked 200 genes of each disease and selecting common ones would

not provide the result we achieve with MLnet. Finally, we color-

coded disease-specific modifiers predicted by the first module

according to their rank in the final prediction, i.e., how they are

ranked as common modifiers (Appendix Fig S9A). For instance,

violet-colored disease-specific modifiers are proteins that are found

within the top 100 of the common modifiers predicted by MLnet,

while red-colored ones are found within the top 400–500 common

modifiers. In a similar manner, Appendix Fig S9B shows, in color

coding, how predicted common modifiers are ranked in the individ-

ual diseases. The figures show that only about 30–40% of the top

100 disease-specific modifiers are also within the top 100 of MLnet-

predicted common modifiers. Moreover, there are no overlapping

modifiers across the top 50 disease-specific modifiers of the four dis-

eases used here (Appendix Fig S9A). When the top 100 are consid-

ered, there are two proteins that overlap: one involved in alternative

mRNA splicing and another in heat shock response.
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Overall, these results demonstrate that MLnet outperforms the

tested existing methods in identifying experimentally identified com-

mon modifiers of various NDs combinations. Moreover, robustness

tests demonstrate convergence and superiority of the prediction by

MLnet.

Pathway analysis of predicted common modifiers

After the robustness test, we performed KEGG pathway and GO

annotation enrichment analyses on the top 100 predicted common

modifiers to get a better understanding of the processes these pro-

teins are involved in. Predicted common modifiers are found with

significant enrichment in the KEGG pathways of apoptosis, autop-

hagy, and mitophagy, as well as the transduction pathways associ-

ated with FoxO, MAPK, mTOR, and Hippo (Fig 3A). Consistent with

this KEGG pathway analysis, the GO terms of autophagy, and apo-

ptosis but also protein refolding are significantly enriched among the

top-ranked common modifiers (Fig 3B). In addition, determination

of adult life span and long-term memory are also captured, terms

well known to be associated with NDs (Branco et al, 2008;

Doumanis et al, 2009; Zhang et al, 2010; Cleret de Langavant

et al, 2013; Nuzzo et al, 2017; Fujikake et al, 2018). Most interest-

ingly, both KEGG pathway and GO enrichment analyses find com-

mon modifiers enriched in the insulin receptor (InR) signaling

pathway and/or its downstream effector annotations. The insulin

signaling pathway plays a pivotal role in cell survival, cell growth,

autophagy, and cytoskeleton organization by regulating down-

stream factors such as BAD, mTOR, FoxO, and GSK-3β (Fig 3C) and

has been linked to NDs in numerous studies (de la Monte &

Wands, 2008; Caberlotto et al, 2019; Akhtar & Sah, 2020; Shaugh-

ness et al, 2020). Importantly, enrichment in these key annotations

does not appear “de novo”, meaning that annotations related to

downstream pathways of insulin signaling, autophagy, and apopto-

sis are also enriched among predicted disease-specific modifiers

(Appendix Fig S10).

To validate our specific findings, we first tested whether appli-

cation of MLnet to human data would result in predicted common

modifier proteins that are associated with the same pathways.

Although information on human genetic modifiers is not available,

there are many known ND-associated proteins that have been dis-

covered in genomic, proteomic, or transcriptomic analyses of ND

patients. Thus, we investigated whether MLnet was able to predict

common modifiers across multiple human NDs using disease-

associated proteins, not genetic modifiers. We obtained 359 AD-

associated proteins and 47 HD-associated proteins from Neuro-

carta (Portales-Casamar et al, 2013). Since proteins associated

with SCA1 or SCA3 were not available, only modifiers common to

AD and HD were predicted by MLnet, and a KEGG pathway

enrichment analysis was performed on the predicted proteins.

Microarray data from human brain tissue were obtained from

GEO, and PPI data were filtered by using the human brain prote-

ome obtained from the Human Protein Atlas (Sjöstedt et al, 2020).

As shown in Appendix Fig S11, the most highly enriched pathway

is the PI3K-Akt signaling pathway, which is part of the insulin sig-

naling cascade.

As the insulin signaling pathway plays a central role in metabo-

lism and the proteins that are part of it interact with many partners,

we investigated whether this pathway would automatically come up

in our network-based approach even when using genes associated

with diseases not related to neurodegeneration. To this end, we col-

lected genes related to three inflammatory diseases (gastroenteritis,

hepatitis, and dermatitis) and tested for annotations enriched among

the top-ranked proteins predicted by MLnet to be common to these

diseases. Specifically, we collected 265, 146 and 442 genes associ-

ated with gastroenteritis, hepatitis, and dermatitis, respectively,

from Neurocarta (Portales-Casamar et al, 2013) and submitted them

to MLnet. Among the top 100 proteins predicted to be associated

with all three inflammatory diseases, pathways related to the

immune response and inflammation are significantly enriched

(Appendix Fig S12 and Dataset EV6), but not insulin-related or any

other annotations found enriched among the top 100 common ND

modifiers.

Experimental validation of predicted common modifiers in
Drosophila models

To experimentally validate our findings, we tested the top 12 can-

didate common modifier proteins predicted by MLnet (Fig 4) with

the help of D. melanogaster disease models (Chen et al, 2001;

Franke et al, 2003). Drosophila compound eyes with a simple ner-

vous system are ideal for such a test (Castedo et al, 2002). The

severity of the eye phenotype, which is correlated with the degree

of neurodegeneration, provides an easily measurable readout in

this model system. To establish fly eye models for AD, HD, SCA1,

and SCA3, we expressed the respective disease-causing genes in

the developing eyes using the GMR-GAL4 driver; Aβ1-42 for AD,

Htt-Q128 for HD, Ataxin1-Q82 for SCA1, and Ataxin3-Q78 for

SCA3. As observed previously (Chan & Bonini, 2000; Nelson

et al, 2005; Boland et al, 2008; Wangler et al, 2015), all flies with

the eye-specific expression of the disease-causing gene showed

rough eye phenotypes with some variation in the severity of the

phenotype (Fig 4).

Four of the 12 tested common modifier proteins (Akt1, InR,

Pdk1, and sgg (GSK3β)) changed the eye phenotypes in all four ND

models when down-regulated by RNAi. Interestingly, three of these

(Akt1, InR, and Pdk1) are directly involved in insulin signaling and

one of them (sgg) acts downstream of the insulin signaling pathway

(Fig 3C). As a negative control, we also evaluated the effect of two

randomly selected low-ranked genes (Cyp6a18 and CG34372) and

found them to have little to no impact across the four Drosophila

ND models (Fig 4). To validate the top 12 ranked proteins further,

we searched the literature for evidence that supports their impact in

specific NDs (Dataset EV5) and, indeed, could find evidence across

diseases for many of these proteins.

Given the positive testing of all four genes related to the insulin

pathway, we decided to assess the impact of another insulin path-

way protein on the disease phenotypes. We evaluated Pi3K92E

(PI3K in Fig 3C) because it is within the top 20 of the predicted com-

mon modifiers (Dataset EV3). Moreover, PI3K is of particular inter-

est because it is one of the key mediators of the insulin pathway’s

impact on brain plasticity and neurogenesis. For instance, PI3-

kinase is essential for glutamate receptor insertion at plasma mem-

branes during synaptic plasticity (Man et al, 2003). Downregulation

of Pi3k92E changed the eye phenotype in all four ND models

(Appendix Fig S13), confirming the significance of insulin signaling

for the model phenotypes investigated here.
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Experimental validation of Akt1 in AD cell and mouse models

Motivated by these findings, we aimed to test the disease-modifying

impact of insulin signaling in mammalian models of ND. Since

decreased activity of or resistance in insulin signaling is commonly

found in the patients of AD, we hypothesized that activation of the

insulin signaling pathway could alleviate neurodegenerative pheno-

types. We chose Akt1 as a target for insulin signaling modulation

because of its central position in this pathway. Akt1 is not ranked

very high in the disease-specific modifier lists, with the exception of

SCA1 (Dataset EV5), but is second in the final ranking of common

modifiers due to its interaction with many proteins that are

Figure 3. KEGG pathway and GO enrichment analyses with predicted common modifiers.

A KEGG pathway enrichment analysis of the top 100 predicted common modifiers using DAVID (Fisher’s exact test) (Sherman et al, 2022).
B GO enrichment analysis of the top 100 predicted common modifiers using DAVID (Fisher’s exact test) (Sherman et al, 2022).
C A simplified schematic diagram of the insulin signaling pathway and downstream functions.
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themselves disease modifiers, i.e., partners that are highly ranked in

the disease-specific modifier lists of module 1 (see Appendix

Text S1, Appendix Fig S14, and Datasets EV7 and EV8 for details).

Moreover, the availability of an activator of this kinase enables

induction of downstream insulin signaling (Jo et al, 2012).

In a first test, we constructed human cell-based models for AD,

HD, SCA1, and SCA3 by expressing ND-causing genes (Aβ1–42, Htt-
Q74, Atx1-Q52, and Atx3-Q84) in HEK293 cells and evaluated the

impact of Akt1 activation on cell phenotypes. HEK293 are generally

not affected by the wild-type forms of the disease genes. However,

their viability is affected by the gene products of variants that have

an increased likelihood of aggregation (e.g., polyQ repeats in HD,

SCA1, and SCA3-related genes), especially when expressed at high

levels. Thus, cell viability assays with HEK293 cells have exten-

sively been used to study disease mechanisms and test small com-

pounds for their impact on aggregation and cell viability (Wang

et al, 2006, 2019; Bartley et al, 2012; Pierzynowska et al, 2018;

Shentu et al, 2019; Hart et al, 2022; Niu et al, 2022). The Akt1 acti-

vator SC79 that we used prevents the inhibitory intramolecular

interaction between the plecktrin homology (PH) and catalytic

domain (Warrick et al, 1998; Gabbouj et al, 2019). To activate Akt1

signaling in the disease cell models, we treated cells with 1 or

10 μM of SC79. 10 μM was the highest concentration of SC79 that

showed no significant toxicity (Fig 5A). As shown in Fig 5B–E, the
treatment of the cells with 10 μM of SC79 significantly increased cell

viability in all models when compared with the viability of cells that

were not treated with SC79.

In a second test, we investigated whether the activation of Akt1

can alleviate the symptoms in an AD mouse model. To this end, we

tested the impact of SC79 in the 5xFAD mouse model. 5xFAD trans-

genic mice overexpress mutant human APP with the K670N,

M671L, I716V, V717I familial AD mutations and human PS1

harboring the two mutations M146L and L286V. We fed cohorts of

7-month-old WT and 5xFAD mice with SC79 for 1 month, while

control WT and 5xFAD mice received no treatment. We then used a

Barnes maze test and an elevated plus-maze test to investigate

memory deficits and anxiety levels, respectively (Fig 5F–H). In the

Barnes maze test, mice are exposed to the test of finding a target

hole for 5 days. As shown in Fig 5F and G, the elapsed time finding

the hole (primary latency) decreased due to learning and memoriz-

ing. There is no significant difference between the WT and AD

groups, which suggests that the AD mice do not show any defect in

short-term memory. After a period of 10 days, during which we did

not test the mice, we restarted to evaluate their ability to find the

hole on days 15 and 16. Interestingly, AD mice spent significantly

more time to find the hole than SC79-treated AD mice, which found

the hole as quickly as WT mice (Fig 5G).

AD patients also display dysregulated anxiety and 5xFAD trans-

genic mice show reduced anxiety levels (Jawhar et al, 2012; Belaya

et al, 2020). Therefore, we employed an elevated plus-maze test to

examine the effect of SC79 on anxiety level. In this test, an increased

residence time in open-end arms indicates a lower level of anxiety,

which the 5xFAD transgenic mice have (Fig 5H). SC79-treated AD

mice spent significantly less time in open-end arms than non-treated

5xFAD mice. The time spent in open-end arms by treated AD mice

is similar to the one of WT mice. Overall, these tests with 5xFAD

transgenic mice suggest that activation of Akt1 in AD mice can

recover long-term memory deficits and attenuate dysregulated anxi-

ety levels.

Discussion

In this study, we introduce a computational model that predicts

modifier proteins common to multiple related diseases. Our

approach uses ideas from prioritization and network biology in

Figure 4. Changes in the rough eye phenotype of Drosophila models for AD, HD, SCA1, and SCA3 due to knockdown of predicted common modifiers.

Representative bright-field microscope images of fly eyes with GMR-GAL4-driven misexpression of the ND-causing genes, along with GMR-GAL4-driven RNAi against
each of the indicated genes in which mCherry served as a control. Compared with the wild-type (WT) compound eye with the ordered structure of ommatidia, flies with
misexpression of individual ND-causing genes and RNAi against mCherry under the control of the GMR-GAL4 driver had rough eyes with the variation in phenotypic
severity. Suppression or enhancement of these rough eye phenotypes caused by RNAi-mediated knockdown of the predicted common modifiers is indicated with + or
�, respectively. As a negative control, two genes (Cyp6a18 and CG34372) randomly selected among low-ranked genes were also tested.
Source data are available online for this figure.
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order to be able to integrate genomic, transcriptomic and proteomic

data. Various methods for gene and protein prioritization have been

developed before (Aerts et al, 2006; Tranchevent et al, 2016; Zolo-

tareva & Kleine, 2019; Ruan & Wang, 2021). Indeed, previous stud-

ies have integrated genotype–phenotype association data with gene

annotations available in the public domain such as GO and knowl-

edge from biomolecular interaction networks to predict new associa-

tions. The rationale for this approach is that genetic variations that

are associated with a specific disease should cluster in subnetworks

of physically and functionally interacting proteins (Califano

et al, 2012). Proof-of-principal for this approach has been provided

in the successful prediction of oncogenes for B-cell lymphomas

(Basso et al, 2005) or genes that increase susceptibility for obesity

(Yang et al, 2009b). The idea of combining gene annotation and PPI

information has further been exploited in prioritization methods,

such as GeneMania and Endeavour, in order to predict functions

and phenotypes of non-annotated genes. However, none of the

existing methods was specifically developed to identify proteins and

genes that may have broader pathophysiological relevance for an

entire disease group. Thus, MLnet is unique in that it creates

different disease layers and identifies those proteins as common

modifiers that are most connected across the different layers. The

basic idea behind this approach is that common modifiers are pro-

teins that are at the cross-roads of pathways playing a role in the

pathogenesis of the different diseases.

Multiple robustness tests that we carried out suggest that MLnet

provides a consistent prediction ranking of common modifier pro-

teins with top-ranked proteins that reappear independent of the

detail of data integration: independent from the order in which dis-

ease layer data is integrated or the use of high-confidence, experi-

mentally validated, or predicted disease-specific modifiers as inputs

to module 2. Disease-specific modifiers that are highly ranked ini-

tially are not necessary among the highest ranked common modi-

fiers and those ranked low for a specific disease may become highly

ranked across diseases because the encoded proteins connect modi-

fiers across multiple layers. For example, Akt1 was originally tested

as modifier in HD and SCA1 models, but not AD and SCA3 models.

In addition, the predicted ranks of Akt1 in the respective NDs were

113rd (AD), 383rd (HD), 15th (SCA1), and 260th (SCA3). Our

benchmarking also demonstrates that there is no strong correlation

Figure 5. Effect of Akt1 activation on disease symptoms in mammalian disease models.

A Cell viability at the indicated concentrations of SC79 (0.1–100 μM), an Akt1 activator, in HEK293 cells. Data are the mean and SEM of biological replicates
(n = 4–10). * denotes P-value < 0.05 (Student’s t-test).

B–E Determination of the alleviating effect of SC79 (1 or 10 μM) on cell death in human cell-based models for AD (B), HD (C), SCA1 (D), and SCA3 (E). Data are the mean
and SEM of biological replicates (n = 3–7). * denotes P-value < 0.05 (Student’s t-test).

F, G SC79 was administered to 7-month-old AD mice for 1 month, and their memory remedy was investigated by Barnes Maze Test. For 5 days, the time to find a target
hole decreased due to learning. The mice were tested on day 15 and 16 after a blank period to investigate long-term memory. The time to find a target hole on
tested days (F) and the average of latencies on days 15 and 16 (G) are shown. Data are the mean and SEM of three biological replicates. * denotes P-value < 0.05
(Student’s t-test).

H The dysregulated anxiety levels in AD mice were investigated using the elevated plus maze test. In (G) and (H), + and – denote the treatment and nontreatment
with SC79, respectively. Bar graphs were drawn from at least three independent experiments (biological replicates) and represent mean and SEM. * denotes P-value
< 0.05 (Student’s t-test).

Source data are available online for this figure.
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between the network degree of a protein and its rank in the com-

mon modifier prediction. Proteins with high degree are often highly

studied with links to many diseases and, therefore, appear high in

rankings generated by guilt-by-association approaches independent

of the disease in question (Gillis & Pavlidis, 2011). Most impor-

tantly, MLnet performs consistently better than classical gene priori-

tization and the established methods GeneMania (Warde-Farley

et al, 2010) and Endeavour (Tranchevent et al, 2016) in the identifi-

cation of protein modifiers common to different ND combinations,

highlighting the validity of the implemented new approach.

GO and KEGG enrichment analyses of MLnet predictions for four

NDs revealed that top-ranked modifiers are significantly associated

with cellular mechanisms and pathways well-known to modulate

neurodegeneration such as autophagy and mitophagy. Most promi-

nent among them is the insulin signaling pathway and its constitu-

ents. This finding is consistent with numerous studies from the last

two decades that have demonstrated the relevance of insulin and its

signaling in the pathophysiology of NDs and aging (de la Monte &

Wands, 2008; van Heemst, 2010; Akintola & van Heemst, 2015;

Caberlotto et al, 2019; Akhtar & Sah, 2020; Shaughness et al, 2020).

To validate individual predictions, we tested the effect of the 12 top-

ranked predicted modifiers in D. melanogaster models for AD, HD,

SCA1, and SCA3. While four of these top 12 are involved in the

extended insulin pathway, five others are part of the proteostasis

machinery (Droj2 and Hsc70cb are chaperones, UBA1 is the E1

ubiquitin-activating enzyme, Agt1 an autophagy regulating Ser/Thr-

kinase, and Mi-2 a chromatin remodeler required for heat shock

gene expression), and the three remaining genes are involved in

microtubule function (par-1 and Lk6 – two kinases involved

in microtubule organization – and zip (zipper) a microtubule-

binding protein). Most of these proteins have previously been found

associated with ND pathology (Nishimura et al, 2004; Ambegaokar

& Jackson, 2011; Kuo et al, 2013; Bl�azquez et al, 2014; Groen

& Gillingwater, 2015; Zhang et al, 2015; Kim et al, 2017; Pomytkin

et al, 2018; Shaughness et al, 2020; Burillo et al, 2021; Yakubu &

Morano, 2021; Ring et al, 2022; Nowell et al, 2023). Consistent with

these previous studies, we find that all 12 top-ranked proteins, when

suppressed in expression, modulate disease phenotype in at least

two of the tested models. However, only proteins that are part of

the insulin pathway affect phenotypes in all of the tested D. melano-

gaster disease models. Interestingly, supressing the expression of

these modifiers enhances the phenotype in some ND models, while

it reduces it in others. These observations are consistent with previ-

ous studies where overexpression of the same gene can have oppos-

ing effects on the phenotypic of different NDs when tested in fly

models (Branco et al, 2008). These differences are explained by the

fact that the impact of genetic modulation on ND phenotypes is

highly dependent on the method and level of modulation and the

complexity of the pathophysiology of the individual ND (Na

et al, 2013). Therefore, the results of the D. melanogaster experi-

ments (Fig 4) should be interpreted as evidence for the ability of the

positively tested genes to act as disease modifiers rather than

enhancers or suppressors.

Our finding suggests that members of the insulin pathway may

have pathophysiological relevance for proteinopathies in general.

This hypothesis is consistent with growing evidence in the associa-

tion of insulin signaling with the pathophysiology of NDs (Bl�azquez

et al, 2014; Pomytkin et al, 2018; Shaughness et al, 2020; Burillo

et al, 2021; Nowell et al, 2023). Insulin and insulin-like growth fac-

tor 1 (IGF-1) play metabolic and neuroprotective roles in the brain

(Pomytkin et al, 2018; Burillo et al, 2021). Specifically, insulin regu-

lates glucose homeostasis and maintains energy requirements for

different neuronal functions. It is vital for neuronal growth and dif-

ferentiation as well as neuroprotection by modulating autophagy,

mitochondrial function, ER stress, and apoptosis (Pomytkin

et al, 2018; Burillo et al, 2021). Thus, dysfunction of insulin signal-

ing makes neuronal cells vulnerable to metabolic and cellular

stresses (Kim & Feldman, 2015). Moreover, the insulin signaling

pathway plays key roles in brain plasticity, impacting cognitive

functions such as learning and memory (Spinelli et al, 2019). In the

hippocampus, for instance, insulin positively impacts synaptic and

structural plasticity. Recently, eight genes have been associated with

human adult cognitive function through rare coding variants

with large effects. Four of these eight genes had previously been

shown to affect insulin and the insulin pathway, although this link

has been established with peripheral and not cerebral insulin

(Giovannone et al, 2003; Hamming et al, 2010; Backe et al, 2019;

Gonz�alez et al, 2022; Chen et al, 2023). Resistance to insulin com-

promises many of these regulatory aspects, which is believed to pro-

mote the development of NDs. This disease mechanism has been

extensively investigated in the context of AD, where epidemiologic

studies have shown that type 2 diabetes and prediabetic states of

insulin resistance are risk factors for AD (Arvanitakis et al, 2006).

Insulin exerts its regulatory role on cellular metabolism, nutrient

homeostasis and cognition mainly via the PI3K/Akt signaling cas-

cade and the downstream effectors, FoxO and mTOR (Fig 3). FoxO

impacts cell differentiation and proliferation, while mTOR regulates

fatty acid and protein synthesis, as well as mitochondrial metabo-

lism (Du & Zheng, 2021; Maiese, 2021; Querfurth & Lee, 2021). The

link between insulin and mitochondrial metabolism appears to play

a central role in ND pathology (Galizzi et al, 2021; Schell

et al, 2021; Galizzi & Di Carlo, 2022). Indeed, mitochondrial dys-

function is a common feature of NDs, which results in ATP defi-

ciency, oxidative stress, inflammation, and consequently apoptotic

cell death (Galizzi & Di Carlo, 2022). It has been shown that reduced

Akt1 signaling, which occurs in insulin resistance conditions,

reduces mitochondrial respiration and increases in mitochondrial

fission, eventually increasing oxidative stress (Miyamoto et al, 2008;

Yang et al, 2009a). In addition to its impact on mitochondrial metab-

olism and stress response, altered insulin signaling can directly

influence cognition. Consistent with these important roles of Akt1 in

insulin signaling, our experiments demonstrate that activation of

Akt1 with the small molecule SC79 increases viability of HEK293

cell expressing ND-causing genes, and enhances long-term memory

and ameliorates dysregulated anxiety levels in AD mice.

Interestingly, insulin signaling is Janus-faced: while it promotes

cell survival, it also represses autophagy via the activation of an

autophagy-inhibiting enzyme (mTOR) and inhibition of an

autophagy-promoting enzyme (FoxO) (Fig 3). Autophagy impair-

ment is a hallmark of NDs characterized by the cellular accumula-

tion of protein aggregates (Subramanian et al, 2022). Many studies

have reported that recovery of autophagy activity by boosting a

metabolite (NAD) or suppressing autophagy-inhibiting enzymes

such as mTOR rescues the viability of neuronal cells (Spilman

et al, 2010; Heras-Sandoval et al, 2014; Sun et al, 2023). When we

investigated the levels of amyloid-β in the brain of AD mice treated
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with or without SC79, there were no significant changes in

amyloid-β levels whether insulin signaling was activated or not

(Appendix Fig S15). As activated insulin signaling improved cell via-

bility in in-vitro assays (Fig 5B-E), this may suggest that activation

of Akt1 in our experiments may have enhanced anti-apoptotic

effects while impacting autophagy to a lesser extent. Insulin actually

experts anti-apoptotic effects via Akt1, which reduces the mitochon-

drial release of cytochrome c (Kang et al, 2003; Li et al, 2009). Alter-

natively, activation of Akt1 may be beneficial via its regulatory

impact on cognitive functions (Spinelli et al, 2019). In any case,

experiments carried out in this study are primarily meant to provide

evidence for the cross-disease relevance of MLnet-predicted modi-

fiers and not to elucidate the detailed molecular mechanism that

confer that relevance. Moreover, although our experiments suggest

a modulatory role of Akt1 for multiple NDs, it may not be an ideal

target for ND treatment because of its involvement in numerous cel-

lular processes and the fact that its enhanced activation can lead to

cancerous cell transformation (Wang et al, 2017), which would

require very close monitoring for tumorigenic effects when activated

via a therapeutic agent. Other proteins in the insulin pathway such

as the downstream effector GSK3β are already actively targeted for

ND therapy development. GSK3β inhibitors showed positive

improvement in animal models, but unfortunately failed in AD

patients (Rippin & Eldar-Finkelman, 2021; Arciniegas Ruiz & Eldar-

Finkelman, 2022). Moreover, direct insulin administration to

healthy individuals and AD patients improved memory performance

in small studies, but mixed results were reported for larger clinical

trials (Morris & Burns, 2012; Hallschmid, 2021). It is clear that more

research is required to fully understand the roles of insulin signaling

in NDs and whether activation of specific elements of this signaling

pathway may benefit patients.

In summary, we introduce and benchmark MLnet, as a com-

putational model that can predict modifiers common to multiple

diseases. When used on genetic modifiers of NDs, MLnet iden-

tifies the insulin signaling pathway and its constituents as poten-

tial elements that have broader relevance for proteinopathies.

MLnet has limitations as it depends on third party data. Most

importantly, the network expansion approach relies on accurate

protein interaction data and a good coverage of the “real” net-

work present in cells. In addition, the protein interaction network

varies between cell types and tissues, which will affect MLnet’s

output. However, efforts are under way to map cell- and tissue-

specific interactomes (Huttlin et al, 2021; Skinnider et al, 2021;

Holguin-Cruz et al, 2022), which will provide more relevant data

that can be used in the future.

Materials and Methods

Reagents and Tools table

Reagents/Resource Reference of source Identifier or catalog number

Drosophila disease models

AD model Bloomington Drosophila Stock Center BL33769

HD model Bloomington Drosophila Stock Center BL33808

SCA1 model Bloomington Drosophila Stock Center BL39740

SCA3 model Bloomington Drosophila Stock Center BL8150

Drosophila RNAi lines

Droj2 Bloomington Drosophila Stock Center BL36089

Akt1 Bloomington Drosophila Stock Center BL31701

Atg1 Bloomington Drosophila Stock Center BL26731

Uba1 Bloomington Drosophila Stock Center BL36307

InR Bloomington Drosophila Stock Center BL31037

Par-1 Bloomington Drosophila Stock Center BL32410

Pdk1 Bloomington Drosophila Stock Center BL27725

Mi-2 Bloomington Drosophila Stock Center BL33419

Lk6 Bloomington Drosophila Stock Center BL28357

Hsc70Cb Bloomington Drosophila Stock Center BL33742

Zip Bloomington Drosophila Stock Center BL36727

sgg Bloomington Drosophila Stock Center BL35364

Cyp6a18 Bloomington Drosophila Stock Center BL42824

CG34372 Bloomington Drosophila Stock Center BL51472

Pi3k92E Bloomington Drosophila Stock Center BL61182 (AD, HD, SCA1)
and BL35798 (SCA3) since
BL61182 was lethal in SCA3.
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Reagents and Tools table (continued)

Reagents/Resource Reference of source Identifier or catalog number

Drosophila overexpression lines

Akt1 Bloomington Drosophila Stock Center BL8191

Plasmid DNAs

pEGFP-C1-Aβ1-42 constructed from pCAX-FLAG-APP Addgene #30154

pEGFP-Htt-exon1-Q74 Addgene #40262

pEGFP-Ataxin1-52Q Addgene #32492

pEGFP-C1-Ataxin3-Q84 Addgene #22123

Human cell line

HEK293 ATCC CRL-1573

Animals

5xFAD mice The Jackson Laboratory 034848-JAX

Reagents

SC79 Sigma-Aldrich SML0749

Databases

NeuroGeM https://neurogem.msl.ubc.ca/

GeneOntology http://geneontology.org/

KEGG https://www.genome.jp/kegg

InterPro https://www.ebi.ac.uk/interpro/

Gene Regulation http://droidb.org/

GEO https://www.ncbi.nlm.nih.gov/geo/

UniProt https://www.uniprot.org/

STRING https://string-db.org/

Neurocarta https://gemma.msl.ubc.ca/phenotypes.html

GeneMania https://genemania.org/

Tools

DAVID https://david.ncifcrf.gov/

Methods and Protocols

Data preparation
Due to the complex pathophysiology of NDs and the use of very

diverse mutant genes, e.g., different lengths of polyQ in HD, SCA1,

and SCA3, there are significant inconsistencies in the experimental

results of different ND studies (Na et al, 2013). These inconsis-

tencies are particularly prominent when studies for genetic modifier

identification are compared. This fact motivated us to develop a

confidence score that considered different experimental results and

provided a metric of the likelihood of a gene to be a modifier or

non-modifier. The following confidence score was calculated for

and assigned to each genetic modifier obtained from NeuroGeM (Na

et al, 2013):

S ¼ Sm�Sn ¼ 1�Πi 1�rm;i

� �� �� 1�Πj 1�rn;j
� �� �

(1)

Sm and Sn denote the confidence scores for being a modifier or

non-modifier, respectively. To provide a single confidence score, S

was defined as S = Sm – Sn. S is in the range of �1 to +1. A posi-

tive value of S indicates that the gene is likely to be a modifier,

while a negative value indicates that a gene is likely to be a non-

modifier. The larger the magnitude of the score S, the larger is the

confidence. i and j denote experiments that identify genes as modi-

fiers or non-modifiers, respectively, and rm,i and rn,j denote the reli-

abilities of modifier and non-modifier, respectively. Individual

results could have different rm,i and rn,j values depending on the

specifics of experiment i and j such as the scale (primary high-

throughput screening (HTS), secondary HTS, and low-throughput

screening (LTH)) or the method used to alter gene expression

(siRNA-based interference, knockout, overexpression, etc.). Since

the details of the experimental differences and their impact on the

reliability of the findings are hard to quantify, we approximated

reliabilities rm,i and rn,j by assessing how reproducible, respec-

tively, consistent specific experimental findings are. To do so, we

compared findings from different experiments with each other and

assessed consistency (Appendix Fig S1). Specifically, we compared

primary HTS results with LTS results. If a gene was consistently

identified as a modifier or non-modifier in both HTS and LTS, it

was counted as consistent. Otherwise, it was counted as inconsis-

tent. If LTS data was not available, HTS results were compared

with secondary HTS results to calculate the consistency. Likewise,

secondary HTS results were compared with LTS results to calculate

the consistency of secondary HTS results. LTS results were
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compared with other LTS results if two or more experiments were

available. As a result, we obtained the following values for both

rm,i and rn,j: 0.194 for primary HTS, 0.594 for secondary HTS, and

0.737 for LTH. The scores indicate that LTS scale experiments are

more consistent than HTS (Appendix Fig S1). We calculated confi-

dence scores (S) for all genes deposited in NeuroGeM (Na

et al, 2013) and used the genes that had a positive confidence

score as modifiers for this study. Consequently, 111 modifiers of

AD, 209 modifiers of HD, 36 modifiers of SCA1, and 59 modifiers

of SCA3 were obtained.

Prediction of disease-specific modifiers
The statistical approach for GO, KEGG pathways, InterPro domains,

and transcription regulations (transcription factor – target genes) is

identical. For a query gene, we calculated the P-value for the associ-

ation of annotations to known genetic modifiers (those with positive

confidence scores) using a hypergeometric test. We then calculated

the score by summing the �log10 (P-value) of the terms annotated

to this gene. To determine the z-score of a query gene, we calculated

the expected score and the standard deviation for randomly selected

genes in 10,000 iterations. Based on the z-scores of all genes, we

obtained a ranked list of potential disease-specific modifiers.

Regarding GO, we only used GO leaf nodes from the three cate-

gories (biological processes, cellular components, and molecular

functions) for the score calculation. Identical to GO annotations, we

used KEGG pathway information to predict new genetic modifiers.

To use protein domain information, which represents protein func-

tions, the domains of genetic modifiers were analyzed with InterPro.

The regulation relationships of transcription factors and their target

genes were also used to predict new genetic modifiers. The relation-

ships were obtained from DroID (Murali et al, 2010).

To use gene expression correlation as a feature, Drosophila

microarray data was obtained from GEO (Edgar et al, 2002). With

these data, the sum of absolute values of Pearson’s correlation coef-

ficients between a query gene and known modifiers were calculated.

This summed score was then converted to a z-score using the scores

obtained from random models as done for GO and others.

For the use of sequence similarity, protein sequences were com-

pared with those of known modifiers by using USearch

(Edgar, 2010), a faster algorithm than Blast. The highest bit score

between a query gene and known modifiers was used as a score,

and then the score was also converted to a z-score as done for other

features.

Finally, from each dataset, we ranked genes by their z-scores.

We then converted the resulting six ranks to rank ratios (0 < rank

ratio ≤ 1) and used the rank ratios to calculate P-values based on

order statistics. We prioritized potential disease-specific genetic

modifiers then by their P-values.

Prediction of common modifiers
Once disease-specific modifiers were predicted, we used the top N

proteins encoded by the disease-specific modifier genes as seeds in

MLnet for the prediction of common modifiers. The optimal number

of seeds (N) was determined before use. We selected the top N pro-

teins and used their rank as their seed scores s = 1-(rank-1)/N. We

mapped seeds for each disease on PPI networks. Specifically,

we obtained PPI data from STRING (Franceschini et al, 2012) and

constructed layered networks, each layer representing a particular

disease. We then mapped disease-specific seed modifiers onto the

layered PPI networks. To illustrate this and how common modifiers

are calculated in MLnet in the next steps, we provide fictitious net-

works in Appendix Fig S2. The score function is provided in Appen-

dix Fig S2A, and the stepwise procedure shown in Appendix

Fig S2B–E.
In the first round of MLnet calculations (Appendix Fig S2B), pro-

teins that are connected to one or more seed modifiers from each

layer are identified. In Appendix Fig S2B, there is only one protein

(p1, green) that is linked to a seed modifier (p2, red) in the AD layer

and another seed modifier (p3, blue) in the HD layer. Based on this

topology, its score (c, common modifier score) is calculated as pro-

vided below.

c pkð Þ ¼ 1

W pkð Þ
Y
d

∑i

w pi;k
� �

W pið Þ � q pi;dð Þ
� �

(2)

q pi; dð Þ ¼ c pið Þ
s pi; dð Þ

if c pið Þ is available

else if s pi; dð Þis available

(

w pi;k
� �

: interaction reliability of proteins pi and pk (0 < w < 1).

w pi;i
� �

=1. W pið Þ: sum of interaction reliabilities of protein pi. c pið Þ:
common modifier score of protein pi. s pi; dð Þ: seed score of protein

pi in disease d.

The red-boxed equation in Appendix Fig S2B is for the contribu-

tion of protein p2 in the AD disease layer and the blue-boxed equa-

tion is for protein p3 in the HD layer. An important factor in the

calculation of c(pk) is W(pk) that is the sum of interaction reliability

values w(pi,k) for all interactions a protein has. This term is included

to normalize by the number of interactions a protein has and,

thereby avoid predictions heavily biased toward hub proteins, i.e.,

proteins with lots of interaction partners that have a higher likeli-

hood to interact with seeds/modifiers. Interaction reliability values

are obtained from the STRING database (Franceschini et al, 2012).

In the given example, the calculation in this first step results in a

score of 0.00284 for p1, and p1 is then marked as a potential com-

mon modifier in both AD and HD layers. The first step is terminated

with the calculation of p1, since there are no more proteins that are

connected to seeds in both layers. The next round of calculation

begins.

In the next round, new proteins linked to a disease-specific modi-

fier or common modifier from each layer are identified and their

scores are calculated. In Appendix Fig S2C, there are four proteins

(p2, p3, p4, and p5) that are linked to a seed from each layer and/or

a common modifier (by default in each later). For example, protein

p2 (red) can be selected because it is a (seed) modifier (self-

interaction) in the AD layer and is connected to a potential common

modifier (p1) in the HD layer (as well as to a potential common

modifier (p1) in the AD layer). Thus, p2 could be another common

modifier, and so its score is calculated as highlighted in Appendix

Fig S2C. Similarly, other proteins (p3, p4, and p5) are connected to at

least one modifier from each layer and their scores are calculated

(black arrows in Appendix Fig S2C). In the next step, there is only

one protein left that can be selected as a common modifier (p6)

because it is linked to a common modifier (p5) in the AD and HD

layers. Its common modifier score is then calculated as shown in

Appendix Fig S2D. As there are no more proteins to be selected, the

calculation round is terminated. Consequently, each protein has a
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score, and they are ranked by their common modifier score (Appen-

dix Fig S2E). In the given example, though p6 (cyan) was last

selected, it has the highest score due to its high seed score in HD.

Thus, p6 is the most promising candidate common modifier across

two diseases of our fictitious example.

Drosophila eye models for various NDs
To generate Drosophila eye models for AD, HD, SCA1, and SCA3

using the GAL4/UAS transactivation system (Brand &

Perrimon, 1993), the GMR-GAL4 driver line was crossed to the UAS-

transgene lines being analyzed: UAS-Aβ42 (BL33769) for AD, UAS-

HTT-128Q (BL33808) for HD, UAS-ATX1-82Q (BL39740) for SCA1

(Fernandez-Funez et al, 2000), and UAS-MJDtr-78Q (BL8150) for

SCA3 (Warrick et al, 1998). All fly lines were obtained from Bloom-

ington Drosophila Stock Center (BDSC). All stocks and crosses were

reared on standard cornmeal/agar media under noncrowded condi-

tions at 25°C unless otherwise stated.

Evaluation of candidate modifier proteins for AD, HD, SCA1,
and SCA3
To confirm MLnet-predicted candidates for common modifier pro-

teins, the conditional knockdown or overexpression of specific

proteins was achieved with the GAL4/UAS system (Brand &

Perrimon, 1993) in the Drosophila models for AD, HD, SCA1, and

SCA3 at 25°C (for SCA3) or 29°C (for AD, HD, and SCA1), where an

enhanced activity of the GAL4/UAS system is exerted (Seroude

et al, 2002). The following RNAi lines were used in this study:

UAS-Droj2-RNAiTRiP (BL36089), UAS-Akt1-RNAiTRiP (BL31701),

UAS-Atg1-RNAiTRiP (BL26731), UAS-Uba1-RNAiTRiP (BL36307),

UAS-InR-RNAiTRiP (BL31037), UAS-par-1-RNAiTRiP (BL32410), UAS-

Pdk1-RNAiTRiP (BL27725), UAS-Mi-2-RNAiTRiP (BL33419), UAS-Lk6-

RNAiTRiP (BL28357), UAS-Hsc70Cb-RNAiTRiP (BL33742), UAS-Zip-

RNAiTRiP (BL36727), and UAS-sgg-RNAiTRiP (BL35364). Other lines

included Canton-S (BL64349) as a wild-type control, and UAS-

mCherry-RNAi (BL35785) and UAS-mCherry (BL35787), which were

used as controls for RNAi and overexpression, respectively. All fly

stocks were obtained from BDSC. Flies with misexpression of UAS-

Aβ42, UAS-HTT-128Q, UAS-ATX1-82Q, or UAS-MJDtr-78Q under the

control of the GMR-GAL4 driver were crossed with flies with the

UAS-RNAi or UAS-overexpression transgene being analyzed. After

anesthetizing 5-day-old F1 females with CO2, eye images were

acquired using a stereomicroscope (Olympus) and a microscopic

camera (Sentech America). The fly eyes were photographed under

the same adjustment setting of I-MEASURE software for capturing

images. The Drosophila experiments were performed in a blinded

manner.

Viability assays with HEK293 cells
HEK293 cells for viability assays were cultured in plating medium

(Dulbecco’s modified Eagle’s medium (DMEM, Welgene, South

Korea) with 10% fetal bovine serum (FBS, Welgene, South Korea)

and 50 μg/ml gentamycin (Duchefa, Netherlands) in a 5% CO2

humidified atmosphere at 37°C.
HEK293 cells having 70–80% cell density were transiently trans-

fected with pEGFP-C1-Aβ1-42, pEGFP-Htt-exon1-Q74 (Addgene

#40262), pEGFP-Ataxin1-52Q (Addgene #32492), or pEGFP-C1-

Ataxin3-Q84 (Addgene #22123) DNA using Lipofectamine 2000

(Invitrogen, CA, USA) following the manufacturer’s instructions.

The pEGFP-C1-Aβ1–42 plasmid was constructed from pCAX-FLAG-

APP (Addgene #30154).

Before drug treatment, HEK293 cells were washed with treating

medium (Minimum essential medium (MEM, Gibco, MD, USA) with

1% FBS) and then treated with the indicated concentration of SC79

(0.1–100 μM) (SML0749, Sigma-Aldrich) for 24 h.

Cell death was measured using Cell Counting Kit-8 (CK04,

Dojindo, MD, USA), which was performed according to the manu-

facturer’s instructions. The optical density (OD) of each well was

measured using a microplate reader at 450 nm (Molecular Devices,

CA, USA), and the OD values were reported as % cell viability

(mean � SEM, n = 4–8 per group). The in vitro assays were

performed in a blinded manner.

AD mice
Female and male 5xFAD mice overexpressing the mutant human

APP (K670N, M671L, I716V, V717I) and PS1 (M146L and L286V)

(The Jackson Laboratory, Stock No. 034848-JAX) were treated with

SC79 from 1 month before the behavioral test (7-month-old). Wild-

type (WT) littermates served as age-matched control animals. Mice

were separated by sex and genotype and housed in polyethylene

cages (25 cm × 30 cm × 22 cm) with aspen shaving bedding (DBL,

Korea), 4–5 each. They were classified into four groups (WT,

WT + SC79, AD, and AD + SC79). SC79 groups were administered

with SC79 dissolved in 8.5% DMSO (D2438, Sigma-Aldrich) in corn

oil 5 days per week via oral gavage (1.5 mg/kg/day in 100 μl).
Body weight was measured every week. All groups were kept in

standard condition (23 � 2°C, humidity 50 � 5%, and 12 h light/

dark cycle, and light turned on from 9:00 am to 9:00 pm). Mice had

ad libitum access to food (NIH-31) and sterile water. All procedures

were performed in accordance with Sejong University Institutional

Animal Care and Use Committee.

Barnes maze test
Barnes maze test was performed to elucidate the effect of SC79 treat-

ment on cognitive deficits in learning and memory as described

(Patil et al, 2009) with slight modifications. Barnes maze apparatus

is a white acrylic circular disk, 92 cm in diameter, with 20 spaced

5 cm in diameter holes. The escape chamber was placed under one

of the holes, defined as the target hole. Because mice may some-

times lack entering the escape chamber motivation, mice explore

the maze after finding the target hole without descending into it

(Harrison et al, 2006). To motivate mice to enter the escape cham-

ber, the escape chamber contained some plastic steps, aspen shav-

ings, and six standard feeds. Other holes were closed with matte

black plates. Mice were placed in a square styrofoam box

(20 cm × 20 cm) covered with an opaque lid for the 20 s to specify

the starting direction randomly. Each trial, lasting 3 min, was

started after lifting the box. If the mice do not find the escape cham-

ber within 3 min, they were gently guided to the escape chamber

and allow the 20 s to pass before being returned to the waiting cage.

The escape cage is maintained at a fixed location for all trials. On

days 15th and 16th, the mice once again received the test trial for

3 min to check long-term retention memory.

Primary latency was defined when a mouse first poked its nose

into the target hole. Mice were not tested during the period between

the 6th and 15th day. All trials were recorded and analyzed by ANY-

maze 6.0 Software. All behavioral tests were conducted in a blinded
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manner and the ANY-maze software was used to avoid any bias

in behavior analysis. All behavior data are expressed as means �
SEM. Statistical significance was calculated by Student’s t-test.

Elevated plus maze test
An elevated plus maze test was performed to evaluate the anxiety-

like behavior. The apparatus was comprised of two closed arms

with high walls (30 cm × 5 cm × 16 cm), two open arms with

small walls (30 cm × 5 cm × 0.5 cm), and a center platform

(5 cm × 5 cm). Each arm had a 10 cm end zone from the end of the

arms. The apparatus was 40 cm above the floor. Mice were placed

at the center facing a closed arm. Mice were allowed to move freely

for 5 min. The time in the open arms was measured and recorded

by Any-maze 6.0 software. All behavioral tests were conducted in a

blinded manner.

Amyloid-β western blot
Half of the mouse brain samples were homogenized in RIPA buffer

with a protease inhibitor cocktail (Thermo Scientific, USA). Homog-

enized samples were centrifuged at 20,000 × g for 10 min at 4°C,
and the supernatant was collected and stored at �80°C until use.

According to the manufacturer’s instructions, protein concentrations

were quantified by a Bradford assay (Bio-Rad, USA).

Protein samples were loaded onto sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) gel and transferred

to polyvinylidene difluoride (PVDF) membranes. PVDF membranes

were blocked in 5% non-fat dry milk in tris-buffered saline with

0.1% Tween 20 detergent (TBST). PVDF membranes were washed

and incubated at 4°C overnight with primary anti-Amyloid-β anti-

body (BioLegend, USA) and anti-β-actin antibody (Cell signaling,

USA). Membranes were washed and incubated with horseradish

peroxidase (HRP)-conjugated secondary antibodies (Abcam, USA)

for 2 h at room temperature. Protein bands were detected by using

Fusion Solo (Vilber Lourmat, France) with Miracle-Star™ Western

Blot Detection System (iNtRON Bio, Korea). The intensity of the pro-

tein bands was normalized against β-actin and quantified using the

ImageJ software (National Institutes of Health, USA).

Data availability

Due to the complexity of the codes and dependent dataset, the

developed model was implemented as a web server for easy access

and use, http://ssbio.cau.ac.kr/software/mlnet. Full source codes

and datasets are available at http://ssbio.cau.ac.kr/software/mlnet

and source codes are also available at https://github.com/blisszen/

mlnet.

Expanded View for this article is available online.
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