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Anti-CD38 monoclonal antibodies (mAbs) are approved for multiple myeloma (MM) in the first-line and
relapsed/refractory settings.1,2 Resistance portends a poor prognosis, yet underlying mechanisms have
not been well characterized.3 Despite the generally high CD38 expression on most malignant plasma
cells (PCs), variation in the surface level may affect the clinical efficacy of targeted therapy.4-9 Unfor-
tunately, therapeutic anti-CD38 mAbs can interfere with detection and quantification of PC CD38
surface levels by conventional clinical flow cytometry (FC) assays for up to 6 months.10-12 Thus, the
prevalence and course of CD38 antigen escape have not been well characterized.

To elucidate mechanisms of CD38 antigen escape, we evaluated consenting patients with MM treated
with anti-CD38 mAbs who underwent a marrow evaluation between January 2017 and October 2022
at our center. Overall, 81 of 161 patients (50%) had become refractory to CD38 mAb treatment
(supplemental Table 1) over their treatment course. Among 82 patients (51%) with ≥1 chromosomal
genomic array test (CGAT) available, 10 (12%) were found to harbor del(CD38) (Table 1). With a
CGAT coverage of 31%, the estimated prevalence of del(CD38) was 20% (calculations are given in
supplemental Methods). The median interval from diagnosis to del(CD38) detection was calculated as
6.7 years (interquartile range, 2.8-11.6) for patients with CD38 deletion and estimated as 12.9 years
(95% confidence interval [CI], 12 to NA; supplemental Figure 1) for all patients. The presence of
del(CD38) was associated with an increasing number of chromosomal abnormalities on concurrent
fluorescence in situ hybridization (FISH; odds ratio, 2.00; 95% CI, 1.33-3.29; P = .002) but not with
prior anti-CD38 mAb treatment (odds ratio, 2.84; 95% CI, 0.73-14.0; P = .2). The supplemental
Timeline describes treatment histories and diagnostics for patients with CD38 deletion.

Acquired CD38 deletions have clinical implications. In an illustrative case, a 53-year-old man (study no.
1) with MM received induction and tandem autologous allogeneic hematopoietic stem cell trans-
plantation (HSCT) consolidation (cytogenetics are given in supplemental Table 3). Before CD38 mAb
exposure, CGAT showed intact CD38. His anti-CD38 mAb therapy (Figure 1A) spanned 27 months. At
progression on the final CD38-targeted treatment (daratumumab [dara] + lenalidomide + dexameth-
asone [Rd]), FC revealed CD38 absence on the major subset of PCs, CGAT identified a new interstitial
CD38 deletion (80%; enriched cells), and single-cell RNA sequencing confirmed reduced CD38
expression (Figure 1B-C). This testing revealed that del(CD38) only became detectable during treat-
ment with CD38 mAbs in the setting of late relapse (early vs late: <3 vs ≥3 years after diagnosis).

A bimodal distribution of CD38 fluorescence intensity within the malignant PC population can be
observed by FC when del(CD38) is present. For example, a 52-year-old woman (study no. 5) with high-
risk MM received induction followed by autologous HSCT consolidation and maintenance bortezomib.
After multiple relapses, she received dara monotherapy for 1 year with PD, dara + bortezomib +
dexamethasone without response, then dara + pomalidomide + dexamethasone (Pd) for 10 months
with PD. Eight months after her last dara administration, FC demonstrated surface CD38 absence on
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Table 1. List of acquired CD38 deletions with their respective size/location, estimated clonal level, and concurrent FC findings

Study no. Patient age (y)

CD38 deletion Clonal level

CD38 surface levelType Chr4 location Size CGAT, % FISH

1 53 Interstitial 15 740 331 to 15 859 589 119 kb 80.0 — ↓ on major subset*

2 41 2 238 817 to 29 468 498 27 Mb 60.0 — Absent on all*

3 61 Terminal 1-39 255 744 39 Mb 20.0 ND† ↓ on major subset

4 71 1-39 466 414 39 Mb 25.0 ND† ↓ on all

5 52 1-27 752 460 28 Mb 30.0 21.5% Absent on major subset*

6 67 1-28 779 013 29 Mb 30.0 5.5%† Absent on minor subset*

7 58 Whole chromosome Deletion 4 190 Mb >80 6.3%† ↓ on all

8 59 Deletion 4 190 Mb 20-30 25.0% Absent on major subset*

9 46 Deletion 4 190 Mb 40 71%† Absent on all*

10 64 Deletion 4 190 Mb 10-20 18.5% Absent on all*

The clonal level is reported as the proportion of CD138-enriched cells, unless otherwise specified.
Chr4, chromosome 4; ND, not detected; NR, not reported.
*Received dara within 6 months.
†Not CD138 enriched.
the major subset (supplemental Figure 2), and CGAT identified a
terminal CD38 deletion (30%; enriched cells). The bimodal distri-
bution was redemonstrated on FC in conjunction with del(CD38) 4
years after prior CGAT. Whereas pretransplant FC showed normal
CD38 MFI, the bimodal distribution was initially observed shortly
after the final dara administration, suggesting that del(CD38) was
only detectable in the setting of relapse after transplantation,
possibly during treatment with CD38-targeted therapy, although
there were insufficient data to determine the precise timing.

FISH can serve as a surrogate marker when del(CD38) occurs in
the context of a large 4p deletion spanning the binding site of the
FGFR3 probe (supplemental Methods). In total, 8 of 10 patients in
our cohort showed concurrent del(FGFR3). For example, a
46-year-old man (study no. 9) with MM underwent induction
followed by autologous HSCT consolidation and maintenance
bortezomib + lenalidomide. After relapse, he received dara-Pd for
8 months with PD. One month later, CGAT identified a whole
chromosome 4 deletion with a corresponding high-level 4p loss on
FISH (71%; nonenriched cells). Intact 4p on FISH (nonenriched
cells) at diagnosis suggested that del(CD38) became detectable in
the setting of early relapse, possibly during treatment with CD38-
targeted therapy.

The proportion of clones harboring del(CD38) was quantifiable
over time. Based on CGAT and applicable FISH testing, the dis-
tribution of peak clonal levels is depicted in supplemental Figure 3.
Persistence of a high-level CD38-deleted clone was seen in a 58-
year-old man (study no. 7) with heavily pretreated MM. Immediately
before treatment with CD38-targeted therapy in the setting of late
relapse, CGAT identified a whole chromosome 4 deletion (>80%;
enriched cells), and FISH quantified the 4p loss at 94% (enriched
cells). He received a PD-L1 inhibitor plus dara/pomalidomide on a
clinical trial that was quickly complicated by dermatitis, then dara-
Pd with rapid PD. After progression, a high-level deletion
(≥93.5%) was persistently detected by FISH performed on
enriched cells. Alternatively, after the completion of CD38-targeted
therapy, a decrease in the proportion of cells with del(CD38) was
seen in a 59-year-old man (study no. 8) with heavily pretreated
7236 RESEARCH LETTER
light-chain MM who received isatuximab (Isa) for 40 months with
PD, followed by dara-Rd for 22 months with PD. Whereas CGAT
showed an intact CD38 gene 7 months before starting Isa, and FC
showed normal CD38 MFI at the time of initiation, FISH identified
4p loss (71.5%; enriched cells) at the time of progression. Five
months after stopping CD38-targeted therapy, CGAT confirmed a
whole chromosome 4 deletion (20%-30%; enriched cells), with a
corresponding 4p loss (25%; enriched cells) by FISH. This testing
suggests that del(CD38) became detectable during the initial
treatment with CD38-targeted therapy in the setting of late relapse.

Mechanisms of resistance unrelated to CD38 gene status may
affect patients who later acquire del(CD38). In 1 case, del(CD38)
was first detected upon rechallenge with CD38-targeted therapy,
which was not present at the time of initial resistance. This 67-year-
old man (study no. 6) with high-risk MM initially received induction
followed by dara + bortezomib + dexamethasone for 14 months and
dara-Pd for 2 months with PD. A CGAT performed 5 months later
showed intact CD38. After multiple relapses, the patient received
dara-Rd for 8 months with PD and later received Isa + Kd for
5 months with PD. Before dara-Rd, FISH and FC showed intact 4p
and CD38 MFI, respectively. However, at the time of progression on
Isa + Kd, CGAT detected a terminal CD38 deletion (30%; enriched
cells), FC showed an absence of CD38 on a minor subset, and FISH
detected 4p loss (5.5%; nonenriched cells). This testing suggests
that del(CD38) was only identifiable amid rechallenge with CD38-
targeted therapy in the setting of late relapse.

Finally, we found that low-level del(CD38) (≤25%) detected at the
time of diagnosis did not confer resistance to anti-CD38 mAb–
containing multidrug regimens. A 61-year-old man (study no. 3)
with MM underwent induction followed by consolidation with
autologous HSCT and maintenance lenalidomide with PD, then
ongoing dara-Pd after 29 months. Similarly, a 71-year-old man
(study no. 4) with MM received induction, then ongoing dara-Rd at
17 months. In both cases, CGAT performed at diagnosis identified
a terminal CD38 deletion (20%-25%; enriched cells).

Our findings suggest that acquired CD38 gene deletions are
common, the proportion of patients harboring them increases over
12 DECEMBER 2023 • VOLUME 7, NUMBER 23
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Figure 1. Illustrative case of an acquired CD38 deletion. (A) M-protein quantification is shown over time. The yellow area denotes the treatment period with CD38-targeted

agents. After treatment with isatuximab and daratumumab, (B) single-cell RNA-sequencing data and (C) respective violin plots demonstrate reduced CD38 expression. BCMA,

B-cell maturation antigen; BRd, bendamustine, bortezomib, and dexamethasone; CAR-T, chimeric antigen receptor T cells; Dd, daratumumab and dexamethasone; DRd,

daratumumab, lenalidomide, and dexamethasone; DVd, daratumumab, bortezomib, and dexamethasone; KPd, carfilzomib, pomalidomide, and dexamethasone.
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time irrespective of prior exposure to CD38 mAbs, and that they
facilitate tumor antigen escape. We demonstrate that CGAT can
identify del(CD38), whereas conventional clinical FC assays cannot
delineate true surface antigen loss and interference from anti-CD38
mAbs (supplemental Figure 4). Because of the limits of CGAT
sensitivity, however, in cases in which del(CD38) is detected during
or after CD38-targeted therapy, it is not possible to rule out the
existence of a low-level (<10%) CD38-deleted clone at earlier time
points. The finding of a bimodal distribution on conventional clinical
FC is intriguing and could serve as an initial screen to identify
patients who are at risk, warranting confirmatory CD38 mutational
analysis. After characterization of a deletion, FISH can be used to
monitor the clonal level longitudinally. Our suggestion that the
presence of del(CD38) in >25% of malignant PC clones predicts for
reduced CD38 mAb efficacy requires prospective validation. If
confirmed, it would support the growing practice of incorporating
CD38-targeted therapy early in treatment (before loss) and would
mitigate unnecessary toxicities13 by avoiding treatment of individuals
predicted to derive little benefit from these drugs.
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