Skip to main content
. 2023 Nov 21;13:1219071. doi: 10.3389/fonc.2023.1219071

Table 2.

performance of the optimal Rss model and the optimal RFF model for different molecular receptor statuses discrimination.

Classification tasks Model Training/Validation cohort Test cohort
AUC ACC SEN SPE P value AUC ACC SEN SPE P value
HR+ vs. HR- Rss (DWI600) 0.767 0.736 0.770 0.653 0.768 0.693 0.689 0.706
RFF (DWI600+DWI800+DCE5) 0.778 0.737 0.753 0.699 0.066 0.726 0.659 0.673 0.613 0.028
TNBC vs. HEBC Rss (ADC) 0.769 0.656 0.667 0.650 0.718 0.692 0.684 0.700
RFF(ADC+DCE2+DCE4) 0.787 0.692 0.655 0.720 0.043 0.773 0.645 0.636 0.650 0.017
TNBC vs. non-TNBC Rss (ADC) 0.784 0.727 0.683 0.734 0.735 0.707 0.611 0.721
RFF(ADC+DWI600+T2WI+DCE2) 0.818 0.718 0.705 0.721 0.042 0.773 0.767 0.636 0.780 0.025

P value: compared the performance between the optimal Rss model and the optimal RFF model in the training/validation cohort and test cohort of each discriminative task. Significant values (P < 0.05) are presented in bold. HR, hormone receptor; HEBC: human epidermal growth factor receptor 2 enriched BC; TNBC: triple-negative breast cancer. AUC, area under the receiver-operating characteristic curve; SEN, sensitivity; SPE, specificity; ACC, accuracy.