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Current guidelines for breast cancer surveillance apply 
models to stratify women into risk categories to inform 

preventative measures (1,2). While mammography-based 
breast cancer risk assessment has hitherto mainly focused 
on visually assessed breast density and radiology-reported 
Breast Imaging Reporting and Data System (BI-RADS) 
assessment categories (3–5), recent studies have proposed 
using deep learning (DL) approaches to estimate breast 
cancer risk (6,7) by leveraging mammographic data.

Numerous mammography-based artificial intelligence 
tools have been developed to detect cancer on digital mam-
mograms (8,9), triage screeners (10), pathologically classify 
apparent lesions (11,12), and quantitatively estimate breast 
density (13,14). Nevertheless, using DL to estimate near- 
and long-term breast cancer risk from mammographic 

data has only recently been explored (6,15,16). While a 
handful of encouraging results have been found with 
mammography-based DL for breast cancer risk prediction 
(6,7,15,17,18), there are insufficient data demonstrating 
independent external testing of these new models in pro-
spectively selected, racially diverse, high-risk populations of 
women who stand to benefit most from more accurate risk 
assessment. The black box phenomenon (19) and the risk 
of propagating nongeneralizable DL algorithms (20,21) 
underscore the need for extensive external testing of mam-
mography DL tools in diverse patient settings and closer 
attention to DL model explainability. Moreso, increased 
external testing is expected to fast-track clinical adoption.

Mirai is a DL model designed to predict breast cancer 
risk at multiple time points by leveraging mammographic 

This copy is for personal use only. To order printed copies, contact reprints@rsna.org

Purpose:  To externally evaluate a mammography-based deep learning (DL) model (Mirai) in a high-risk racially diverse population and 
compare its performance with other mammographic measures.

Materials and Methods:  A total of 6435 screening mammograms in 2096 female patients (median age, 56.4 years ± 11.2 [SD]) enrolled 
in a hospital-based case-control study from 2006 to 2020 were retrospectively evaluated. Pathologically confirmed breast cancer was the 
primary outcome. Mirai scores were the primary predictors. Breast density and Breast Imaging Reporting and Data System (BI-RADS) 
assessment categories were comparative predictors. Performance was evaluated using area under the receiver operating characteristic 
curve (AUC) and concordance index analyses.

Results:  Mirai achieved 1- and 5-year AUCs of 0.71 (95% CI: 0.68, 0.74) and 0.65 (95% CI: 0.64, 0.67), respectively. One-year 
AUCs for nondense versus dense breasts were 0.72 versus 0.58 (P = .10). There was no evidence of a difference in near-term discrimi-
nation performance between BI-RADS and Mirai (1-year AUC, 0.73 vs 0.68; P = .34). For longer-term prediction (2–5 years), Mirai 
outperformed BI-RADS assessment (5-year AUC, 0.63 vs 0.54; P < .001). Using only images of the unaffected breast reduced the 
discriminatory performance of the DL model (P < .001 at all time points), suggesting that its predictions are likely dependent on the 
detection of ipsilateral premalignant patterns.

Conclusion:  A mammography DL model showed good performance in a high-risk external dataset enriched for African American pa-
tients, benign breast disease, and BRCA mutation carriers, and study findings suggest that the model performance is likely driven by 
the detection of precancerous changes.

Supplemental material is available for this article.
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approved by the University of Chicago Institutional Re-
view Board. Consecutive women evaluated in the Cancer 
Risk Clinic or the Breast Center at the University of Chi-
cago Medicine since 1992 were prospectively recruited and 
consented to provide longitudinal follow-up data. Patients 
included women with a positive family history of breast can-
cer, a personal history of benign breast disease, and known 
or suspected breast cancer predisposing gene mutations, as 
previously described (22,23). Screening mammograms and 
clinicopathologic information acquired from medical re-
cords from 2006 to 2020 were included (see also Appendix 
S1). Herein, we refer to a single screening mammographic 
encounter as an “examination.” Excluded examinations com-
prised those lacking one or more standard mammographic 
views, those with breast implants or other foreign devices, 
those with burned-in annotations, and control examinations 
with less than 1 year of follow-up. All included examinations 
were in “For Presentation” mode.

Data Sources and Measurements
Pathologically confirmed invasive breast carcinoma, or ductal 
carcinoma in situ, was the primary outcome. Case examina-
tions were defined as those that had a breast cancer diagnosis 
within 5 years from the date of mammography. Control exami-
nations were ascertained to be cancer free at specified follow-up 
dates. Using the publicly available Mirai model with pretrained 
weights, we generated examination-level risk scores from input 
examinations with the four standard mammographic views. 
The primary predictor was the mammography DL risk score.

Comparative predictors were BI-RADS assessment and 
breast density. BI-RADS assessment and visually assessed breast 
density were retrieved from signed radiology reports, read at the 
University of Chicago Medicine. We summarized BI-RADS cat-
egories 4 and 5 into one category denoting “suspicious findings” 
and ranked them from low to high risk as follows: 1, 2, 3, 0, 
4, and 5, in accordance with a previously published systematic 
review and meta-analysis (24). In addition, we applied the breast 
density classifier (BDC) (25), a publicly available DL model, to 
generate a quantitative measure of breast density. The BDC pro-
vides distributed probabilities of the examination falling into any 
of the density classes (A–D), denoted by cat0, cat1, cat2, and 
cat3. The sum of four probability scores, cat 0 to 3, always adds 
to 1. We computed weighted density (WD) scores using the fol-
lowing formula:

WD = [(1*Pr(cat0)) + (2*Pr(cat1)) + (3*Pr(cat2)) + (4*Pr(cat3))].

The WD reflects a sum of the probability of falling into any 
of the density classes multiplied by the magnitude of that class 
(1 to 4).

Model Explainability Analyses
Mirai encodes each mammogram view into a 512-dimen-
sional vector and concatenates all four views into a 2048-di-
mensional vector representation. Uniform manifold approxi-
mation and projection (26) two-dimensional representations 

data (6). The mammography DL model was trained on approxi-
mately 211 000 screening mammograms acquired at Massachu-
setts General Hospital to predict 1- to 5-year breast cancer risk 
(6). Internal testing of Mirai demonstrated its superior perfor-
mance compared with the Tyrer-Cuzick model commonly used 
in clinics (6); Harrell concordance indexes of Mirai ranged from 
0.75 to 0.84, which advances the state of the art for breast can-
cer risk prediction (15). We rigorously evaluated this DL model 
with the Chicago Multiethnic Epidemiologic Breast Cancer 
Cohort (22), assessing its performance according to age, self-
reported race and ethnicity, breast density, and BI-RADS assess-
ment categories and comparing it with radiology-reported breast 
density and BI-RADS. Furthermore, we assessed model perfor-
mance in predicting specific breast cancer molecular subtypes. 
Finally, we performed dimensionality reduction and conducted 
selective image mirroring experiments to better understand the 
drivers of model predictions.

Materials and Methods

Study Design, Setting, and Dataset
This was a retrospective case-control study that was Health 
Insurance Portability and Accountability Act compliant and 

Abbreviations
AUC = area under the receiver operating characteristic curve, BDC 
= breast density classifier, BI-RADS = Breast Imaging Reporting 
and Data System, DL = deep learning, HER2 = human epidermal 
growth factor receptor 2, HR = hormone receptor, WD = weighted 
density

Summary
External evaluation of a mammography-based deep learning tool 
for breast cancer prediction in a dataset from a high-risk population 
demonstrated that detection of precancerous changes is likely a major 
driver of model performance.

Key Points
	■ External evaluation of a mammography-based deep learning 

model for breast cancer risk prediction in a high-risk case-control 
dataset enriched for African American patients, benign breast dis-
ease, and BRCA mutation carriers demonstrated 1- and 5-year area 
under the receiver operating characteristic curve (AUC) values of 
0.71 and 0.65, respectively.

	■ The model showed a higher discriminatory ability for predicting 
low- and intermediate-grade (vs high-grade) breast cancers (5-year 
AUC, 0.64 and 0.66 vs 0.60, respectively; all P < .05), while no 
evidence of a difference was found in performance at the 5-year 
time point according to age group (P = .06), breast density cat-
egory (P = .65), or receptor status (P = .20).

	■ Mirroring explainability experiments revealed that the image of 
the breast with future cancer was more critical in determining the 
deep learning model’s predictions compared with bilateral field ef-
fects (5-year AUCs of no mirroring vs negative mirroring, 0.63 vs 
0.56; P < .001), suggesting that the model is likely detecting early 
premalignant changes.

Keywords
Breast, Cancer, Computer Applications, Convolutional Neural 
Network, Deep Learning Algorithms, Informatics, Epidemiology, 
Machine Learning, Mammography, Oncology, Radiomics
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overall model performance. Groupwise risk score distribu-
tions were compared using the Kruskal-Wallis test, a non-
parametric equivalent of the one-way analysis of variance. 
Spearman correlation (r) was calculated to assess any rela-
tionship between Mirai scores and BDC-WD scores, with r 
values of 0 to 0.19 indicating very weak, 0.2 to 0.39 indicat-
ing weak, 0.4 to 0.59 indicating moderate, 0.6 to 0.79 in-
dicating strong, and 0.8 to 1 indicating very strong correla-
tions. A logistic regression model was built to predict 1-year 
cancer outcome using Mirai 1-year risk scores and BI-RADS 
categories as independent variables. The combined model 
was compared with each standalone model using roccomp 

(Stata). All statistical tests were two-sided, and P < .05 was 
considered indicative of a statistically significant difference.

Results

Patient-level and Examination-level Characteristics
A total of 6435 examinations in 2096 individuals were included. 
After filtering out 169 examinations with a time to cancer of 
less than 6 months, 6266 examinations in 2043 patients (910 
African American, 853 White) were further analyzed (Table 1, 
Table S1). The median age at mammography was 56.4 years 
± 11.2 (SD). There were a total of 1205 case examinations, in 
which cancer had developed within 5 years, in the filtered set. 
The median time to cancer was 2 years for case examinations, 
with an IQR of 1–4 years. For controls, the median duration of 
follow-up was 5 years (IQR, 3–7 years). Among the examina-
tions, 46.4% (2910 of 6266) were obtained in African American 
women. Dense breasts were reported in 37% (1262 of 3408) 
of randomly selected examinations, and 2077 of 6266 (33.2%) 
examinations were associated with a history of benign breast 
disease. A total of 342 patients had genetic testing information 
available, of whom 89 (26.0%) had a deleterious mutation in a 
breast cancer–predisposing gene, most commonly BRCA muta-
tion (62 of 89, or 69.7%, women with a gene mutation).

Mirai Model Discrimination Evaluation
In the unfiltered set, Mirai achieved a 1-year AUC of 0.71 (95% 
CI: 0.68, 0.74), 5-year AUC of 0.65 (95% CI: 0.64, 0.67), 
and Harrell concordance index of 0.64 (95% CI: 0.61, 0.66). 
Mirai showed better discriminatory performance for near-term 
compared with long-term cancer prediction, as demonstrated 
by the decreasing AUCs at sequential time points (Table 2). 
After excluding case examinations with a time to cancer less 
than 6 months, the 1- and 5-year AUCs were 0.64 (95% CI: 
0.59, 0.68) and 0.63 (95% CI: 0.61, 0.65), respectively, and 
the Harrell concordance index was 0.61 (95% CI: 0.59, 0.63). 
See Table S2 for sensitivity and specificity analyses. In fur-
ther analyses, examinations with a time to cancer less than 6 
months were excluded.

Mirai Scores versus Radiology-reported BI-RADS 
Assessment Categories
At the year 1 time point, there was no evidence of a difference 
between BI-RADS assessment and Mirai (AUC, 0.73 [95% 

of examinations were compared according to case or control 
status, breast density, self-reported race and ethnicity, tumor 
receptor status, and tumor grade. Through selective mirror-
ing, we tested the impact of removing the input image of 
the breast side with future cancer on Mirai’s performance to 
determine whether supposedly premalignant changes unique 
to the ipsilateral (future affected) breast were paramount to 
the DL model’s predictions. In “positive mirroring,” we re-
placed the image of the unaffected breast with a mirror image 
of the affected breast. In “negative mirroring,” we replaced 
the image of the affected breast with a mirror image of the 
unaffected breast. Examinations with bilateral breast cancer 
were excluded from the mirroring analysis. Mirroring was 
accomplished using the cv2 module in Python. To prevent 
the introduction of bias from mirroring itself (given that side 
localization applied only to case examinations), we randomly 
mirrored breast sides in control examinations.

Statistical Analysis
Statistical analyses were conducted using Stata version 17 
(StataCorp). Mirai and BDC scores were generated in Py-
thon version 3.6 (https://www.python.org/downloads/release/
python-360/). We evaluated the ability of risk measures to 
predict breast cancer occurring within 5 years from the in-
dex mammogram at discrete 1-year incremental time points. 
Using specified risk scores and time-to-event labels, we per-
formed nonparametric area under the receiver operating 
characteristic curve (AUC) analysis. At each annual 1- to 
5-year time point, a positive examination was defined as one 
where cancer had developed since the mammography until 
that time point. A negative examination was one confirmed 
cancer free from mammography until that time point. Thus, 
an examination that showed cancer 3 years after mammogra-
phy was considered negative for the 1- and 2-year AUC cal-
culations but positive for the 3- to 5-year AUC calculations. 
Follow-up time was determined from the date of mam-
mography and the most recent subsequent cancer-negative 
screening. Control examinations with unconfirmed cancer-
free status at or after x year were right-censored for the re-
spective x-year AUC calculation. AUC was determined using 
the roctab command (Stata), which performs nonparametric 
receiver operating characteristic analyses (27). For receiver 
operating characteristic comparison, we used the DeLong 
method (27) to evaluate model performance according to 
age, breast density, BI-RADS, and self-reported racial cat-
egories, as well as to compare individual models (Mirai vs 
BI-RADS assessment). For comparison of AUCs according 
to tumor grade and clinical subtype, we used the bootstrap 
approach because these subtype comparison groups had 
a shared control set, a scenario in which AUCs cannot be 
compared using the DeLong method. In particular, we boot-
strapped the dataset 1000 times to obtain the distribution of 
subtype-specific AUCs and calculate P values for compari-
sons. AUC values are reported with 95% CIs. The Harrell 
concordance index (28), a global measure of discrimination 
of predictive models that factors in time-to-event differences, 
was computed using the somersd package (Stata) to indicate 
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as the cutoff achieved a sensitivity and specificity of 36.3% 
(438 of 1205) and 80.5% (2224 of 2763), respectively, at 
year 5 (Tables S2, S4). More suspicious BI-RADS categories 
obtained higher Mirai risk score distributions, reflecting that 
pathologic finding on the evaluated mammogram, irrespec-
tive of its malignancy, was detected by the DL model (Fig 

CI: 0.66, 0.79] and 0.68 [95% CI: 0.61, 0.75], respectively; P 
= .34) (Fig 1, Table S3). However, for longer-term prediction 
(2–5 years), Mirai outperformed BI-RADS (all P < .01). Us-
ing BI-RADS category 3 as the cutoff showed a sensitivity of 
42.9% (24 of 56) and specificity of 88.4% (2963 of 3353) at 
year 1, whereas using the 75th percentile of Mirai risk scores 

Table 1: Patient- and Examination-level Characteristics of the ChiMEC Dataset

Characteristic Individuals Examinations Case Examinations*

Total 2096 6435 1374
6-month time-to-cancer filter 2043 6266 1205
Age at examination (y)
  <50 … 1853/6266 (29.6) 253/1205 (21.0)
  50–60 … 1957/6266 (31.2) 352/1205 (29.2)
  60–70 … 1591/6266 (25.4) 350/1205 (29.1)
  70–90 … 865/6266 (13.8) 250/1205 (20.8)
Self-reported race and ethnicity
  African American 910/2043 (44.5) 2910/6266 (46.4) 564/1205 (46.8)
  Alaska Native 5/2043 (0.2) 10/6266 (0.2) 1/1205 (0.1)
  Asian or Pacific Islander 86/2043 (4.2) 254/6266 (4.1) 65/1205 (5.4)
  Hispanic 62/2043 (3.0) 182/6266 (2.9) 17/1205 (1.4)
  White 853/2043 (41.8) 2469/6266 (39.4) 558/1205 (46.3)
  Unknown or missing data 127/2043 (6.2) 441/6266 (7.0) 0
Reported mammographic breast density†

  A, almost entirely fatty … 316/3408 (9.3) 37/598 (6.2)
  B, scattered fibroglandular … 1830/3408 (53.7) 365/598 (61.0)
  C, heterogeneously dense … 1169/3408 (34.3) 187/598 (31.3)
  D, extremely dense … 93/3408 (2.7) 9/598 (1.5)
BI-RADS assessment category‡

  1, negative … 1311/3409 (38.5) 218/599 (36.4)
  2, benign findings … 1684/3409 (49.4) 285/599 (47.6)
  3, probably benign … 52/3409 (1.5) 9/599 (1.5)
  0, incomplete … 260/3409 (7.6) 62/599 (10.4)
  4 and 5, suspicious … 102/3409 (3.0) 25/599 (4.2)
Family history of breast cancer
  Yes 313/2043 (15.3) … …
  No 279/2043 (13.7) … …
  Unknown or missing 1451/2043 (71.0) … …
History of benign breast disease
  Yes … 2077/6266 (33.2) 366/1205 (30.4)
  No … 2099/6266 (33.5) 451/1205 (37.4)
  Unknown or missing … 2090/6266 (33.3) 388/1205 (32.2)
Deleterious genetic mutation§

  BRCA1 30/2043 (1.5) … …
  BRCA2 32/2043 (1.6) … …
  Other genes 29/2043 (1.4) … …
  Negative genetic testing results 253/2043 (12.4) … …
  Unknown or no genetic testing 1701/2043 (83.3) … …

Note.—Data are numbers, with percentages in parentheses. BI-RADS = Breast Imaging and Reporting Data 
System, ChiMEC = Chicago Multiethnic Epidemiologic Breast Cancer Cohort.
* Case examinations were those where cancer had developed within 5 years of the mammographic scan.
† BI-RADS density was extracted for 3408 (of 6266) randomly selected examinations.
‡ BI-RADS assessment categories were extracted for 3409 (of 6266) randomly selected examinations.
§ Of the 89 patients with a detected deleterious mutation, two patients had more than one gene affected.
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Table 2: Discriminatory Performance of Mirai in ChiMEC with Stratified Analysis

Variable

Mirai AUC

Harrell C IndexYear 1 Year 2 Year 3 Year 4 Year 5

All examinations (n = 6435) 0.71
(0.68, 0.74)

0.67
(0.65, 0.69)

0.65
(0.63, 0.67)

0.65
(0.63, 0.67)

0.65
(0.64, 0.67)

0.64
(0.61, 0.66)

All examinations (TTC <6 mo excluded) (n = 6266) 0.64
(0.59, 0.68)

0.63
(0.61, 0.66)

0.63
(0.60, 0.65)

0.63
(0.61, 0.65)

0.63
(0.61, 0.65)

0.61
(0.59, 0.63)

BI-RADS breast density
  All examinations with densities (n = 3408) 0.68

(0.61, 0.75)
0.63
(0.59, 0.67)

0.62
(0.59, 0.65)

0.63
(0.60, 0.65)

0.63
(0.60, 0.65)

0.61
(0.57, 0.64)

  Nondense only (n = 2146) 0.72
(0.63, 0.81)

0.64
(0.60, 0.69)

0.64
(0.60, 0.67)

0.64
(0.61, 0.67)

0.63
(0.60, 0.66)

0.62
(0.58, 0.66)

  Dense only (n = 1262) 0.58
(0.45, 0.72)

0.60
(0.54, 0.67)

0.60
(0.55, 0.66)

0.61
(0.56, 0.65)

0.62
(0.57, 0.66)

0.59
(0.54, 0.64)

BI-RADS assessment category
  All examinations with BI-RADS (n = 3409) 0.68

(0.61, 0.75)
0.63
(0.59, 0.67)

0.62
(0.59, 0.65)

0.63
(0.60, 0.65)

0.63
(0.60, 0.65)

0.61
(0.57, 0.64)

  BI-RADS 1 only (n = 1311) 0.87
(0.75, 1.00)

0.63
(0.56, 0.69)

0.60
(0.55, 0.65)

0.61
(0.57, 0.66)

0.61
(0.57, 0.66)

0.60
(0.54, 0.65)

  BI-RADS 1 and 2 only (n = 2995) 0.71
(0.63, 0.79)

0.64
(0.59, 0.67)

0.62
(0.59, 0.66)

0.63
(0.60, 0.66)

0.63
(0.60, 0.66)

0.61
(0.57, 0.64)

Self-reported race
  African American (n = 2910) 0.65

(0.57, 0.72)
0.61
(0.57, 0.65)

0.61
(0.58, 0.64)

0.62
(0.59, 0.65)

0.62
(0.59, 0.64)

0.59
(0.56, 0.63)

  White (n = 2469) 0.63
(0.57, 0.69)

0.65
(0.61, 0.68)

0.63
(0.59, 0.66)

0.63
(0.60, 0.66)

0.64
(0.61, 0.66)

0.61
(0.58, 0.65)

Age group (y)
  <50 (n = 1853) 0.60

(0.50, 0.70)
0.63
(0.58, 0.69)

0.61
(0.56, 0.65)

0.60
(0.56, 0.64)

0.60
(0.56, 0.64)

0.59
(0.54, 0.64)

  50–60 (n = 1957) 0.61
(0.53, 0.69)

0.61
(0.56, 0.66)

0.58
(0.55, 0.62)

0.59
(0.56, 0.63)

0.59
(0.55, 0.62)

0.57
(0.53, 0.62)

  60–70 (n = 1591) 0.62
(0.53, 0.72)

0.61
(0.57, 0.66)

0.62
(0.58, 0.66)

0.62
(0.58, 0.65)

0.62
(0.59, 0.66)

0.60
(0.56, 0.65)

  70–90 (n = 865) 0.70
(0.62, 0.78)

0.63
(0.58, 0.69)

0.64
(0.59, 0.69)

0.65
(0.61, 0.70)

0.66
(0.62, 0.71)

0.62
(0.57, 0.68)

Case examinations according to immunohistochemical 
receptor status (common set of controls)

  HR+/HER2− (n = 5626) 0.70
(0.64, 0.76)

0.66
(0.62, 0.69)

0.65
(0.62, 0.67)

0.65
(0.62, 0.67)

0.65
(0.62, 0.67)

0.63
(0.60, 0.66)

  HR+/HER2+ (n = 4848) 0.56
(0.33, 0.78)

0.57
(0.46, 0.69)

0.58
(0.49, 0.67)

0.61
(0.53, 0.69)

0.60
(0.52, 0.68)

0.59
(0.46, 0.72)

  HR−/HER2+ (n = 4838) 0.76
(0.61, 0.91)

0.64
(0.52, 0.77)

0.62
(0.52, 0.72)

0.61
(0.52, 0.70)

0.63
(0.54, 0.71)

0.61
(0.50, 0.72)

  HR−/HER2− (n = 4969) 0.59
(0.46, 0.72)

0.61
(0.55, 0.67)

0.60
(0.54, 0.65)

0.60
(0.55, 0.64)

0.60
(0.56, 0.65)

0.59
(0.52, 0.65)

  HR+ (n = 5936) 0.64
(0.58, 0.69)

0.64
(0.61, 0.67)

0.63
(0.61, 0.66)

0.64
(0.62, 0.66)

0.64
(0.62, 0.66)

0.62
(0.59, 0.65)

  HR− (n = 5055) 0.65
(0.56, 0.75)

0.62
(0.58, 0.68)

0.61
(0.57, 0.66)

0.61
(0.57, 0.65)

0.62
(0.58, 0.65)

0.60
(0.55, 0.65)

Case examinations according to tumor grade (common 
set of controls)

  Low grade (n = 5023) 0.72
(0.62, 0.82)

0.66
(0.59, 0.73)

0.65
(0.60, 0.71)

0.65
(0.61, 0.70)

0.64
(0.60, 0.69)

0.63
(0.57, 0.70)

  Intermediate grade (n = 5445) 0.67
(0.60, 0.74)

0.67
(0.63, 0.70)

0.65
(0.62, 0.68)

0.65
(0.63, 0.68)

0.66
(0.64, 0.68)

0.63
(0.61, 0.67)

  High grade (n = 5245) 0.60
(0.52, 0.68)

0.60
(0.56, 0.65)

0.59
(0.56, 0.63)

0.60
(0.57, 0.63)

0.60
(0.57, 0.63)

0.58
(0.54, 0.62)

Note.—Data in parentheses are 95% CIs. AUC = area under the receiver operating characteristic curve, BI-RADS = Breast Imaging and Reporting 
Data System, ChiMEC = Chicago Multiethnic Epidemiologic Breast Cancer Cohort, C index = concordance index, HER2 = human epidermal growth 
factor receptor 2, HR = hormone receptor, TTC = time to cancer.
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2). We observed differences in Mirai scores across BI-RADS 
categories, even when stratified according to case or control 
status (P < .001).

Logistic regression was used to combine Mirai and BI-RADS 
scores to predict the 1-year outcome using a 70:30 development-
test split. In the test set, the combined Mirai plus BI-RADS 

scores achieved a 1-year AUC of 0.75 (95% CI: 0.63, 0.87), 
compared with BI-RADS assessment (AUC, 0.70; 95% CI: 
0.57, 0.83; P = .08) or Mirai 1-year risk score (AUC, 0.67; 95% 
CI: 0.54, 0.81; P = .33). The combined score had a very high 
correlation with BI-RADS (r = 0.86) and a moderate correlation 
with Mirai (r = 0.43).

Figure 1:  Area under the receiver operating characteristic curves (AUCs) show comparisons of Mirai risk scores and Breast Imaging Reporting and Data System 
(BI-RADS) assessment scores in all examinations (top row) and stratified according to nondense (middle row) and dense (bottom row) breasts at the 1-year, 2-year, and 
5-year time points. Mirai’s predictions were superior to those of BI-RADS for outcomes beyond year 1. Both models performed better in nondense breasts compared with 
dense breasts, but this was not statistically significant. 

Figure 2:  Left: Density plot shows lower Mirai score distribution among Breast Imaging Reporting and Data System (BI-RADS) 1 (negative) mammograms compared 
with BI-RADS 2 and above. Right: Box plots show higher distribution of scores with more suspicious BI-RADS categories when stratified according to (future) case (1, top) or 
control (0, bottom) status. For each box, the central line indicates the median Mirai score, while the left and right edges indicate the 25th and 75th percentiles, respectively. 
The left and right whiskers represent the lower and upper extremes of values, respectively. Outliers are plotted as separate points.
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Breast Density and Model Performance
Mirai had high performance in predicting 1-year risk in non-
dense breasts (AUC, 0.72; 95% CI: 0.63, 0.81) compared 
with dense breasts (AUC, 0.58; 95% CI: 0.45, 0.72; P = .10). 
Beyond year 1, the difference in Mirai’s performance between 
nondense and dense breasts gradually tapered (Table 2, Fig 3). 
On the other hand, the 1-year AUC using BI-RADS was 0.74 
(95% CI: 0.66, 0.82) for nondense breasts versus 0.70 (95% 
CI: 0.59, 0.81) (P = .52) for dense breasts (Table 3).

Model Performance according to Age and Self-reported 
Race and Ethnicity
We found no evidence of differences in Mirai’s performance 
across age groups or racial categories (Table 2, Fig 3).

Breast Density Measures as a Predictor of Breast Cancer
Using radiology-reported density as ground truth labels, BDC-
WD scores achieved an AUC of 0.86 (95% CI: 0.85, 0.88), 
showing high performance in its primary task of predicting 

Table 3: BI-RADS Assessment Performance in the Entire Sample according to Breast Density

Examination Group

BI-RADS Assessment AUC

Year 1 Year 2 Year 3 Year 4 Year 5

All filtered examinations 0.73 (0.66, 0.79) 0.56 (0.52, 0.59) 0.55 (0.52, 0.58) 0.54 (0.51, 0.56) 0.54 (0.51, 0.56)
  Event/total 56/3409 228/3289 378/2924 506/2556 599/2242
Nondense breasts 0.74 (0.66, 0.82) 0.56 (0.51, 0.61) 0.55 (0.51, 0.58) 0.54 (0.51, 0.57) 0.54 (0.50, 0.56)
  Event/total 37/2146 150/2077 256/1851 344/1629 402/1430
Dense breasts 0.70 (0.59, 0.81) 0.55 (0.48, 0.61) 0.56 (0.50, 0.61) 0.54 (0.49, 0.58) 0.54 (0.50, 0.58)
  Event/total 19/1262 78/1211 121/1072 161/926 196/811

Note.—Data in parentheses are 95% CIs. Event/total is number of mammograms with future cancer at time points/number of evaluated 
mammograms. AUC = area under the receiver operating characteristic curve, BI-RADS = Breast Imaging and Reporting Data System.

Figure 3:  Area under the receiver operating characteristic curves (AUCs) show comparisons of Mirai according to breast density (top row), self-reported race and 
ethnicity (middle row), and age group (bottom row). Mirai showed better performance in nondense breasts, White women, and older women; however, none of the AUC 
differences was statistically significant.
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breast density. There was a strong positive correlation between 
the BDC-WD scores and reported mammographic density (r 
= 0.66, P < .001). There was a very weak correlation between 
BDC-WD and 1-year Mirai risk scores (r = 0.18, P < .001), 
as well as between reported density and the 1-year Mirai risk 
score (r = 0.18, P < .001). For predicting future case or con-
trol status, Mirai scores outperformed BDC-WD scores and 
reported density at all time points (all P < .001). See Table S5 
for a detailed AUC comparison.

Mirai Risk Score Distributions in Breast Cancer Subtypes
Examinations with future high-grade tumors displayed lower 
Mirai score distributions compared with examinations with 
future low- to intermediate-grade tumors (Fig 4A) (P = .005). 
This was substantiated by higher AUCs for predicting low- 
and intermediate-grade versus high-grade tumors at the 1-year 
(0.72 and 0.67 vs 0.60) and 5-year (0.64 and 0.66 vs 0.60) 
time points (Table 2). We observed differences in predicting 
2–5-year risks of low- to intermediate-grade versus high-grade 
tumors (all P < .05). We also found differences in score dis-
tributions according to tumor receptor subtype (Fig 4B). In 
particular, the 5-year Mirai risk score was higher for hormone 
receptor (HR) positive and human epidermal growth factor 
receptor 2 (HER2) negative, or HR+/HER2−, subtype than 
the other three subtypes (P = .02). Similarly, Mirai performed 
better at predicting HR+/HER2− breast cancer compared with 
other receptor subtypes (Table 2), although the differences 
were not statistically significant (P = .20 for 5-year risk score).

The Impact of Selective Image Mirroring
Mirai model performance was not affected by positive mirror-
ing (Fig 5, Table 4). However, negative mirroring caused a de-
crease in model performance across all time points (P < .001); 
this reduction was nearly complete for year 1 risk prediction 
(AUC, 0.51) and partial for year 5 (AUC, 0.56). Negative mir-
roring of case examinations led to a decrease in their risk scores 
(Fig 6). Surprisingly, we observed a marginal decrease in the 
risk score distribution with positive mirroring of cases, as well 
as with random mirroring of controls.

Dimension Reduction of Mirai’s Hidden Representations
Uniform manifold approximation and projection of the Mirai 
model’s hidden representations according to case and control 
status, race and ethnicity, tumor receptor status, and tumor 
grade (Appendix S1, Fig S1) did not demonstrate notable di-
mensional separation between groups. However, some separa-
tion was observed between dense and nondense breasts.

Discussion
We externally evaluated a mammography-based DL breast 
cancer risk prediction model, Mirai, in a high-risk racially di-
verse dataset enriched for BRCA mutation carriers and benign 
breast diseases. In this study, Mirai showed higher discrimina-
tory capacity for short-term cancer prediction (overall AUC: 
year 1, 0.71 [95% CI: 0.68, 0.74] vs year 5, 0.65 [95% CI: 
0.64, 0.67]) and performed marginally better in women with 
nondense breasts (1-year AUC, 0.72 vs 0.58; P = .10; not sta-
tistically significant but deserving further confirmation). The 
DL model outperformed BI-RADS for longer-term (2–5-year) 
prediction (Fig 1). Furthermore, Mirai showed higher dis-
crimination for low- to intermediate-grade versus high-grade 
tumors (all P < .05). Mirroring experiments showed that the 
image of the breast side with the future cancer was critical for 
model discrimination (1-year AUCs of 0.63, 0.62, and 0.51 
for no mirroring, positive mirroring, and negative mirroring, 
respectively). Neither visually assessed breast density nor BDC-
WD was a good discriminator of future breast cancer in this 
high-risk population, and both measures were significantly 
outperformed by Mirai predictions at all time points.

Recent work has shown that Mirai can predict 5-year 
cancer risk, with AUCs ranging 0.76–0.85 in several inde-
pendent retrospective test sets (6,15). Compared with previ-
ously published multi-institutional testing by Yala et al (15), 
we observed relatively lower discriminatory performance in 
the Chicago Multiethnic Epidemiologic Breast Cancer Co-
hort, which is more enriched for BRCA mutation carriers, 
benign breast disease, and African American women. Nearly 
50% of mammograms in our study were from self-reported 
African American women, compared with 4.8% of total 

Figure 4:  Density plots show the distribution of Mirai 5-year risk scores in cases according to tumor grade (left) and receptor status (right). Examinations with future 
high-grade tumors had lower scores compared with examinations with future low- or intermediate-grade tumors. HER2 = human epidermal growth factor receptor 2, HR = 
hormone receptor.
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examinations in the previous test set (6). Still, the published 
performance of Mirai reflects considerable advancement over 
established clinical risk models, such as Tyrer-Cuzick, which 
obtained a 5-year AUC of 0.62 in a test set, compared with 
an AUC of 0.76 for Mirai (6). The DL model performance 
noted in the Chicago Multiethnic Epidemiologic Breast Can-
cer Cohort is similar to those reported by Lehman et al (17), 
in which Mirai obtained a 5-year AUC of 0.68 (95% CI: 
0.66, 0.70), and Arasu et al (18) in an external evaluation (5-
year AUC, 0.67; 95% CI: 0.66, 0.68). Furthermore, Lehman 
et al (17) externally assessed Mirai alongside the National 
Cancer Institute Breast Cancer Risk Assessment Tool and 
Tyrer-Cuzick in a prospectively recruited patient cohort and 
found that the DL model obtained significantly higher AUCs 
and future cancer yield.

However, none of the previously published external 
evaluation studies assessed Mirai performance compared 
with BI-RADS assessment categories or breast density, 

which are routinely available in mammography reports. In ad-
dition, none of the previous studies performed mirroring experi-
ments on input images to see how mirroring affected model pre-
dictions. In our study, the combined DL and BI-RADS scores 
showed better short-term discrimination than either model 
evaluated alone, and while this difference was not statistically 
significant, it suggests that mammography DL tools could sup-
plement the assessment of screening mammograms for more ac-
curate near-term risk stratification. Still, it would be interesting 
to evaluate this on a larger dataset.

Given that parenchymal-level information is captured by 
the DL model, it is biologically plausible that Mirai performs 
better at estimating nearer-term risk compared with longer-
term risk. The sustained performance of Mirai when evaluat-
ing negative or benign (BI-RADS 1 and 2) screening mam-
mograms alone (Table 2) shows that it might be a valuable tool 
for alerting radiologists about normal-appearing (negative or 
benign BI-RADS) examinations as well as high Mirai-scoring 

Figure 5:  Top: Radiographic schema of mirroring experiment (only mediolateral oblique mammographic views shown for demonstration) shows no mirroring, as indi-
cated by the original input screening mammogram with the known breast side of future cancer (+) and the unaffected breast side (−); negative mirroring, whereby the unaf-
fected breast side (−) is mirrored, indicated by m (−), so that the input examination excludes the future affected breast (+); and positive mirroring, where the affected breast 
side is mirrored such that the input examination includes two copies of the future affected breast, indicated by m (+) and +. Bottom: Area under the receiver operating char-
acteristic curves (AUCs) show Mirai performance in mirroring experiments (years 1, 2, and 5 from left to right). No mirroring and positive mirroring display superior model 
discrimination compared with negative mirroring at all time points.

Table 4: Discriminatory Performance of Mirai in Mirroring Experiments

Time Point Event/Total No Mirroring AUC
Negative Mirroring 
AUC P Value* Positive Mirroring AUC P Value†

Year 1 136/6229 0.63 (0.59, 0.68) 0.51 (0.46, 0.56) <.001 0.62 (0.57, 0.67) .48
Year 2 495/5946 0.63 (0.61, 0.66) 0.53 (0.50, 0.56) <.001 0.63 (0.60, 0.66) .46
Year 3 787/5228 0.62 (0.60, 0.64) 0.54 (0.51, 0.56) <.001 0.61 (0.59, 0.64) .32
Year 4 1012/4529 0.63 (0.61, 0.65) 0.55 (0.53, 0.57) <.001 0.62 (0.60, 0.64) .37
Year 5 1174/3931 0.63 (0.61, 0.65) 0.56 (0.54, 0.58) <.001 0.62 (0.60, 0.64) .08

Note.—Data in parentheses are 95% CIs. Event/total is number of mammograms with future cancer at time points/number of 
evaluated mammograms. AUC = area under the receiver operating characteristic curve.
* P values are for comparisons between no mirroring and negative mirroring.
† P values are for comparisons between no mirroring and positive mirroring.

http://radiology-ai.rsna.org


10� radiology-ai.rsna.org  ■  Radiology: Artificial Intelligence Volume 5: Number 6—2023

Mammography-based Deep Learning Model for Predicting Breast Cancer

mammograms, which may harbor occult malignancy or dem-
onstrate premalignant changes. The trend toward lower dis-
criminatory performance of both Mirai and BI-RADS assess-
ment in women with dense breasts reflects the limitations of 
mammography as a screening modality (29,30). Dense breasts 
obscure parenchymal changes (29), and the lack of granular de-
tail of breast parenchyma could affect DL model performance. 
Therefore, modalities less impacted by breast density, such as 
breast tomosynthesis (31) or abbreviated breast MRI (32), 
might constitute good training data for DL models.

Results from selective mirroring, along with better perfor-
mance of the DL model for near-term versus longer-term predic-
tion (Table 2), suggest that DL may detect premalignant or early 
malignant changes before they become apparent. These results 
suggest that field-effect biomarkers, which are expectedly com-
mon to both breasts (33,34), are not the most critical feature 
driving the DL model’s predictions; however, they may be con-
tributory because negative mirroring did not completely elimi-
nate discriminatory ability (5-year AUC, 0.56; 95% CI: 0.54, 
0.58). The reduction in Mirai risk scores with positive mirroring 
could possibly be the result of a loss of asymmetry in the full 
examination ensemble, which the model might be sensitive to, 
considering that this score reduction was observed in both cases 
and controls (which were randomly mirrored).

Performance of the mammography DL model also differed 
according to breast cancer subtype and tumor grade. Previous 
studies have indicated that mammography is less sensitive at 
detecting higher-grade and HR-negative breast cancers (35). 
Our findings of higher Mirai scores in examinations with fu-
ture low- to intermediate-grade and HR+/HER2− tumors, as 
well as higher AUCs for predicting low to intermediate grade 
(vs high grade) and HR+/HER2− (vs other immunohistochemi-
cal subtypes) cancers, are in concordance with known subtype-
specific mammographic sensitivity differences. However, these 
differences may also reflect model training set biases because 
most cancer cases in the training set were low-grade and HR+/
HER2− cancers (6). From a public health perspective, it is 

desirable to develop more accurate risk prediction models for 
aggressive forms of breast cancer, such as high-grade and triple-
negative breast cancers, in future DL studies. Our study, when 
juxtaposed with previous work, provides additional insight on 
mammography DL risk prediction models (6,15,17) in that it 
was performed in a group enriched for a high prevalence of risk 
factors, including family history and benign breast disease, com-
pared with the model development set (6).

Our study is not without limitations. Given the limited 
sample size of other self-reported racial and ethnic groups, we 
were only able to equitably evaluate the model’s performance in 
White and Black women. Furthermore, equitable comparison 
with BI-RADS for short- and long-term prediction may be lim-
ited by our sample size and lack of granular detail on the BI-
RADS assessment subcategories (4a, b, and c). Given that this 
was a case-control study, we did not assess model calibration. 
Although Mirai’s usage is not limited to distinct risk groups, it is 
important to acknowledge that the model was trained on a data-
set with a likely lower-risk profile and tested on a high-risk data-
set. As a result, our findings may not readily extend to women of 
average risk. Our study predominantly provides an initial evalua-
tion of Mirai’s performance within high-risk populations. Larger 
prospective studies focusing on high-risk women are needed.

In conclusion, this study was, to our knowledge, the first in-
dependent external evaluation study of a mammography-based 
DL model for breast cancer risk prediction in a prospectively 
selected high-risk case-control population enriched for BRCA 
mutation carriers and African American women. The model 
performed well in breast cancer risk prediction, and our results 
suggest that precancerous changes may represent an important 
factor driving model performance. With a larger prospective co-
hort, the model could be calibrated to the diverse patient popu-
lation of the University of Chicago Medicine to provide absolute 
1–5-year risk estimates based on the incident cancer cases seen 
at examinations.
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Figure 6:   Left: Box plot shows risk score distribution in different mirroring experiments. Higher-score distributions are observed in unmirrored (future) cases, with negative 
mirroring causing the most notable reduction in scores and positive mirroring causing a smaller reduction. For each box, the central line indicates the median Mirai score, 
while the upper and lower edges indicate the 75th and 25th percentiles, respectively. The upper and lower whiskers represent the upper and lower extremes of values, 
respectively. Outliers are plotted as separate points. Right: Density plot shows lower score distributions among negatively mirrored future cases (F.Case, M−) compared with 
unmirrored future cases (F.Case, M0), with positive mirroring (F.Case, M+) scoring in between. In either mirroring scenario, examination images in women without future 
breast cancer (controls) were randomly mirrored.
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