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Visual Abstract

Abstract

Kirrel3 is a cell-adhesion molecule that instructs the formation of specific synapses during brain development
in mouse and Kirrel3 variants may be risk factors for autism and intellectual disabilities in humans. Kirrel3 is
predicted to undergo alternative splicing but brain isoforms have not been studied. Here, we present the first
in-depth characterization of Kirrel3 isoform diversity in brain using targeted, long-read mRNA sequencing of
mouse hippocampus. We identified 19 isoforms with predicted transmembrane and secreted forms and show
that even rare isoforms generate detectable protein in the brain. We also analyzed publicly-available long-read

Significance Statement

Kirrel3 is an important molecule for synapse and circuit formation with gene variants that are associated
with neurodevelopmental disorders, yet Kirrel3 function remains largely unknown. Here, we report new iso-
forms of mouse and human Kirrel3, including secreted and transmembrane forms, that suggest a diverse
repertoire of Kirrel3 actions. Importantly, we identified a new Kirrel3 exon only present in humans and the
other great apes with potential to play an important role in circuit formation unique to these species.
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mRNA databases from human brain tissue and found 11 Kirrel3 isoforms that, similar to mouse, encode trans-
membrane and secreted forms. In mice and humans, Kirrel3 diversity arises from alternative, independent use
of protein-domain coding exons and alternative early translation-stop signals. Intriguingly, the alternatively
spliced exons appear at branch points in the chordate phylogenetic tree, including one exon only found in hu-
mans and their closest living relatives, the great apes. Together, these results validate a simple pipeline for an-
alyzing isoform diversity in genes with low expression and suggest that Kirrel3 function is fine-tuned by
alternative splicing and may play a role in brain evolution.
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Introduction
Proper wiring of the mammalian brain requires billions

of neurons to form synaptic connections with specific
neurons. During development, axons extend to correct
brain regions and then synapse with suitable neuronal
partners, a process largely governed by the cellular envi-
ronment, morphology, and cell surface proteins. Cell surface
proteins help the cell find matching and avoid nonmatching
synaptic partners (Sanes and Zipursky, 2020; Südhof, 2021).
They also function in development by contributing to syn-
apse formation and, likely, continue to function throughout
adulthood during synapse maintenance, transmission, and
plasticity.
The combinatorial expression of synaptic cell surface pro-

teins provides different cell types with a unique identity that
can be further tuned by alternative splicing. Alternative splic-
ing of synaptic molecules can affect their protein-protein in-
teractions and intracellular signaling (Südhof, 2017; Ovando-
Zambrano et al., 2019; Li et al., 2020; Gomez et al., 2021;
Trotter et al., 2023). This, in turn, expands the functional
repertoire of synaptic genes and adds a layer of regulatory
control. Accordingly, splicing factors are important for all as-
pects of neural development including neuronal health and
accurate neuronal wiring (Furlanis and Scheiffele, 2018;
Traunmüller et al., 2023). Despite the emerging impor-
tance and widespread use of alternative splicing programs in
synaptic proteins (Ray et al., 2020), isoform diversity has
been characterized for relatively few cell adhesion proteins in-
cluding Dscam, Neurexin, and the Neurexin binding partners
Neuroligin, Teneurin, and Latrophilin (Hattori et al., 2008;
Schreiner et al., 2014; Treutlein et al., 2014; Südhof, 2017;

Ovando-Zambrano et al., 2019; Li et al., 2020; Gomez et
al., 2021).
Kirrel3 is a single pass transmembrane protein in the

immunoglobulin (Ig) superfamily with five extracellular Ig
domains and an intracellular PDZ-binding domain. Kirrel3
mediates cell-adhesion and synapse formation via trans-
cellular, homophilic interactions and is essential for nor-
mal brain connectivity in mice (Prince et al., 2013; Martin
et al., 2015, 2017; Roh et al., 2017; Brignall et al., 2018;
Taylor et al., 2020; J. Wang et al., 2021). The Kirrel3 gene
is composed of many small exons predicted to undergo
alternative splicing. So far, three isoforms were reported
in skeletal muscle (Durcan et al., 2014), but Kirrel3 isoform
diversity has not been tested in the brain. Understanding
the alternative splicing program of Kirrel3 is expected to
provide new insight to its function in synapse and circuit
formation. In addition, understanding the alternative splic-
ing of Kirrel3 may facilitate the study of disease mecha-
nisms that involve this synaptic gene because human
Kirrel3 missense variants have been repeatedly identified
as risk factors for neurodevelopmental disorders includ-
ing autism spectrum disorders and intellectual disabilities
(Bhalla et al., 2008; De Rubeis et al., 2014; Iossifov et al.,
2014; T. Wang et al., 2016; Yuen et al., 2016; Li et al.,
2017; Kalsner et al., 2018; Guo et al., 2019; Leblond
et al., 2019; Hildebrand et al., 2020; Taylor et al., 2020;
Zhou et al., 2022).
Here, we generated a comprehensive list of Kirrel3 iso-

forms expressed in the mouse hippocampus obtained with
targeted long-read mRNA sequencing. In addition, we ex-
amined existing long-read transcriptome data from multiple
mouse and human brain regions. We identified a total of 19
mouse and 11 human alternative transcripts predicted to
encode distinct Kirrel3 proteins including secreted and
transmembrane variants. In both mice and humans, Kirrel3
isoform diversity originates in the independent combination
of four protein coding exons, two on the extracellular and
two on the intracellular side, together with several alterna-
tive C termini. The four alternatively spliced protein coding
exons first appear at different critical branching points in
the chordate phylogenetic tree. Moreover, we identified a
new alternatively spliced protein-coding Kirrel3 exon exclu-
sively present in humans and the great apes (Hominidae),
suggesting a key role of Kirrel3 in regulating brain connec-
tivity in these closely related species.

Materials and Methods
Animals
Kirrel3 knock-out (KO) mice were described previously

(Prince et al., 2013) and are backcrossed to the C57Bl/6J
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strain background. Male and female mice were used in
equal numbers and described in the text. All animal ex-
periments were approved and conducted in accordance
with the University of Utah Institutional Animal Care and
Use Committee (IACUC).

Iso-seq sample processing and analysis
RNA was purified from two whole hippocampi per sam-

ple and a total of six samples. Samples are from two
C57Bl/6J P14 males and females, respectively, as well as
one P14 male and female knock-out control (KO; Prince et
al., 2013). RNA was tested for quality (Agilent TapeStation,
RIN� 8.0) and converted to cDNA (NEBNext Single Cell/
Low Input RNA Library Prep kit for Illumina). cDNA from
each sample was amplified and barcoded in a mild strin-
gency PCR (20 cycles of 30 s at 98°C, 54°C and 72°C),
using a target-specific forward primer matching exon 2 of
mouse Kirrel3 and a universal cDNA-reverse primer
(Extended Data Table 1-1). Barcoded PCR products�1 kb
were enriched (ProNex beads) and quantified (TapeStation
D5000). Equal amounts of each sample were combined
into a single 500ng SMRTbell library for full-length tran-
script sequencing on a single SMRTcell using the Sequel II
system (Pacific Bio). Iso-seq analysis was performed using
R and the R-package BioStrings (Lifschitz et al., 2022).
Results were manually confirmed and aligned using ApE
plasmid editor software (Davis and Jorgensen, 2022). In
brief, Iso-seq reads were demultiplexed using unique 16-
bp bar code sequences and no more than two mismatches
as search pattern. This strategy unambiguously identified
the sample origin for 85.8% of all reads. Preliminary inspec-
tion of Iso-seq Kirrel3 transcripts was performed by dividing
the Kirrel3 gene (NCBI Gene ID: 67703, 550,823bp) into
155-bp fragments, and screening Iso-seq full-length reads
for the presence of any of the 3536 resulting fragments. The
preliminary inspection revealed one new exon and seven
new exon extensions for a total of 29 alternatively spliced
genomic segments (Extended Data Table 2-1). Iso-seq
reads with sample IDs were screened for each of these 29
segments with no more than 40%mismatches.

Sequence Read Archive (SRA) and phylogenetic
analysis
Published mouse or human PacBio SMRT transcript li-

braries generated with brain derived tissues or cell lines
were screened for Kirrel3 transcripts using the conserved
exon 2 sequence and the NCBI blastn suite (Altschul et
al., 1990). Similar to the analysis of mouse transcripts,
human Kirrel3 transcripts were first inspected for the
presence of any of 3772 elements, each 155bp in length,
that make up the human Kirrel3 gene (NCBI Gene ID:
84623, 584,513bp). The preliminary inspection revealed
three new exons and one new exon extension for a total
of 27 alternatively spliced genomic segments (Extended
Data Table 2-1). Similar to the Iso-seq analyses, mouse
and human Kirrel3 transcripts were then examined for the
presence of the respective alternatively spliced segments
(�40% mismatches) and manually aligned using BioStrings
and ApE plasmid editor software, respectively. Phylogenetic

analyses of mouse exons 6, 18, 19b, and 22 and human
exons 3, 16, 17c, 19a, and 21 were performed by comparing
nucleotide sequences to published genomes using the blastn
suite (Altschul et al., 1990), direct gene ortholog inspection
and by examining relationship of species with matches using
the NCBI Taxonomy database (Schoch et al., 2020).

Fluorescent in situ hybridization chain reaction (HCR)
HCR was performed as previously described (Trivedi et

al., 2018). Mouse brains were cryo-sectioned to 30-mm
slices, mounted on slides, fixed [4% paraformaldehyde
(PFA)] and washed in PBS. Before processing samples
according to protocol HCR v3.0 (Invitrogen), slices were
treated with 1mg/ml proteinase K-treated (TE buffer)
and equilibrated in SSC buffer. Custom HCR probes
were designed and generated by Molecular Instruments
based on provided targets (Extended Data Table 4-1).
After nuclear staining with Hoechst in PBS, coverslips
were mounted in Fluoromount-G (Southern Biotech cat-
alog #0100-01) and imaged (Zeiss LSM 710).

Immunoblotting
Immunoblotting was conducted by standard techniques.

Mouse samples are hippocampi from a three-week-old
Kirrel3 wild-type or knock-out animals. Human samples are
derived from deidentified postmortem dorsolateral prefrontal
cortex stored at �80°C (kindly provided by Hilary Coon).
Tissue samples are from one female (21years, post mortem
interval: 11.2 h) and one male (23years, post mortem interval:
11.6 h). Mouse and human samples were processed in a
Dounce homogenizer in lysis buffer (50 mM Tris, pH 7.5,
150 mM NaCl, 5 mM EDTA, 10% Glycerol, 1% CHAPS)
with protease inhibitors at 100mg/ml. The lysate was
boiled in Laemmli buffer, run in a 10% bis-tris gel, and
transferred to a nitrocellulose membrane. Antibodies used
included mouse-anti-Pan-Kirrel3 (Neuromab, RRID: AB_
2315857), mouse anti-Kirrel3exon19b (Neuromab, RRID:
AB_2341106), mouse-anti-GAPDH (Millipore, catalog
#AB2302, RRID: AB_10615768), and a custom rabbit
anti-Kirrel3 made against a C-terminal peptide (Martin
et al., 2015). Secondary antibodies were goat-anti-mouse-
HRP (Jackson ImmunoResearch, catalog #115-035-003,
RRID: AB_10015289) and goat-anti-rabbit-HRP (Jackson
ImmunoResearch, catalog #111-036-003, RRID: AB_
2337942).

DNA constructs
cDNAs and plasmids were generated using standard

PCR-based restriction enzyme cloning (Taylor et al.,
2020). Extracellular FLAG tags were added to mouse
Kirrel3 Isoforms F (Kirrel3F) and K (Kirrel3K) in frame after
the predicted signal-peptide cleavage site (exon 6) and
the tagged constructs placed 39 to mCherry or GFP fol-
lowed by a viral 2A peptide sequence into the mammalian
expression vector pBOS (mCherry-2A-FLAG-Kirrel3F/K).

Cell aggregation assay
CHO cells were transfected with either mCherry-2A-

FLAG-Kirrel3F, mCherry-2A-FLAG-Kirrel3K, GFP-2A-FLAG-
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Kirrel3F, or pBOS with mCherry only (mCherry-pBOS). After
48 h, transfected cells were washed and detached (0.01%
trypsin) in magnesium-free HEPES buffer (HMF; 137 mM

NaCl, 5.4 mM KCl, 1 mM CaCl2, 0.34 mM Na2HPO4, 5.6 mM

glucose, and 10mMHEPES, pH 7.4), spun down, and resus-
pended in HMF. Next, 100000 cells suspended in 0.5 ml
HMF were allowed to aggregate for 90min (nutator, 37°C) in
BSA-coated 24-well plates. For analysis, cells are fixed by
adding paraformaldehyde (PFA; 4% final) and allowed to
settle over a 24-h period. All but 0.3 ml of the supernatant
are removed, cells and cell aggregates are carefully trans-
ferred in the remaining volume to a 96-well glass bottom
plate, and the entire well is imaged (Zeiss LSM 710). Finally,
the fraction of aggregated cells in the entire well was deter-
mined using ImageJ software.

Immunocytochemistry and analysis
293T-HEK cells on poly-D-Lysine treated glass cover-

slips were transfected using PEI following a previously
published protocol (Xie et al., 2013). After 24 h, cells were
fixed (4% PFA) and rinsed with PBS and blocked for
30min with 3% BSA/0.1% Triton X-100 in PBS (blocking
buffer). Blocking buffer was also used for all subsequent
washes and antibody dilutions. For antigen labeling, cells
were incubated for 1–2 h with primary antibody at room
temperature, washed three times, and incubated for 45min
with secondary antibody. After nuclear staining with Hoechst
in PBS, coverslips were mounted in Fluoromount-G and im-
aged (Zeiss LSM 710). The relative enrichment of membrane
proteins in cell-to-cell contacts was measured as ratio of av-
erage fluorescence pixel intensity along a cell’s contact ver-
sus free membrane using ImageJ software.

Statistics
For the CHO aggregation experiment, the sample size

(n¼ 3 for all conditions) indicates independent experi-
ments conducted on different days. Groups were compared
by a one-way ANOVA followed by pair-wise post-tests. For
the cell junctional enrichment assay, we sampled several
cells from three independent cultures and used a nested
one-way ANOVA followed by pair-wise post-tests.

Availability of data andmaterials
Iso-seq sequencing data are available at NCBI under

SRA data file number PRJNA992104. Kirrel3 isoform se-
quence files have been deposited at NCBI. GenBank ac-
cession numbers for mouse Kirrel3 mRNA Isoforms F–T
are OR239801–OR239815, respectively. All other materi-
als and data that are not commercially available will be
freely provided on reasonable request.

Results
A strategy to enrich for full-length Kirrel3 transcripts
Commonly used deep-sequencing technologies rely on

short sequence reads (,250 bp) that are powerful assets
in defining whole cell or tissue transcriptomes (Corchete
et al., 2020). Short sequence reads are suitable to deter-
mine relative transcript frequencies and relative exon

usage for all genes expressed. However, short-read se-
quencing is not suitable to directly determine the com-
plete exon composition of transcripts longer than the
250-bp read limit (Leshkowitz et al., 2022). Recent advan-
ces in long-sequence read technologies such as Iso-seq
(Kuo et al., 2017) or Nanopore sequencing (Y. Wang et al.,
2021) can generate millions of high-quality reads of.15kb
that allow full-length transcript characterization. To capture
full-length Kirrel3 transcripts, we performed Iso-seq experi-
ments on RNA collected from hippocampal tissue from 14-
d-old C57Bl/6J mice (n¼ 4, 2 males, and 2 females). As a
synapse specificity molecule, Kirrel3 is not an abundant
transcript nor protein. Based on published RNA sequenc-
ing data on mouse brain samples (Bioproject PRJDB7898,
five replicates), we estimate that Kirrel3 transcripts com-
prise an extremely small proportion of the overall mRNA
content (,0.001%). Therefore, before conducting long-
read sequencing, we enriched libraries for Kirrel3 tran-
scripts. We accomplished this via a PCR amplification
step using a forward primer matching exon 2 of Kirrel3
and a universal reverse primer with the sequence AAGC
AGTGGTATCAACGCAGAGT, which was originally ligated
to all transcripts during cDNA synthesis (Fig. 1). In addition,
a unique Iso-seq library bar code was added to each sam-
ple in this step to allow for simultaneous sequencing of all
samples in a single sequencing run. We chose the target-
specific primer because exon 2 contains the start codon
required for all known and predicted Kirrel3 isoforms. We
also conducted Iso-seq on samples from 14-d-old male
and female Kirrel3 knock-out mice (Prince et al., 2013) as
sequencing and data analyses controls. We find that our
modified Iso-seq strategy using a Kirrel3-specific primer
generated datasets with a total of 1,394,974 reads includ-
ing 11,328 Kirrel3 reads (0.8%). Although Kirrel3 remains a
small part of the total dataset, we estimate that Kirrel3 tran-
scripts were enriched over 1600-fold on average compared
with whole-transcriptome libraries from brain tissue.

Four independently spliced exons and alternative C
termini generate a diversity of Kirrel3 transcripts
In our custom analysis pipeline, 85.8% of transcript

reads could be assigned to a sample based on sample-
specific barcodes (Fig. 1; Extended Data Table 1-1). The
remaining 14.2% of all transcripts either contained in-
complete or no bar code and were excluded from sub-
sequent analyses. To uncover new Kirrel3 exons, we
screened transcripts of each sample for the presence
of any known Kirrel3 sequence, including predicted in-
tron sequences (NCBI Gene ID: 67703). Consistent
with our PCR strategy to enrich for Kirrel3 transcripts
beginning at exon 2, exon 1 of Kirrel3 was absent in
our Iso-seq dataset. Moreover, hippocampal Kirrel3
transcripts neither contained predicted exons 3 and 4
(ENSEMBL genome browser, ENSMUSG00000032036),
nor previously published exon 5, but we included them in
the overall gene structure shown in Figure 2A for com-
pleteness (Fig. 2A, dashed boxes). Analysis of Kirrel3
transcripts indicates a total of 22 exons, one of which
was not previously reported (exon 10 in Fig. 2A). These
exons are alternatively spliced to generate 19 distinct
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isoforms in mouse hippocampus. Five were previously
identified and designated as Isoforms A–E. Using the
same logic, new isoforms are identified with a letter (Fig.
2B,C). Based on our data, we also estimated the fre-
quency of each isoform (Fig. 2A,B) and the cumulative
frequency of each predicted protein domain (Fig. 2D).
Kirrel3 exons found in hippocampal transcripts fall into

three groups. The first group contains constitutive exons
present in all isoforms found in the hippocampus (Fig. 2A–C,
gray boxes). The second group are exons that are either
fully included or skipped (exons 6, 18, 22). Exon 6 con-
tains a signal-peptide cleavage site and is present in
most transcripts. If exon 6 is skipped, an alternative signal
peptide is predicted. As a consequence, slightly different
extracellular N termini are generated dependent on the

presence or absence of exon 6. The third group of exons
(8, 9, 11, 13, 17, 19, and 20) are found in transcripts with
either extended or nonextended 39 ends, suggesting that
they contain two alternative 39 splice sites (Xia et al.,
2006; Keren et al., 2010; Suñé-Pou et al., 2017). In Figure
2, segments that extend an exon are labeled with the
letter “b,” the respective nonextended exons are la-
beled with “a.” If included in the transcript, six out of
the seven b segments (8b, 9b, 11b, 13b, 17b, and 20b)
introduce a stop-codon (Fig. 2A–C, white boxes) and
produce an alternative C terminus in the Kirrel3 pro-
tein. Exons 8b, 9b, 11b, 13b, 17b, and the newly identi-
fied exon 10 (Fig. 2A, asterisks) are predicted to
generate secreted proteins with different numbers of
Ig-domains (Fig. 2D). In contrast, exon 20b is predicted

Figure 1. Long-read transcript sequencing. Schematic of the long-read sequencing workflow starting with total mRNA from P14
hippocampal tissue. Pink indicates mRNA, blue cDNA, green DNA-barcodes, red raw Kirrel3 sequences, gray sequencing adapters,
and black consensus Kirrel3 sequences. Extended Data Table 1-1 reports the sequence of each bar code used.
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to generate a transmembrane protein with a short intra-
cellular domain lacking the Kirrel3 PDZ-binding domain.
Exon 19b does not produce a protein stop, but codes for 25
additional amino acids just intracellular to the transmem-
brane domain.

The vast majority of isoforms (95%) contain exon 22 and,
thus, encode transmembrane proteins with a C-terminal
PDZ-binding domain. In contrast, the alternatively generated
transmembrane protein with a short intracellular domain
lacking a PDZ-binding domain is found in just over 1% of all

Figure 2. Mouse Kirrel3 gene, transcript isoforms, and proteins. A, Genomic organization of the mouse Kirrel3 gene, with exons
(boxes) and introns (lines), including four independently spliced protein-coding exons (yellow, red, green, and blue). White boxes
mark exons or exon parts with a stop-codon. Exons producing predicted secreted Kirrel3 isoforms are additionally marked with an
asterisk. B, Alternative splicing of Kirrel3 exons is predicted to produce 13 different transmembrane isoforms. Isoforms are given let-
ters, following the example of previously identified Isoforms A–E. Isoform E, the only transcript including exon 5, was not identified
in the hippocampus. Exons 8, 9, 11, 13, 17, 19, and 20 are present in transcripts as short (part a) or extended (parts a1b) ver-
sions. Percent indicate the relative contribution of a particular Kirrel3 isoform to the total number of complete Kirrel3-tran-
scripts featuring exon 2 and poly A-tail. Exons encode protein segments that are either extracellular (“extra”), intracellular
(“intra”), or spanning the membrane (gray vertical bar). C, Six predicted secreted Kirrel3 isoforms (O–T) only comprise extrac-
ellular domains. D, Schematic of Kirrel3 protein isoforms. Percent are estimates of how frequent protein domains are present in hippo-
campal Kirrel3 based on isoform frequencies. E, Western immunoblots from hippocampi from three-week-old wild-type and Kirrel3
knock-out mice using antibodies directed against Kirrel3 amino acids 46–524 (apanK3), the peptide encoded by exon 20b (a�20b), or
house-keeping gene glyceraldehyde 3-phosphate dehydrogenase (aGAPDH). IG: Ig-domain, TM: transmembrane domain. Extended
Data Table 2-1 reports the exact sequences for each mouse and human exon as well as SRA files.
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transcripts. Together with exons 6, 18, and 19b, exon 22 is
one of four alternatively spliced exons that appear to be in-
cluded or excluded from Kirrel3 transcripts independent
from each other.
We confirmed our findings by searching published Iso-

seq transcript libraries for mouse hippocampus and other
brain regions. We found a total of 2237 Kirrel3 transcripts
distributed across 21 published mouse Iso-seq libraries
(Extended Data Table 2-1) but did not detect additional
isoforms. Finally, samples from Kirrel3 knock-out mouse
controls produced the expected 59 untranslated region
(UTR) of exon 2 followed by an eGFP coding sequence,
which is consistent with how these germline knock-out
mice were constructed (Prince et al., 2013).

Different Kirrel3 protein isoforms are found in brain
tissue
Next, we tested whether we could identify distinct Kirrel3-

protein isoforms in brain tissue. We initially focused on the
existence of isoforms with different intracellular domains be-
cause the predicted proteins can be easily resolved by size
on a Western blotting. We used a pan-Kirrel3 antibody
against the extracellular domain and an isoform-specific
antibody that selectively recognizes isoforms containing
the short intracellular domain caused by inclusion of
exon 20b. We examined immunoblots of mouse hippo-
campal lysates using the pan-Kirrel3 antibody and de-
tected two bands that run at the expected molecular
weight for full length proteins with the long and short in-
tracellular domains (Fig. 2E) in wild-type but not Kirrel3
KO tissue. We then blotted the same lysates using the
antibody specific to the short intracellular domain only
and observed a single band at the lower molecular weight.
The results of the immunoblot demonstrate that distinct
Kirrel3 isoforms can be identified in brain tissue and that
both exon 20b and exon 22 containing mRNA isoforms
give rise to proteins in the brain.

Exons 18, 20b, and 22 do not directly affect Kirrel3-
mediated homophilic cell adhesion
Homophilic, transcellular binding is necessary for Kirrel3-

mediated synapse formation (Taylor et al., 2020) and struc-
tural studies indicate that Kirrel3-Kirrel3 trans binding is
mediated predominantly by its first, most N-terminal Ig-do-
main (J. Wang et al., 2021). However, accumulating
evidence suggests that intracellular domains can allos-
terically alter the ligand-binding properties of extracellu-
lar domains, either directly by inducing conformation
changes, indirectly via additional factors, or by altering
the stoichiometric assembly of transmembrane recep-
tors (Changeux and Christopoulos, 2017; Ortiz Zacarías
et al., 2018; X. Wang et al., 2018; Lara et al., 2019).
Moreover, a disease-associated missense variant in the
intracellular domain was recently identified that signifi-
cantly attenuates Kirrel3 trans-cellular binding (Taylor et
al., 2020). Thus, we wondered whether the C-terminus
choice of Kirrel3 affects homophilic cell-adhesion using
an established in vitro cell aggregation assay. To test
this, we generated expression plasmids encoding cDNAs

for isoforms that contain exon 22 (Isoform F) or 20b
(Isoform K; Fig. 2B). By comparing Isoforms F and K, we
sought to also obtain information about whether the se-
lectively spliced extracellular domain encoded by exon 18
affects the homophilic transcellular binding of Kirrel3.
Exon 18 is present in Isoform K, but not in Isoform F. We
found that suspended cells expressing either Kirrel3
Isoform F or K readily form homophilic and heterophilic
aggregates, but control cells expressing mCherry do not
(Fig. 3A,B; Extended Data Table 3-1). We also find that
cells co-expressing Isoforms F and K aggregate (Fig. 3A,
B; Extended Data Table 3-1). Similarly, both Kirrel3 iso-
forms are significantly enriched at cell-cell junctional
membranes as compared with other membrane regions
when both contacting cells express Kirrel3 (Fig. 3C–G;
Extended Data Table 3-1). In contrast, neither membrane-
GFP nor Neuroligin (a transmembrane protein that does
not undergo homophilic binding in trans) are enriched at
cell-cell junctional membranes as compared with other
membranes (Fig. 3C–G). Of note, we confirmed that nei-
ther HEK293 nor CHO cells used in any of these assays
endogenously express detectable levels of Kirrel3 protein
(Extended Data Fig. 3-1). Together, these results show
that Kirrel3 Isoforms F and K undergo homophilic trans-
cellular binding and suggest that the inclusion or exclu-
sion of exons 18, 20b, and 22 does not directly affect the
ability of Kirrel3 to bind itself in trans.

Kirrel3 isoforms are co-expressed in situ
Next, we sought to test whether different cell types or

even individual cells express different Kirrel3 isoforms
using fluorescent mRNA in situ hybridization (FISH).
Because Kirrel3 is not an abundant transcript and
most of the alternatively spliced exons are very short,
we again focused on the two longest alternatively
spliced regions, which encode the alternative intracel-
lular domains exon 22 and 20b. We generated hybrid-
ization chain reaction (HCR) FISH probes (Choi et al.,
2018) selective to exons 22 and 20b and conducted
FISH on brain sections of P14 wild-type and Kirrel3 knock-
out tissue (Fig. 4; Extended Data Table 4-1). Consistent with
previous reports (Lein et al., 2007; Taylor et al., 2020;
Hisaoka et al., 2021), we find that Kirrel3 is expressed
specifically by DG neurons and GABA neurons in the hip-
pocampus. It is also expressed by many cells in the lat-
eral posterior nucleus (LPN) of the thalamus (Fig. 4). As
predicted by our sequencing results, exon 20b is less
abundant than exon 22, but we did not observe obvious
differences in the expression pattern of both alternatively
spliced exons. When we used both probes simultane-
ously, we found that individual DG and GABA neurons
often co-express both isoforms (Fig. 4I,J). FISH probes
to smaller exons did not yield any obvious signal. This is
likely a technical issue because Kirrel3 transcripts are
not highly expressed and the specific probes are very
short. Nonetheless, these findings argue against a cell
type-specific use of alternative intracellular domains and
suggests that most neurons express a mixture of Kirrel3
isoforms with and without a PDZ-binding domain.
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The use of independently spliced Kirrel3 modules is
expanded in Hominidae
To examine the extent to which our findings for mouse

Kirrel3 isoforms apply to humans, we searched publicly avail-
able human brain Iso-seq libraries for reads containing Kirrel3
exon 2 (ENSEMBL genome browser, ENSG00000149571)
and identified a total of 1365 transcripts distributed across
19 published libraries. Similar to our strategy for mouse, we
screened the identified transcripts for the presence of any
Kirrel3 gene sequence (NCBI Gene ID: 84623), including

predicted intron sequences. The screen revealed three
human Kirrel3 exons and one exon extension not previ-
ously reported (Fig. 5A). The human Kirrel3 gene has 21
exons and five alternative C termini, appears slightly more
compact than that of the mouse, and does not contain
any exons with homology to predicted mouse exons 3–5.
Nevertheless, humans have orthologues to the four alter-
natively spliced mouse Kirrel3 protein coding exons (Fig.
5A,B). This includes an alternative signal peptide, inser-
tions just before and after the transmembrane domain,
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Figure 3. Homophilic binding of Kirrel3 isoforms. A, Example of the CHO-cell aggregation assay. CHO cells are expressing mCherry
(mCh) or GFP as a control, GFP-2A-Kirrel3F (K3F), mCherry-2A-Kirrel3K (K3K) or both Kirrel3 isoforms. B, Quantification of CHO
cell aggregation assays. N¼3 independent trials for each condition. Error bars ¼ SEM p¼ 0.003 for a one-way ANOVA and
***p, 0.001 for each pairwise post-test comparison with the control condition. C, Diagram of the cell junction assay in adherent
HEK293 cells. D, Example of the cell junction assay. Note that Kirrel3F and Kirrel3K are both highly enriched in the cell-cell junction, but
the control proteins, membrane bound GFP (mGFP) and Neuroligin-1 (Nlg1), are not. E, F, Quantification of the adherent cell junction
assay. E, Bar graphs and error bars indicate SEM. Each dot indicates a cell and each color denotes cells from an independent culture.
One-way nested ANOVA indicates p, 0.001 and **p, 0.01 from pairwise post-tests. F, Same data but graphed as a mean estimation
plot with error bars showing SD, indicating that Nlg1 and mGFP are significantly different from Kirrel3F and Kirrel3K. G, Example image
showing that K3F and K3K cluster heterophilically in junctions when they are expressed in different cells.
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and a short intracellular domain that lacks a PDZ-binding
domain. Humans also have Kirrel3 isoforms with a com-
pletely new insertion (exon 19a) that adds 30 unique amino
acids to the intracellular domain. Intriguingly, across all se-
quenced genomes a homolog to exon 19a was found only
in other great apes (including chimpanzees, orangutans,
and gorillas), both based on nucleotide and amino acid se-
quence. Moreover, our search revealed a total of 9 human
Kirrel3 transcript isoforms predicted to encode different
proteins, including three forms of secreted Kirrel3 (Fig. 5B,
C). The transcript isoforms are designated with a number
following the nomenclature of the previously identified

isoforms 1–3. Because Kirrel3 transcripts are relatively
rare, it is likely that more human isoforms can be found
in the future with deeper and targeted sequencing.
Nonetheless, we probed lysates prepared from post-
mortem human prefrontal cortex tissue with an anti-
Kirrel3 antibody that recognizes the longest form of
Kirrel3 and find evidence that the protein is expressed
in human brain (Fig. 5D).
Kirrel3 variants may be risk factors for autism spectrum

disorder and intellectual disabilities in humans and we
wondered whether identified disease-associated variants
are located in specific exons or protein coding domains.

Figure 4. In situ detection of exons 20b and 22. A, Schematic of a coronal section through the hippocampus. Red boxes mark
areas imaged in B-H. DG; dentate gyrus, LPN; lateral posterior nucleus of thalamus. B–H, Magnified images of regions shown in A
that were hybridized with mRNA in situ probes for GAD1 (red) to mark GABAergic neurons, Kirrel3 exon 22 or 20b (white) as indi-
cated to mark specific Kirrel3 isoforms, and the nuclear stain Hoechst (blue). B, Kirrel3 knock-out tissue produces no Kirrel3 mRNA
signal using the larger exon 22 probe. C, D, Exon 22 and 20b transcripts are detected in DG neurons of wild-type mice. E, F, Exon
22 and 20b transcripts are detected in GABAergic neurons (white circles) in area CA3 of wild-type mice. G, H, Exon 22 and 20b
transcripts are detected in the LPN of wild-type mice. I, J, Simultaneous use of probes for exon 22 and 20b indicate that individual
neurons often express both isoforms. Extended Data Table 4-1 reports the HCR probe sets used.
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We searched the SFARI database (Banerjee-Basu and
Packer, 2010; Abrahams et al., 2013) and the literature for
Kirrel3 missense mutations associated with autism or in-
tellectual disabilities (Bhalla et al., 2008; De Rubeis et al.,
2014; Iossifov et al., 2014; T. Wang et al., 2016; Yuen et
al., 2016; Li et al., 2017; Kalsner et al., 2018; Guo et al.,
2019; Leblond et al., 2019; Hildebrand et al., 2020; Taylor
et al., 2020; Zhou et al., 2022). Out of the 25 mutations
with the strongest predicted association to disease (Fig.
5E), the majority (15) are within the Kirrel3 Ig-domains 2–5.
Interestingly, no mutation with a strong disease link was
found in the N-terminal Ig-domain despite its prominent
role in homophilic transcellular binding. The remainingmuta-
tions are found in one of the alternatively spliced protein
modules coded by exon 3 (three mutations), exons 16 and
17c (one mutation each), and exon 21 (five mutations), sug-
gesting important roles for these exons in Kirrel3 function.

Independently spliced Kirrel3 modules appear at
branch points in the chordate phylogenetic tree
Inspired by the identification of an alternatively spliced

Kirrel3 exon only present in humans and their closest liv-
ing relatives, we examined the presence of all five alterna-
tively spliced protein coding Kirrel3 segments using both

nucleotide and amino acid-based searches across all
published genomes. PDZ-binding domain coding exon 22
of mice first appears in combination with the Ig-domains
characteristic for Kirrel3 in chordates that evolved over 500

Figure 6. Phylogenetic tree of Kirrel3. The independently
spliced protein-coding exons (yellow, red, green, purple, and
blue as indicated in figure 5) that produce the Kirrel3 isoform
variety first appear at branching points in chordate evolution.

Figure 5. Human Kirrel3 gene, transcript isoforms, and proteins. A, Genomic organization of the human Kirrel3 gene, with exons (boxes)
and introns (lines), including five independently spliced protein-coding exons (yellow, red, green, purple, and blue). White boxes mark
exons or exon parts with a stop-codon. Exons producing predicted secreted Kirrel3 isoforms are additionally marked with an asterisk. B,
Alternative splicing of Kirrel3 exons is predicted to produce eight different transmembrane isoforms. Isoforms are given numbers, follow-
ing the example of previously identified isoforms 1–3. White boxes indicate exons or exon parts with stop-codon. Exons encode protein
segments that are either extracellular (“extra”), intracellular (“intra”), or spanning the membrane (gray vertical bar). C, Three predicted se-
creted Kirrel3 isoforms (9–11) only comprise extracellular domains. D, Western blot showing that Kirrel3 protein containing human exon
21 is found in brain lysates prepared from male and female postmortem tissue (see methods). Mouse wildtype (WT) and knockout (KO)
lysates are used as a positive and negative control. E, Schematic of Kirrel3 proteins with the position of protein domains relative to the
membrane (horizontal gray bar) and mutations associated with autism. IG: Ig-domain, TM: transmembrane domain.

Research Article: New Research 10 of 13

December 2023, 10(12) ENEURO.0253-23.2023 eNeuro.org



million years ago (Holland, 2005; Fig. 6). Mouse exon 6, cod-
ing for the Kirrel3 N terminus with a cleavable signal peptide
first appears in amniotes, a clade that marks the transition of
tetrapods from aquatic to terrestrial habitats ;300 million
years ago (Benton and Donoghue, 2007). Mouse exons 18
and 19b, both encoding protein segments in juxtaposition to
the transmembrane domain, first appear together in placen-
tal mammals which evolved in the late cretaceous around
90 million years ago (O’Leary et al., 2013). Finally, human
exon 19a and its orthologues appear to be the latest addi-
tion to Kirrel3 ;12–16 million years ago when the last com-
mon ancestor of all great apes lived (Chen and Li, 2001).

Discussion
Here, we detect an extensive repertoire of Kirrel3 mRNA

isoforms in the mouse brain using a modified long-read se-
quencing strategy that substantially enriched Kirrel3 tran-
scripts in the dataset. Gene-specific enrichment was an
essential prerequisite to discover the extensive alternative
splicing of Kirrel3, because expression of this target recog-
nition molecule is inherently sparse and is often limited to a
subset of cell types within a tissue. Consequently, we find
that bulk and single cell sequencing datasets generally
contain limited reads of Kirrel3 transcripts. Moreover, se-
quencing full-length transcripts was necessary because
classic next generation sequencing generates only short
reads that identify single or few exons, but not complete
exon contigs. The use of long-read sequencing is particu-
larly important for transcripts arising from exon-rich genes
like Kirrel3 which features more than twice the exon count
of the average gene in both mouse and human (Sakharkar
et al., 2004). Because of the relatively high Kirrel3 exon
count, it is not surprising that Kirrel3 isoform diversity
arises from many different types of splicing events includ-
ing, exon skipping, alternative 39 exon splicing (mouse and
human), and alternative 59 exon splicing (human). These
three forms of alternative splicing occur at frequencies for
Kirrel3 that roughly match the proportions typical for mam-
malian splice events (38% exon skipping, 18% alternative
39 splicing, 8% alternative 59 splicing; Koren et al., 2007).
Importantly, we provide evidence that even rare Kirrel3

isoforms present in our full-length transcript dataset make
detectable levels of mRNA and protein in the mouse brain.
For example, exon 20b is present in only ;1% of Kirrel3
transcripts, yet we can detect both the corresponding
mRNA and protein in brain tissue using a selective in situ
probe and antibody, respectively. Moreover, we demon-
strate that exon 20b-containing transcripts give rise to
proteins. Inclusion of exon 20b produces a Kirrel3 variant
characterized by a truncated intracellular domain lacking
the PDZ-binding domain typical for Kirrel3 and present in
95% of all isoforms. Despite the truncated tail, Kirrel3 iso-
forms with exon 20b are still capable of transcellular homo-
philic binding and can mediate cell-adhesion. The case of
Kirrel3 exon 20b illustrates how the study of alternative
splicing of synaptic receptors can directly instruct future
studies. For example, it would be important to examine
how Kirrel3 proteins with truncated tails alter and modulate
the function of Kirrel3 isoforms with PDZ-binding do-
main in forming and maintaining synapses. Addressing

this question would also shed new light on how neurons
use PDZ-domains, a motif present in various scaffold-
ing proteins known to organize and structure synapses.
In a similar vein, it will be important to study the function

of secreted Kirrel3 isoforms that, together, constitute an
estimated 4% of isoforms. Secreted Kirrel3 isoforms fea-
ture one or more Ig-domains and, thus, are predicted to
undergo homophilic binding. It is possible that secreted
Kirrel3 binds and sequesters transmembrane Kirrel3 var-
iants and prevents their normal function in trans-cellular
binding and signaling. Alternatively, secreted Kirrel3 could
activate transmembrane Kirrel3 and trigger intracellular sig-
nals that are independent of cell-to-cell contact. Another
key finding of the present study is that Kirrel3 alternatively
uses several protein-coding exons (exons 6, 18, 19, and 22
in mouse) that fall on both the extracellular and intracellular
sides of the protein. Other than the C-terminal PDZ-binding
domain present in exon 22, the function of the other pro-
tein-coding exons remains unknown. However, it is rea-
sonable to assume they are essential for Kirrel3 activity
because mutations in the equivalent human domains are
associated with disorders. Moreover, these domains first
appear at critical branching points in chordate evolution. In
this context, the newly discovered intracellular Kirrel3 exon
encoding 30 amino acids present only in humans and other
great apes is of particular interest as it could serve a syn-
apse-related function unique to Hominidae.
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