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Abstract

Background: Patients with immunodeficiencies commonly experience

diagnostic delays resulting in morbidity. There is an unmet need to identify

patients earlier, especially those with high risk for complications. Compared to

immunoglobulin quantification and flowcytometric B cell subset analysis,

expanded T cell subset analysis is rarely performed in the initial evaluation of

patients with suspected immunodeficiency. The simultaneous interpretation

of multiple immune variables, including lymphocyte subsets, is challenging.

Objective: To evaluate the diagnostic value of cluster analyses of immune

variables in patients with suspected immunodeficiency.

Methods: Retrospective analysis of 38 immune system variables, including

seven B cell and sixteen T cell subpopulations, in 107 adult patients (73 with

immunodeficiency, 34 without) evaluated at a tertiary outpatient immunology

clinic. Correlation analyses of individual variables, k‐means cluster analysis

with evaluation of the classification into “no immunodeficiency” versus

“immunodeficiency” and visual analyses of hierarchical heatmaps were

performed.

Results: Binary classification of patients into groups with and without

immunodeficiency was correct in 54% of cases with the full data set and

increased to 69% and 75% of cases, respectively, when only 16 variables with

moderate (p< .05) or 7 variables with strong evidence (p< .01) for a difference

between groups were included. In a cluster heatmap with all patients but only

moderately differing variables and a heatmap with only immunodeficient

patients restricted to T cell variables alone, segregation of most patients with

common variable immunodeficiency and combined immunodeficiency was

observed.
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Conclusion: Cluster analyses of immune variables, including detailed

lymphocyte flowcytometry with T cell subpopulations, may support clinical

decision making for suspected immunodeficiency in daily practice.
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1 | INTRODUCTION

The knowledge of genetically determined diseases of the
immune system has increased tremendously in the last
two decades, with almost 500 entities being recognized
today.1 Immunodeficiencies (IDs) are heterogeneous
diseases characterized by reduced immunocompetence.
They can be classified into primary ID (PID), which is
genetically determined, and secondary ID, which is
driven by exogenous factors such as immunosuppressants
or malignancy.2 Also, secondary ID has been demon-
strated in patients with yet undiagnosed PID.3 In addition
to increased susceptibility to infections, PID patients
often have associated autoimmunity, autoinflammation
and/or polyclonal lymphoproliferation (enlarged spleen
and lymph nodes). Therefore, the term “inborn errors of
immunity” (IEI) is now often preferred over PID.1,4 The
reduced costs of next‐generation sequencing has paved
the way for the rapid increase in known entities of IEI,
with the bottleneck now being the thorough validation of
the many variants of unknown significance identified.5

Secondary IDs are also becoming more prevalent, mainly
due to increases in targeted immune‐modulating treat-
ments and clinical prescriptions. Timely diagnosis of ID
and targeted immune‐modulation by an increasing array
of available pharmacotherapeutics, such as Janus‐kinase‐
inhibitors, can prevent complications and improve quality
of life.6,7 ID and IEIs remain underdiagnosed, especially
in adults.8,9 While genetic diseases are considered
promptly in children, this is often not the case in adults.
This could be due to a lack of awareness of late
presentations of IEI, multisystemic manifestations of IEIs
or the growing number of adult‐onset phenocopies of IEI
due to cytokine‐neutralizing autoantibodies or somatic
mutations.10,11 Clinical scoring systems as diagnostic aids
have been developed and diagnostic algorithms proposed,
but diagnostic accuracy remains unsatisfactory.12,13 While
for the most frequent IEI category in adults, IEI with
predominantly antibody deficiencies, the screening tests
seem relatively straightforward (immunoglobulin levels,
response to vaccinations), the diagnostic procedures for
other categories of IEI are more complex.12 Also, most
genetic studies in PID have a limited diagnostic yield,

varying between 15% and 30%, with lower yields in
adults.14–16 Lymphocyte flowcytometry (LFC) of periph-
eral blood is a readily available diagnostic tool and is
becoming increasingly important in diagnosing IEI.17–20

The results of a recent Egyptian study of more than a
thousand pediatric patients support the value of LFC for
IEI diagnosis: with a very detailed LFC protocol,
including protein expression assays, 73% of patients with
an IEI could be diagnosed.17 Reference values for
lymphocyte subsets for different age groups have been
published.20–25 Elevation or specific absence of lymphoid
cells or proteins within cells detected by flowcytometry of
peripheral blood can sometimes suggest a specific IEI
entity. Examples include autoimmune lymphoprolifera-
tive syndrome (ALPS) or specific forms of hereditary
hemophagocytic lymphohistiocytosis such as perforin
deficiency.19,26 As LFC is expensive, an initial typical
screening panel in most clinics is limited to an enumera-
tion of natural killer (NK) cells, B cells (often including
memory B cells) and T cells with limited subsets (i.e.,
total CD4+ and CD8+ T cells). Further differentiation of
T cells into functional subpopulations is only performed
routinely in a minority of PID centers. International
efforts have been made to standardize extended LFC
investigations in suspected lymphoid PID (EuroFlow
Consortium, PID Orientation Tube [PIDOT]), allowing
comparison of results between centers.20,27 While PIDOT
(identifying >20 blood leukocyte (sub)populations with
12 markers), is undoubtedly a significant step forward in
the diagnostics of PID and IEI, it is limited to laboratories
that have implemented its use. Also, its algorithm
does not include other non‐flowcytometric immune
variables typically measured during work‐up of ID, such
as immunoglobulins.27 Measurement and correlation of
T cell subpopulations with other immune system markers
in routine daily practice remains scarce.27,28 To what
extent T cell subpopulations correlate with other labora-
tory variables, such as serum immunoglobulins, myeloid
cells, and B cell subpopulations and whether these
variables are of redundant or additive value for disease
classification (presence or absence of ID), remains ill
defined. To further investigate these aspects, we eval-
uated T cell subpopulations in the peripheral blood of 107
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individuals and correlated them with each other, with
age, and with a complete set of routine immune‐
laboratory variables. Unsupervised clustering was used
to evaluate multiple variables, clinical ID sub‐entities and
the classification into immunodeficient versus immuno-
competent individuals.

2 | METHODS

The study was approved by the local institutional review
board (ethics committee Nordwest‐ und Zentralschweiz,
Switzerland, approval number 2017‐02029).

2.1 | Study population

The following individuals were consecutively included
in this retrospective analysis: adult individuals assessed
at the Immunodeficiency Clinic of the University
Hospital Basel, Switzerland, between November 2015
and November 2017, in whom peripheral blood T cell
subsets had been analyzed and who gave written
informed consent. The following data were collected
retrospectively by individual chart review: clinical
diagnosis, age, sex and immunologic laboratory vari-
ables. In patients receiving immunoglobulin replace-
ment therapy, IgG and IgG subclass values before its
start were used for analysis. The clinical diagnosis was
determined according to the ESID definitions, where
available, by the last author (MR), who has extensive
experience with IEI and ID. A total of 107 individuals
were identified: 34 (32%) were considered immuno-
competent (No‐ID), and 73 (68%) were given a diagnosis
of ID. The ID group consisted of four subgroups
containing ≥ 5 individuals: selective IgG subclass defi-
ciency (n= 29); common variable immunodeficiency
(n= 10); combined immunodeficiency (n= 8) and auto-
inflammation (n= 8). The remaining diagnostic entities
were multiple autoimmunity without antibody defi-
ciency (n= 4); selective IgA deficiency (n= 3); secondary
antibody deficiency (n= 2); T‐cell large granular lym-
phocytic leukemia, stiff person syndrome, persistent
polyclonal B cell lymphocytosis, monoclonal B cell
lymphocytosis, isolated CD4+ lymphopenia, monoclonal
gammopathy, autoimmune lymphoproliferative syn-
drome, antibody deficiency (not further specified), and
immunodeficiency (not further specified) (each n= 1
[9 in total]). More than 90% (66/73) of patients in the ID
group were classified as PID/IEI. Age was equally
distributed between the groups (mean age 43.5 (No‐ID)
and 45.6 (ID)) and there were 59% versus 71% female
individuals in the No‐ID versus ID groups, respectively.

2.2 | Flowcytometry and gating strategy

LFC was performed as part of the initial diagnostic
workup. T cell subpopulations were characterized using
a sequential gating strategy (Figure E1). In a first step,
single events were identified using FSC‐H/FSC‐A profile.
Further analysis of lymphocytes was done using a
combination of CD45 expression and SSC/FSC propert-
ies. Within the CD45+ cells, T cells were defined as
CD3+ cells and subdivided into CD4+ and CD8+ T cells
based on the expression of the respective marker.
Presence of CCR7, CD45RA or CD45RO was used to
further discriminate CD8+ and CD4+ T cells into the
following T cells subpopulations; CD8_Naïve (CD45RA
+, CD45RO−, CCR7+), CD8_CM (CD45RA−, CD45RO
+, CCR7+), CD8_EM (CD45RA−, CD45RO+, CCR7−),
CD8_TEMRA (CD45RA+, CD45RO−, CCR7−) and
CD4_Naïve (CD45RA+, CD45RO−, CCR7+), CD4_CM
(CD45RA−, CD45RO+, CCR7+), CD4_EM (CD45RA−,
CD45RO+, CCR7−), CD4_TEMRA (CD45RA+, CD45RO
−, CCR7−). Within the CD4+ T cells, CD25 and CD127
profiles were used for identification of CD4_Treg
(CD25+ CD127 low). Within the CD4+ CD45RA+
CD45RO− T cells, CD31 and CXCR5 surface expression
were used to characterize CD4_RTE (CD45RA+,
CD45RO−, CD31+) or CD4_FH (CD45RA+, CD45RO
−, CCR7+, CXCR5+), respectively. Activated CD4+ and
CD8+ T cells were identified based on the expression of
HLA‐DR (CD4_act [CD4+ HLA‐DR+] and CD8_act
[CD4− HLA‐DR+]). B cells were defined as CD19+ cells
within the CD45+ cells. Using surface expression profiles
of IgM, IgD, CD27 and CD38, B cell subpopulations were
further discriminated into the following entities: B_Naïve
(IgD+, CD27−), B_MZ (IgD+ CD27+), B_Mem (IgD−,
IgM−, CD27+), B_Trans (IgM+++, CD38+), B_Plasm
(IgM−, CD38 + ), CD21_low (CD21low, CD38−).
(Table 1).

2.3 | Statistics

R version 4.2.0 (R Core Team, 2022) was used for all
analyses and plots. Laboratory values below the lower
limit of detection (LOD) for a given marker were set to
LOD/2 for the analysis. For each laboratory immune
variable and age, the Wilcoxon rank‐sum test was used to
compare the No‐ID and the ID groups; p values of <.1,
<.05, and <.01 were interpretated as evidence for weak,
moderate, and strong difference between groups. Age
and a total of 38 different laboratory variables were
analyzed. In addition to the 19 T and B cell subclasses
described in Table 1, the following 19 variables were
analyzed: absolute cell counts of total T cells, CD4+ and
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CD8+ T cells, total B cells, NK cells, leukocytes,
neutrophils, lymphocytes, monocytes, eosinophils, and
basophils; IgG, IgA, IgM, IgE and IgG subclasses (IgG1,
IgG2, IgG3, IgG4). We included relative (percentage) and
absolute values for five variables (total T‐cells, CD4+
T cells, CD8+ T cells, total B cells, and NK cells) only for
the correlation maps and boxplots. For cluster analyses,
only the absolute values of these five variables were
considered to include each cell type/subclass only once.
Spearman's r was used for the correlation of variables.
The strength of correlation was interpreted as follows
(correlation coefficient r): +/− 0 – 0.19 = very weak, +/−
0.2 – 0.39 =weak, +/− 0.4 – 0.59 =moderate, +/−
0.6 – 0.79 = strong, +/− 0.8 – 1 = very strong.29

For cluster analysis of 37 laboratory variables,
missing values (176/3959 = 4.4%) were imputed by
nonparametric imputation using random forests.
Because IgE values were missing in 37% of patients,
IgE was excluded from the cluster analysis. Clustering

tendency was assessed with the Hopkins statistics (values
close to 1 demonstrate nonuniform distribution) for each
data set separately.30 The average Silhouette width
method was used to estimate the optimal number of
clusters for each data set separately.30 Different cluster-
ing methods were used for two main different objectives.

K‐means clustering was performed to assess whether
grouping patients into clusters of ID versus No‐ID is
possible based on different sets of immune variables. The
corrected (adjusted) Rand index was calculated to
quantify the agreement of the k‐means clustering with
the clinical classification (ID vs. No‐ID) (range: −1 (no
agreement) to 1 [perfect agreement]).30 The McNemar's
test was used to compare the correct allocation into two
clusters (ID vs. No‐ID) between different sets of variables
(p< .05 regarded as significant). K‐medoids clustering
with the “partitioning around medoids” algorithm was
used in a sensitivity analysis because it is robust to
outliers.30

TABLE 1 Subsets of T and B cells.

T cells B cells

Subset CD4+ Abbreviation* Cell surface marker Subset Abbreviation* Cell surface marker

Naïve CD4_Naïve CD4+, CD45RA+, CD45RO
−, CCR7+

Naïve B_Naïve IgD+, CD27−

Central memory CD4_CM CD4+, CD45RA−, CD45RO
+, CCR7+

Transitional B_Trans IgM+++, CD38+

Effector memory CD4_EM CD4+, CD45RA−, CD45RO
+, CCR7−

Plasmablast B_Plasm IgM−, CD38+

Terminally differentiated CD4_TEMRA1 CD4+, CD45RA+, CD45RO
−, CCR7−

CD21_low B_CD21lo CD21 low, CD38−

Recent thymic emigrants CD4_RTE CD4+, CD45RA+, CD45RO−,
CCR7+, CD31+

Marginal zone B_MZ IgD+, CD27+

Follicular helper CD4_FH CD4+, CD45RA−, CD45RO+,
CXCR5+

Memory B_Mem IgD−, IgM−, CD27+

Activated CD4_Act CD4+, HLA‐DR+

Regulatory CD4_Treg CD4+, CD25+, CD127 low

Subset CD8+

Naïve CD8_Naïve CD8+, CD45RA+, CD45RO
−, CCR7+

Central memory CD8_CM CD8+, CD45RA−, CD45RO
+, CCR7+

Effector memory CD8_EM CD8+, CD45RA−, CD45RO
+, CCR7−

Terminally differentiated CD8_TEMRA CD8+, CD45RA+, CD45RO
−, CCR7−

Activated CD8_Act CD8+, HLA‐DR+

Note: *This is the abbreviation used in the figures and the text.

Abbreviation: TEMRA, T cell effector memory re‐expressing CD45RA.
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Hierarchical clustering was performed to allow for
visual analysis of the data. For cluster heatmaps, scaling
was applied to rows, rows were clustered using correla-
tion distance and complete linkage, and columns were
clustered using Euclidean distance and complete link-
age.30 The cluster heatmaps were visually assessed and
the height for cutting the dendrograms chosen accord-
ingly. The distribution of No‐ID versus ID cases and
clustering of the ID subentities e.g., IgA deficiency, was
also assessed visually. Principal components analysis
(PCA) was used for an additional descriptive visualiza-
tion of clusters from the hierarchical clustering. For
hierarchical clustering, the agreement with the clinical
classification (No‐ID vs. ID) was not assessed statistically.

3 | RESULTS

For 7/43 (16%) laboratory immune variables there was
strong evidence (p< .01) for a difference between the No‐
ID versus the ID group: total T cells, total CD4+ T cells
(per µl); B_Mem (percentage of total B cells); IgG, IgG2,
IgG4, IgA (g/L). For additional 11 variables, there was at
least moderate evidence for a difference (p< .05) (total of
18/43 [42%] variables): total T cells (percentage of
lymphocytes); CD4_Naïve, CD4_EM, CD4_RTE,
CD4_Act (all percentage of total CD4+ T cells); total
CD8 + T cells (per µL); total lymphocytes, basophils (per
L); IgG1, IgG3 (g/L); IgE (IU/ml). For additional five
variables, there was at least weak evidence for a
difference (p< .1) (total of 23/43 (53%) variables): total
CD4+ T cells (percentage of lymphocytes); CD4_FH,
CD8_Naïve (percentage of total CD4+ or CD8+ T cells);
B_Naïve, B_Plasm (percentage of B cells). Although 7 of
the 18 moderately differing variables (39%) are immu-
noglobulins, only for one B cell variable moderate
evidence for a difference between groups was found.
This is contrasted by eight T cell variables, including 6 T
cell subsets (5 × CD4+, 1 × CD8+), demonstrating mod-
erate evidence (p< .05) for a different distribution.
Descriptive statistical values for each of the 43 laboratory
variables and age are listed in Table E1 and Table E2,

depicted as boxplots for each variable separately for both
diagnostic groups.

For the No‐ID group, the following correlations of age
versus T cell subsets and total T cells were notable
(Figure 1): for CD4_RTE and CD8_Naïve, a moderate to
strong negative correlation (r =− 0.57 and − 0.69), for
CD4_Naïve a weak negative correlation (r =− 0.37) and
a moderate and strong positive correlation for CD4_Act
and CD8_EM (r = .48 and 0.6). Further correlations of
T cell subsets and other immune system variables are
shown in Figure E2–E7 and summarized in Text E1.

Cluster analyses were used to examine multivariate
relationships. The dichotomous classification of No‐ID
and ID patients into clusters was examined for multiple
sets of variables (Table 2). Hopkins H showed clusterable
data for each set using a threshold of 0.5. The optimal
number of clusters was two for all datasets except for a
set containing only B cell variables. Compared with
58/107 (54.2%) for the full data set, datasets limited to
moderately and strongly differing variables correctly
classified 74/107 (69.1%) and 80/107 (74.8%) of patients,
respectively, which was significantly better for the latter.
One cluster contained 91% and 96% ID patients for the
datasets including moderately or strongly differing
variables, respectively. This indicates that at least for a
subset of ID patients, a very good separation was
achievable. For the two best‐performing data sets,
exclusion of T cell variables was assessed and compared
(Table 2). The proportions were numerically slightly
lower, but not reaching statistical significance compared
to the data set including T cell subpopulations. Explora-
tively, data sets without the seven patients with likely
secondary ID were also assessed; there was no relevant
difference to the full data set (Table 2, last to rows).
Again, a significantly better classification was found
when only strongly differing variables were included.
The results from the sensitivity analysis of k‐means
versus k‐medoids are shown in Table E3. As the
proportions for correct binary classifications were very
similar, k‐medoids was not pursued further.

Hierarchical cluster heatmaps were visually analyzed
to simulate a possible scenario for clinicians in terms of

FIGURE 1 Correlation heatmap of T cell subsets and age. abs, absolute; ID, immunodeficiency; TC, T cells. Abbreviations for T cell
subsets see Table 1. Color scale: Spearman's correlation coefficient r (−1 to 1).
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time and effort in daily practice. The full data set showed
limited clustering of No‐ID versus ID cases and of ID
subentities. (Figure 2) The red and blue categories appear
to be distributed randomly, and apart from CVID and
CID patients with high Z‐scores in the upper right
corner, it is difficult to visually identify reasonable
clusters of ID subentities. The distribution of ID and
No‐ID cases visually appears similarly random in a
cluster heatmap of a data set including only T cell subsets
(Figure E8A); the accompanying PCA shows highly
overlapping clusters (Figure E8B).

As k‐means clustering showed a better performance
for datasets limited to moderately or strongly differing

variables, hierarchical cluster heatmap for these datasets
were also assessed (Figure 3A,B). Visually, clusters of ID
subgroups could here be discerned. Clustering of CVID
or CID cases is more apparent in Figure 3A than in
Figure 3B. The cluster on the far right in Figure 3A
contains 80% of CVID cases. A PCA depicting the visually
chosen clusters from the column dendrogram in
Figure 3A is shown in Figure E9. Clusters containing
most No‐ID individuals (clusters 2 and 4) have little
overlap with clusters containing predominantly indivi-
duals from the ID group.

To evaluate whether a limitation to ID cases would
enhance clustering of ID subentities, different sets of

TABLE 2 Overview of k‐means cluster analysis of different data sets.

Patients
included Variables included Hopkins H

Optimal
number of
clustersa

No‐ID/ID cases
per cluster

Correctly
classified

Corrected
Rand index

McNemar's
test
(p value)

All 107 All 37 variables 0.827 2 C1 33/57
C2 1/16

54.2% −0.06 n.a.

All 107 20 (with weak evidence for
difference between
groups [p< .1])

0.733 2 C1 3/30
C2 31/43

57.0% −0.01 .834b

All 107 16 (with moderate evidence for
difference between
groups [p< .05])

0.827 2 C1 4/44
C2 30/29

69.1% 0.14 .085b

All 107 10 (with moderate evidence for
difference between groups
[p< .05], but no T cell
subsets)

0.701 2 C1 2/42
C2 32/32

68.2% 0.12 .106b

1.0c

All 107 7 (with strong evidence for
difference between
groups [p< .01])

0.703 2 C1 2/48
C2 32/25

74.8% 0.24 .014b

All 107 5 (with strong evidence for
difference between groups
[p< .01], but no T cell
subsets)

0.758 2 C1 3/48
C2 31/25

73.8% 0.22 .015b

1.0c

All 107 7 (only B cell variables) 0.908 4 C1 12/19; C2 17/2;
C3 5/32; C4 0/1

n.a. n.a. n.a.

All 107 16 (only T cell variables) 0.723 2 C1 2/25
C2 32/48

53.3% −0.03 1.0b

100 (no
secondary)

All 37 variables 0.714 2 C1 33/52
C2 1/14

53.0% −0.05 n.a

100 (no
secondary)

7 (with strong evidence for
difference between
groups [p< .01])

0.726 2 C1 2/44
C2 32/22

76.0% 0.26 .006d

Abbreviations: C, cluster; ID, immunodeficiency; n.a., not applicable.
aAs defined by average Silhouette method.
bCompared to data set with all 107 patients and all 37 variables.
cCompared to data set including the T cell subsets.
dCompared to data set with 100 patients and all 37 variables.
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variables and the resulting hierarchical cluster heat-
maps were again visually assessed (Figure 4A‐C). For
the data set including only T cell variables, it was
possible to visually identify clinically meaningful
clusters (Figure 4B). For the datasets with all variables
or only B cell variables, this was difficult with multiple
clusters only containing 1–2 patients (Figure 4A,C).
The clustering of ID subentities seems limited and at
random with the data set including only B cell
variables (Figure 4C). In contrast, the clustering using
T cell variables only (Figure 4B) shows ID subgrouping
with a large cluster of IgG subclass‐, IgA‐ and other
antibody deficiencies (approx. 80% of the second
cluster from the right) and two clusters consisting of
CVID and CID (second and third cluster from the left).
The corresponding PCA is shown in Figure E10, which
sets apart two clusters containing the majority of CVID
and CID patients.

Highly correlated individual variables (as identi-
fied in the correlation maps) are mostly identifiable in
the multivariate clustering (rows in Figure 2), but
clusters with variables that show weak individual
correlations were also identified (e.g., CD4/8_CM and
CD4_Treg).

4 | DISCUSSION

In our study, we aimed to evaluate relationships between
lymphocyte subsets, particularly T cells, and other
immune variables and to investigate the characteriza-
tion/classification of adult individuals screened for
ID/PID using cluster analyses and whether this could
assist clinical decision making in daily practice.

The correlation heatmaps and the cluster heatmap
(Figure 2) depict some well‐established relationships of
immune variables, even in the whole data set. The
observed correlations with age (negative for CD4_RTE
and CD4/8_Naïve, positive for CD4_Act and CD8_EM),
likely reflect the thymic output of naïve T cells
decreasing with age and activation of T cells associated
with ageing and senescence.25,31,32 This was in keeping
with a negative correlation of CD4_Treg with age in the
No‐ID group.25,33 Some of these age correlations were
much weaker or even inverted within the ID group
(e.g., CD4_TEMRA). An explanation of these findings
might be premature senescence, chronic T cell
activation or reduced thymic function enriched in
ID.31,33–36 IgM forms a cluster with B_MZ, which are
important producers of IgM in vivo, while the other

FIGURE 2 Cluster analysis of 37 laboratory variables from 107 patients with and without immunodeficiency: abs, absolute; CVID,
common variable immunodeficiency; ID, immunodeficiency; NK, natural killer; TC, T cells. Abbreviations for B and T cell subsets see
Table 1. Color scale: Z‐scores.
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immunoglobulins clustered with B_Mem.37 IgE levels
were moderately negatively correlated to CD4_FH in the
ID group, in line with elevated IgE in the absence of
cognate T cell help.38 CD4_FH are also known producers
of IL‐21, which inhibits IgE production.39–41 Consis-
tently, IL‐21R deficient patients often have elevated IgE
levels and loss of STAT3 signaling downstream of IL‐21R
is associated with hyper IgE syndrome.42–44 While an
expansion of CD4_FH in the specific ‘IgG4‐related
disease’ entity has been described, a weak negative
correlation was present in the ID group (Figure E7).45

CD4_FH are often expanded in peripheral blood in CVID
complicated by autoimmune cytopenia, related to
increased endotoxemia in these patients.46 A relative
increase in CD4_FH in CVID patients was well
appreciated in the multivariate clustering
(Figure 4A,B). The clustering of CD4_FH, CD4_EM
and B_CD21lo is driven by a cluster of CVID and CID
with highly positive Z‐Scores in these variables
(Figure 2). The correlation of CD4_FH and B_CD21lo
was previously described in CVID and has been recently
reviewed.47,48 B_CD21lo were described in patients with

various IEI, especially those with lymphoproliferation.49

Recently, it has been shown that B_CD21lo express and
require the transcription factor T‐bet for their generation
and are promoted by interferon‐γ.48,50 In CVID, T and B
cell dysregulations correlate with autoimmune cytope-
nias or polyclonal lymphoproliferation.34,51–54 Together
with a reduction of class‐switched B_Mem and elevated
CD4_FH, an elevation of B_CD21lo helped differentiate
primary from secondary hypogammaglobulinemia.55

Multivariate analyses are suitable for assigning
patients to diagnostic groups. However, prior evidence
on this approach in patients with suspected PID is
limited. Attardi et al. used PCA of T cell LFC in
peripheral blood to compare a cohort of 100 children
with PID (fewer immunoglobulin deficiencies and more
severe PIDs than observed in a prototypic adult cohort)
with 30 controls.28 Severe‐ and CID showed segregated
clusters compared with healthy donors, the discriminat-
ing variables being primarily CD4_CM, CD8_EM and
CD8_TEMRA. Some milder antibody defects clustered
with CID, potentially identifying a more severe ID than
suspected.28 Neirinck et al. recently performed an

FIGURE 3 Cluster analysis of 16 moderately (A) and 7 strongly (B) differing variables between groups (107 patients): Clusters in
columns dendrogram of panel A and B were selected visually according to maximum height of fusion on vertical axis. abs, absolute; CVID,
common variable immunodeficiency; ID, immunodeficiency, TC, T cells. Abbreviations for B and T cell subsets see Table 1. Color scale:
Z‐scores.
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excellent validation of the EuroFlow PIDOT on 434
children and adults with suspected PID (318 with PID
[median age 14]) and 68 healthy controls.27 They
identified ten features (eight lymphocyte subpopulations,
age, and Ig levels) being the most discriminative between
the groups, seven of which we also analyzed and five of
which also showed moderate evidence for a difference
between groups in our analysis. PIDOT showed a
sensitivity of 61% and a specificity of 60% for identifying
PID in their cohort. The more than 50% of patients with
predominantly antibody deficiency were difficult to
identify and differentiate from disease controls with
LFC only. Based on these limitations, they came up with
an easy‐to‐use decision‐tree algorithm in suspected PID,
which includes immunoglobulin levels and age in
addition to the most discriminative lymphocyte subpo-
pulations, resulting in an 86% sensitivity and 82%
specificity (selective for lymphoid PIDs).27

We performed cluster analyses with two main
objectives. K‐means was used to assess the proportion
of correct binary differentiation into ID and Non‐ID
groups. The hierarchical cluster heat maps were eval-
uated visually to assess whether clinically useful infor-
mation could be obtained, particularly with respect to
clustering of ID subclasses. While the results of k‐means
could be statistically evaluated, this was not possible for a
visual analysis. It is important to realize that for such a

complex method to be used in day‐to‐day clinical
decision making, it must be able to be performed within
minutes by a physician. Visual analysis of a heat map is a
feasible way to evaluate such multivariate data in clinical
practice.

In our cohort of 107 individuals, k‐means cluster
analysis including all 37 variables or only T cell variables
did not result in a useful partition of ID and No‐ID
individuals. This is in line with the results by Attardi
et al., where the PCA of T cell subpopulations was unable
to differentiate CVID from healthy donors.28 Similar to
the study by Neirinck et al., the limitation to differing
variables between groups improved the binary segrega-
tion with correct classification of approximately 75% of
patients if only strongly differing variables were assessed,
compared to 54% with the whole data set.27 Applying the
test characteristics of the PIDOT‐algorithm to our
population would have resulted in 85% correct classifica-
tions (60.7% if only the PIDOT tube alone was used).
Because we did not exclusively include lymphoid PIDs,
this is likely an overestimate.27 Considering that most
patients in our cohort displayed rather mild immuno-
globulin deficiencies, the observed proportion of correct
classifications is considerable. We would expect an even
higher proportion if the population contained more
severe PIDs such as CVID or CID. Because many patients
with IgG subclass deficiency display normal lymphocyte

FIGURE 4 Cluster analysis of 73 patients with immunodeficiency: Cluster heatmaps including all variables (A), including only T cell
variables (B) and including only B cell variables (C) are shown. The five clusters in the columns dendrograms of panel B were visually
selected according to the maximum height of fusion on the vertical axis. (A PCA for these five clusters is shown as Figure E9 in the
supplementary material). For panels A and C, the number of clusters was not selected visually, but was taken from panel B to allow direct
comparison. abs, absolute; CVID, common variable immunodeficiency, TC, T cells. Abbreviations for T cell subsets see Table 1. Color scale:
Z‐scores.
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distributions and are difficult to differentiate from
immunocompetent individuals by LFC alone, a low
proportion of correct binary classification with a data set
containing only T cell variables was expected. Similarly,
the diagnostic accuracy was very limited when only the
PIDOT was used in the study by Neirinck et al.27

By visual analysis of the cluster heatmap of the whole
data, not much information could be gained. Thus, the
clinical usefulness of a heatmap with the full data set
seems limited. A more nuanced picture emerged for the
cluster heatmaps with the optimized datasets including
moderately or strongly differing variables. Especially the
former allowed the rapid identification of most CVID or
CID patients in the same clusters (Figure 3A). While the
binary classification of ID versus No‐ID with k‐means
was better for the data set including only seven strongly
differing variables, the clustering of the more severe ID
subentities is most apparent in the data set including 16
moderately differing variables, including six T cell
subsets. This could possibly indicate that for a reliable
identification of different ID subentities, the inclusion of
moderately differing variables is superior to limiting the
data set only to the most strongly differing variables.

For the cluster analysis within the ID group (Figure 4),
we could observe meaningful clustering for the data set
including 16 T cell variables, but not for the data set with all
variables or B cell restricted variables. Especially the more
significant IDs, CVID and CID, clustered separately in the
former (Figure 4B, Figure E10B). The segregation of most
CID with CVID reinforces the concept of late‐onset
combined immunodeficiency, which amongst other fea-
tures is associated with increased morbidity and reduced
survival.56 Two patients in our cohort with the clinical
diagnosis of IgG subclass deficiency displayed a remarkably
similar T cell distribution to the patients with CVID or CID
(first two blue bars from the left in Figure 4B), which will
enforce clinical revisitation.

While in our cohort, the inclusion of T cell
subpopulations did not result in a significant improve-
ment in the correct allocation to the No‐ID or ID groups,
this may be different in cohorts with more severe IDs.
For example, pediatric cohorts or PID cohorts evaluated
for allogenic stem cell transplantation may include more
CID. Six T cell subsets were included in the moderately
differing variable data set which resulted in the most
helpful cluster heatmap for the whole population
(Figure 3A). Also, the heatmap for the ID group
including only T cell variables contained the clinically
most meaningful clustering (Figure 4B). This may
suggest that for a clustering approach in suspected PID,
LFC panels with T cell subclasses are preferable. This is
supported by the PIDOT‐algorithm which also includes
two T cell subsets (CD4_Naïve, total CD4+ T cells).

Our study has several limitations. The No‐ID group
consisted of individuals referred to the immuno-
deficiency clinic for a clinical reason, usually due to
apparent susceptibility to infections. While healthy blood
donors as a comparison group is a valid alternative
approach, our control group better represents the real‐life
situation in the clinic. Our approach has been used for
similar studies.27 In addition, an ‘initial’ clinical diagno-
sis is a cross‐sectional process and may need to be revised
over time as new clinical events, such as severe or
opportunistic infections, occur. Also, patients susceptible
to infections due to innate immune defects may have
normal LFC results and immunoglobulins and may be
misclassified. Therefore, some of the “misclassifications”
by cluster analysis may be due to an incorrect clinical
diagnosis. Although clinical diagnosis, according to the
ESID definitions, is inevitably imperfect as a ‘reference
standard’, it seems to be the most appropriate choice,
which is supported by its use in other studies.27 The
number of patients for PID sub‐entities, apart from IgG
subclass deficiency and CVID, was too small for a
meaningful subclass analysis. Also, the clinical umbrella
of IgG subclass deficiency is heterogenous in terms of
molecular/genetic pathogenesis and clinical prognosis.
Attempts to study IgG subclass deficiency in more detail
in multicenter cohorts have been initiated.57 Most
patients in our ID group had antibody deficiency,
whereas combined or severe combined PID/IEI were
underrepresented compared to pediatric cohorts. Also,
pure phagocyte or complement disorders are IEI which
are typically missed if LFC is performed exclusively
during the diagnostic process. A minority in our ID
group had a diagnosis of secondary ID. It is increasingly
demonstrated that patients with secondary ID may
actually have an underlying IEI. E.g., lymphoma may
occur as a complication of CVID rather than being its
cause.3 As these patients were regularly evaluated in the
ID outpatient clinic for the presence of an PID/IEI, we
did not exclude them from the main analysis. Impor-
tantly, the k‐means cluster analysis showed no relevant
difference with and without these patients (Table 2).

The PIDOT has been developed and validated as a
diagnostic test for suspected PID and can be applied in
different centers and is a preferred method in the
evaluation for suspected PID.27 However, the PIDOT
has not been implemented in many centers, including
ours. Thus, a cluster approach as described here may
support clinical decision making. Individual centers
could compile their own datasets of ID versus No‐ID
patients, possibly including additional variables such as
complement factors as well, and use open‐source soft-
ware (e.g., Clustvis) to perform clusters analysis within
minutes without specialized statistical knowledge.58 By
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indexing the values of the variables, for example, to the
center‐specific lower limit of the reference range, results
from different centers could be pooled and reference
datasets, ideally from genetically assessed pediatric
and/or adult populations, could be made publicly available.
Visual inspection of heat maps and the localization of the
individual under investigation may facilitate the interpre-
tation of multiple immune variables simultaneously and
assist in correct clinical diagnosis (ID vs. No‐ID) but also
advice, whether additional diagnostic and/or genetic
testing may be indicated. In case of a clinical diagnosis
of an ID without an exact genetic diagnosis (which is very
common in adult patients) the position of this individual in
a heat map containing patients with known ID subentities
could facilitate diagnosis of the correct PID subentity.
Prospective studies are currently planned to investigate
whether such an approach is beneficial.

In summary, multivariate cluster analysis of a
reduced set of immune variables including T‐cell subsets,
correctly predicted an individual's immune status (ID vs.
No‐ID) in approximately 75% and allowed for visual
identification of more severe subentities within the ID
group, such as CVID or CID. In keeping with results
from other groups, our study supports the use of detailed
LFC, including T cell subpopulations, in the work‐up for
suspected PID.17,27,28 This approach is also reflected by
the current ESID working definition for the clinical
diagnosis of CVID, where total CD4+ and CD4_Naïve
need to be assessed.59,60 With the use of online open‐
source software and a reference data set, cluster analysis
may be performed within minutes in the outpatient
clinic.
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