Table 2.
Comparison of the performance of StableDNAm with six state of the art models on the seventeen datasets
| Indicator | Models | D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | D9 | D10 | D11 | D12 | D13 | D14 | D15 | D16 | D17 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ACC | iDNA_MS [37] | 0.948 | 0.968 | 0.711 | 0.824 | 0.704 | 0.712 | 0.838 | 0.856 | 0.711 | 0.896 | 0.923 | 0.884 | 0.855 | 0.786 | 0.856 | 0.734 | 0.845 |
| iDNA_ABT [38] | 0.949 | 0.969 | 0.825 | 0.842 | 0.703 | 0.738 | 0.854 | 0.890 | 0.733 | 0.912 | 0.927 | 0.898 | 0.826 | 0.801 | 0.874 | 0.774 | 0.869 | |
| iDNA_ABF [39] | 0.949 | 0.966 | 0.814 | 0.851 | 0.680 | 0.687 | 0.859 | 0.864 | 0.729 | 0.917 | 0.938 | 0.902 | 0.789 | 0.826 | 0.880 | 0.730 | 0.878 | |
| BERT6mA [34] | 0.947 | 0.963 | 0.773 | 0.822 | 0.691 | 0.735 | 0.853 | 0.902 | 0.721 | 0.882 | 0.926 | 0.896 | 0.781 | 0.813 | 0.874 | 0.752 | 0.863 | |
| Deep6mA [33] | 0.932 | 0.960 | 0.760 | 0.850 | 0.687 | 0.737 | 0.861 | 0.902 | 0.729 | 0.920 | 0.925 | 0.899 | 0.816 | 0.801 | 0.872 | 0.762 | 0.842 | |
| MM-6mAPred [31] | 0.906 | 0.931 | 0.773 | 0.764 | 0.689 | 0.670 | 0.755 | 0.722 | 0.670 | 0.809 | 0.851 | 0.823 | 0.786 | 0.745 | 0.747 | 0.705 | 0.751 | |
| StableDNAm | 0.949 | 0.968 | 0.853 | 0.853 | 0.710 | 0.743 | 0.861 | 0.909 | 0.745 | 0.923 | 0.939 | 0.907 | 0.818 | 0.827 | 0.882 | 0.768 | 0.877 | |
| AUC | iDNA_MS [37] | 0.962 | 0.984 | 0.780 | 0.900 | 0.761 | 0.780 | 0.909 | 0.935 | 0.785 | 0.956 | 0.975 | 0.950 | 0.926 | 0.868 | 0.926 | 0.821 | 0.925 |
| iDNA_ABT [38] | 0.955 | 0.976 | 0.856 | 0.902 | 0.753 | 0.799 | 0.918 | 0.943 | 0.798 | 0.942 | 0.955 | 0.941 | 0.859 | 0.871 | 0.928 | 0.836 | 0.926 | |
| iDNA_ABF [39] | 0.969 | 0.986 | 0.878 | 0.928 | 0.728 | 0.748 | 0.932 | 0.936 | 0.811 | 0.960 | 0.979 | 0.964 | 0.889 | 0.903 | 0.941 | 0.804 | 0.945 | |
| BERT6mA [34] | 0.956 | 0.975 | 0.799 | 0.903 | 0.742 | 0.805 | 0.915 | 0.962 | 0.777 | 0.950 | 0.962 | 0.947 | 0.865 | 0.850 | 0.938 | 0.838 | 0.925 | |
| Deep6mA [33] | 0.953 | 0.974 | 0.886 | 0.926 | 0.759 | 0.814 | 0.933 | 0.945 | 0.798 | 0.968 | 0.972 | 0.964 | 0.888 | 0.884 | 0.944 | 0.814 | 0.949 | |
| MM-6mAPred [31] | 0.939 | 0.978 | 0.886 | 0.844 | 0.755 | 0.735 | 0.834 | 0.831 | 0.708 | 0.892 | 0.954 | 0.901 | 0.853 | 0.821 | 0.843 | 0.771 | 0.828 | |
| StableDNAm | 0.967 | 0.981 | 0.896 | 0.928 | 0.776 | 0.819 | 0.934 | 0.966 | 0.816 | 0.971 | 0.981 | 0.969 | 0.881 | 0.905 | 0.944 | 0.845 | 0.949 | |
| MCC | iDNA_MS [37] | 0.897 | 0.935 | 0.422 | 0.648 | 0.408 | 0.423 | 0.676 | 0.712 | 0.423 | 0.792 | 0.846 | 0.769 | 0.710 | 0.572 | 0.728 | 0.468 | 0.691 |
| iDNA_ABT [38] | 0.901 | 0.937 | 0.652 | 0.684 | 0.406 | 0.477 | 0.709 | 0.781 | 0.467 | 0.824 | 0.824 | 0.796 | 0.653 | 0.610 | 0.754 | 0.551 | 0.739 | |
| iDNA_ABF [39] | 0.900 | 0.933 | 0.635 | 0.704 | 0.361 | 0.373 | 0.719 | 0.728 | 0.460 | 0.833 | 0.877 | 0.805 | 0.586 | 0.670 | 0.768 | 0.460 | 0.756 | |
| BERT6mA [34] | 0.896 | 0.926 | 0.562 | 0.653 | 0.383 | 0.471 | 0.705 | 0.804 | 0.443 | 0.769 | 0.851 | 0.792 | 0.564 | 0.627 | 0.752 | 0.505 | 0.727 | |
| Deep6mA [33] | 0.864 | 0.920 | 0.547 | 0.701 | 0.375 | 0.475 | 0.722 | 0.803 | 0.458 | 0.840 | 0.850 | 0.797 | 0.633 | 0.602 | 0.755 | 0.525 | 0.742 | |
| MM-6mAPred [31] | 0.820 | 0.865 | 0.556 | 0.528 | 0.378 | 0.340 | 0.511 | 0.478 | 0.344 | 0.6202 | 0.720 | 0.646 | 0.573 | 0.491 | 0.596 | 0.427 | 0.506 | |
| StableDNAm | 0.900 | 0.936 | 0.706 | 0.706 | 0.423 | 0.487 | 0.722 | 0.818 | 0.494 | 0.846 | 0.878 | 0.815 | 0.635 | 0.654 | 0.772 | 0.538 | 0.756 |
Bold indicates the optimal value among the compared methods, and underline indicates the suboptimal value