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Abstract

Background: Opioid Use Disorder (OUD) is an escalating public health problem with over 

100,000 drug overdose-related deaths last year most of them related to opioid overdose, yet 

treatment options remain limited. Non-invasive Vagal Nerve Stimulation (nVNS) can be delivered 

via the ear or the neck and is a non-medication alternative to treatment of opioid withdrawal and 

OUD with potentially widespread applications.

Methods: This paper reviews the neurobiology of opioid withdrawal and OUD and the emerging 

literature of nVNS for the application of OUD. Literature databases for Pubmed, Psychinfo, and 

Medline were queried for these topics for 1982-present.
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Results: Opioid withdrawal in the context of OUD is associated with activation of peripheral 

sympathetic and inflammatory systems as well as alterations in central brain regions including 

anterior cingulate, basal ganglia, and amygdala. NVNS has the potential to reduce sympathetic 

and inflammatory activation and counter the effects of opioid withdrawal in initial pilot studies. 

Preliminary studies show that it is potentially effective at acting through sympathetic pathways to 

reduce the effects of opioid withdrawal, in addition to reducing pain and distress.

Conclusions: NVNS shows promise as a non-medication approach to OUD, both in terms of its 

known effect on neurobiology as well as pilot data showing a reduction in withdrawal symptoms 

as well as physiological manifestations of opioid withdrawal.

Introduction

Opioid Use Disorder (OUD) is a national epidemic with devastating consequences. Deaths 

from opioid overdose, including prescription opiates like OxyContin and Percocet, as well as 

heroin and other illegal opiates, increased five-fold from 1999 to 2016 [1]. Opioid overdose 

is now the leading cause of accidental death in the United States [2]. In 2021, there were 

over 100,000 drug overdose-related deaths, most of which were due to opioids [3]. The 

standard of care for treating Opioid Use Disorder (OUD) are Medications for Opioid Use 

Disorder (MOUD), which includes opioid receptor agonists and antagonists; however, the 

barriers to MOUD care are high, including lack of access to MOUDs with proven benefit, 

like opioid agonists, methadone and buprenorphine [4–9]. Most OUD patients will relapse 

without medication, and about half relapse even after treatment with the gold standard 

opioid-agonist, methadone [10]. Many patients don’t want to take opioid agonists, but 

treatment with naltrexone, an opioid receptor antagonist, requires an extended period of 

detoxification during which the risk of relapse and overdose-related death is high [11–13]. 

During this period of detoxification there is an increase in both the probability of relapse 

(due to withdrawal symptoms) and the risk of overdose-related death due to a loss of 

tolerance [4,14,15]. Management of withdrawal during the treatment of OUD is crucial 

when initiating OUD treatment protocols that will maintain long-term efficacy in prevention 

of relapse. Non-pharmacological methods that treat withdrawal could provide a bridge to 

facilitate effective implementation and continuation of opioid antagonist pharmacological 

therapies. Additionally, the initial induction period when opioid agonist dose adjustment 

occurs is often associated with symptoms of opioid withdrawal that can increase the risk 

of relapse and/overdose. Additional interventions to use as adjuncts to FDA-approved 

treatments of opioid withdrawal, such as lofexidine [16–18], will also be useful. This paper 

describes the use of a form of neuromodulation called Non-invasive Vagal Nerve Stimulation 

(nVNS), and outlines its potential usefulness for the treatment of OUDs in the context of 

its effects on neurobiology and how this may intersect with the neurobiology of OUD and 

opioid withdrawal.

Changes in Neurobiological Systems in OUD

OUD is characterized by alterations in multiple neurobiological systems [19]. Opioid 

withdrawal is associated with uncomfortable symptoms including headache, nausea and 

vomiting, diarrhea, sweating, fatigue, anxiety, and sleep disturbance. These symptoms 
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are driven by activation of the sympathetic nervous system with release of inflammatory 

biomarkers and alterations in dopaminergic reward systems that play a critical role in both 

addiction and relapse risk [20]. Mesocortical and mesolimbic dopaminergic pathways from 

the ventral tegmentum area to the medial prefrontal cortex and ventral striatum (nucleus 

accumbens) play an important role in OUD, and stress and substance use have similar 

effects on these systems [21–30]. Repeated exposure to opioids, both prescription and 

illicit, among individuals living with OUD are linked to increased risks for developing 

pain sensitivity and centralization due, in part to, increased activation of NMDA receptors 

leading to sensitization of spinal neurons [31]. Compared to controls, persons with OUD 

show increased cortisol, heart rate and blood pressure response to both drug cues [32] 

and to a laboratory-based stress task involving public speaking [33]. Persons with OUD 

have also shown increased drug craving after exposure to drug cues compared to controls 

[32] although laboratory-based mental stress did not potentiate drug craving over exposure 

to drug cues alone [33]. Women with OUD showed a pattern of lower cortisol response 

and experienced more subjective stress during public speaking than men with OUD [34]. 

Patients with PTSD and either cocaine or alcohol substance use disorders showed increased 

drug craving following both trauma and drug-related cues [35]. Patients with PTSD 

experience higher pain levels and have increased instance of substance use disorders than 

non-PTSD patients, although pain is not a mediator of the increased substance use rates in 

these patients [36]. These studies show that drug cues activate neurobiological systems that 

underlie craving, and that responses to this activation differ by gender.

Treatment of OUD with MOUDs

Standard treatments for OUD are medications that act on opioid receptor, including 

buprenorphine, methadone, and naltrexone. Methadone is a long-acting full opioid agonist 

of the mu opioid receptor. Buprenorphine is a partial agonist of the mu opioid receptor 

and an antagonist of the kappa opioid receptor. Methadone must be administered in a 

specialized clinic, and access to buprenorphine, although it is effective in reducing the risk 

of relapse and overdose and can be taken at home, is limited. A recent “secret shoppers” 

study in which volunteers called medical clinics seeking treatment for an OUD showed 

that only 27% of individuals were able to be seen in a clinic and obtain a buprenorphine 

prescription if they were not willing to pay cash for treatment [7]. Fifty percent of clinics 

listed as available for buprenorphine treatment either did not have a working phone number 

or a physician or practitioner with the necessary specialized certifications to prescribe, and 

of those, 30% outright refused to treat non-cash paying patients [7]. Thus, buprenorphine 

treatment, with costs upwards of $350, is cost prohibitive for most people, further precluding 

access for OUD patients in need of care [9].

Naltrexone is an antagonist of the opioid receptor that is an alternative to opioid agonist 

therapy that is also effective for OUD [5,11,15,37,38]. Long--acting naltrexone is superior 

to treatment as usual including non-pharmacological counseling for relapse prevention 

[12]. Once safely initiated, long-acting naltrexone has equivalent or increased efficacy in 

relapse prevention as compared to buprenorphine [13]. Naltrexone is an effective long-term 

treatment for OUD, but the required opioid abstinence and subsequent withdrawal period 

prior to initiation represents a key barrier to treatment [39]. Interventions during the period 
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of opioid withdrawal to reduce symptoms and prevent relapse, allowing patients to complete 

the period of abstinence required before the initiation of long-acting naltrexone treatment 

may both benefit patients with OUD in recovery maintenance and reduce overdose-related 

deaths during this critical period [39].

Neuroimaging and Neurobiology of OUD

Advancements in neuroimaging have allowed for identification of brain regions and specific 

neural circuits that are implicated in OUD [40]. The major pathways that play an important 

role in addiction and relapse are dopaminergic mesolimbic and mesocortical pathways from 

the ventral tegmentum to the ventral striatum (nucleus accumbens) and medial prefrontal 

cortex (anterior cingulate) [20,41] and the amygdala [40,42,43]. Release of dopamine in the 

nucleus accumbens (ventral striatum) is associated with pleasure and reward and is accepted 

as playing a role in addiction [19,20,44–47]. The medial prefrontal cortex plays an important 

role in modulation of emotion that is relevant to relapse and addiction [40,42,43] as well 

as drug craving. The amygdala mediates anxiety and fear reactions and plays a key role in 

OUD [40,42,43].

The maintenance of addiction and relapse is often related to craving precipitated by 

conditioned responses to exposure to drug cues in patients with OUD [48]. These neural 

circuits allow for the development and maintenance of such conditioned responses in 

patients with OUD [40,42,43]. The amygdala likely plays a role in symptoms of anxiety 

associated with opioid addiction and withdrawal [49]. The medial prefrontal cortex is 

implicated in the appraisal and regulation of emotions. By inhibiting amygdala activity 

through extinction mechanisms [50] the medial prefrontal cortex plays a critical role in the 

acquisition of fear memories as shown in both animal studies [51,52] and brain imaging 

studies in humans [53–63], highlighting its role in anxiety which is a part of the opioid 

withdrawal response [19]. Changes in these brain areas are reversible with treatment in 

patients with OUD [46].

The Locus Coeruleus (LC), located in the pons, is the major source of noradrenergic cell 

bodies in the brain [64]. Noradrenergic neurons project to multiple areas in the brain, 

including amygdala, medial prefrontal cortex, hippocampus, ventral striatum, and other 

areas of the cerebral cortex [64]. Release of norepinephrine, which occurs under both 

stress and opioid withdrawal, causes an increase in attention and vigilance behaviors, and 

activates the cardiovascular system [23,24,64]. Inputs to the LC come from the nucleus 

paragigantocellularis and nucleus prepositus hypoglossi, and endogenous opiates in this 

brain area are inhibitory to LC neurons [65,66]. Withdrawal of opioids in animals addicted 

to methadone causes a rebound increase in LC activity, resulting in increased norepinephrine 

release in the amygdala that subsequently activates the cardiovascular system and drives 

symptoms of withdrawal [65]. Opioids in the LC initially inhibit of production of adenylyl 

cyclase and Cyclic Adenosine Monophosphate (cAMP) [67,68]. With prolonged dependence 

there is eventually an increase in adenylyl cyclase and cAMP resulting in increased cAMP 

dependent response element binding protein (CREB). This upregulation likely represents a 

compensatory mechanism for the initial inhibitory effects of opioids [67,68]. Upregulation 

in the cAMP cascade in the LC is hypothesized to represent a component of tolerance, as 
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well as the mechanism of opioid dependence and withdrawal [67,68]. Norepinephrine and 

the LC therefore play a central role in opioid addiction and symptoms of withdrawal due to 

rebound sympathetic activation.

Positron Emission Tomography (PET) studies in patients with OUD implicate similar 

neurobiological systems and circuits as seen in animal models [46,69]. Morphine 

acutely reduces brain metabolic activity in the superior frontal gyrus, paracentral lobule, 

supramarginal gyrus, anterior cingulate, caudate (striatum), gyrus rectus, and middle 

temporal gyrus [70]. Functional Magnetic Resonance Imaging (fMRI) studies showed 

abnormal connectivity in OUD in ventral striatum, medial prefrontal cortex (anterior 

cingulate), amygdala and insula [71]. Functional imaging studies of brain blood flow and 

metabolism using PET showed increased activation of ventral striatum and medial prefrontal 

cortex (anterior cingulate) during opioid [46] and nicotine [72,73] craving. Patients with 

OUD who are exposed to emotional pictures during heroin abstinence had increased 

connectivity as measured with resting state fMRI between left amygdala and left fusiform 

gyrus and right amygdala and right orbitofrontal cortex, this normalized after administration 

of heroin [74].

Chronic opioid use is associated with a decrease in binding of the Dopamine Transporter 

(DAT) [75] and D-2 receptor binding measured with PET and the radiolig and [C-11] 

raclopride [40,69,76]. This may reflect a decrease in endogenous dopamine release 

following chronic overstimulation with opioids and/or decreased transporter and/or receptor 

binding [40]. DAT uptake was not associated with heroin craving in abstinent OUD patients 

[75]. These findings implicate dopaminergic pathways in the ventral striatum and medial 

prefrontal cortex in OUD.

Effects of Early Trauma on Vulnerability to OUD

Early life trauma plays a critical role in the development and maintenance of OUD in many 

patients [77–83]. Individuals with a high number of Adverse Childhood Experiences (ACEs) 

have a 10-fold increase in risk for the use of injected drugs, mostly opioids [77,84,85], 

and there are important links between OUD and Posttraumatic Stress Disorder (PTSD) 

[36,79,80,86–93]. Recurrent stressors and exposure to triggers of traumatic memories 

in everyday life is a common precipitator of relapse in patients with OUD [22,89,94], 

especially for women using prescription opioids [95]. There is a great deal of overlap in 

brain circuits mediating OUD and PTSD (Figure 1). The fact that nVNS modulates many of 

these brain regions suggests that it could be useful for both disorders as well as the complex 

co-morbid conditions that are often seen in patients with OUD.

Vagal Nerve Stimulation for OUD

Neuromodulation represents a new paradigm in the field of mental and substance use 

disorders [96,97]. Vagal Nerve Stimulation (VNS), is an electrical stimulation treatment that 

may be useful in the treatment of OUD given its demonstrated effects on brain circuits and 

systems implicated in OUD and opioid withdrawal and its demonstrated positive effects on 

related symptom areas like pain and anxiety [96–103]. Currently, implantable VNS devices 
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are FDA-approved to treat medically refractory epilepsy and treatment-resistant depression 

[104,105]. Neuromodulation using VNS can reduce symptoms of pain [106,107] and anxiety 

[108,109] both of which contribute to the development of OUD and/or precipitate relapse. 

VNS is also beneficial in the treatment of headaches [110–113], epilepsy [114–119] and 

major depression [104,105,120–131]. The effects of VNS on neuroplasticity and learning 

suggest it may be useful in extinction of the conditioned stimulus and reinforcement 

processes that underlie addictions [132–138] possibly through enhancement of Long Term 

Potentiation (LTP) in the hippocampus [139]. VNS reduces autonomic tone and sympathetic 

function [140–145] immune function [146–153] and fear circuits that likely play a role 

in symptoms of anxiety associated with OUD [108,154–159], all of which indicate its 

potential to play a beneficial role in OUD and withdrawal. Animal studies show that VNS 

enhances neuroplasticity in the frontal cortex and reduces cocaine seeking behaviors [160]. 

In animal models of schizophrenia, VNS enhances mesofrontal dopamine transmission 

[161]. Recent studies have also applied VNS to the treatment of schizophrenia [162,163], 

obsessive-compulsive disorder [164], PTSD [165–167] and Mild Traumatic Brain Injury 

(mTBI) [165], all with promising results. The first generation of VNS devices had to 

be surgically implanted, reducing their feasibility in treatment of mental disorders [102]. 

Clinical trials testing efficacy of these devices were limited by cost, inconvenience, potential 

complications, the inability to do placebo comparisons related to ethical considerations 

[102], and the lack of insurance reimbursement [168,169]. The failure of Medicare and 

therefore other insurance agencies to reimburse for either VNS implantation or necessary 

followup care has been a major limitation to its wide-spread use [169].

However, a new generation of non-invasive devices holds potential for wide-spread 

implementation and is more amenable to rigorous placebo-controlled research studies 

[97,102]. GammaCore, a Non-invasive VNS (nVNS) that delivers electrical stimulation to 

the vagus nerve via the neck, was recently approved by the Food and Drug Administration 

(FDA) for the treatment of intermittent cluster headache [113] and shows promise for 

wide-spread implementation in psychiatry due to low cost and convenience [102]. We 

have shown that Transcutaneous Cervical VNS (tcVNS) using the gammaCore blocks 

sympathetic responses to stress in traumatized persons with and without PTSD [170–

177], and blocks inflammatory (IL-6, IFN-γ) [(178] and neuropeptide (Pituitary Adenylate 

Cyclase Activating Peptide, PACAP) [179] responses to stress in PTSD. It also modulates 

brain areas involved in emotion in traumatized persons with [180] and without [181] 

PTSD and reduces PTSD symptoms [182]. Based on our findings of reduction in PTSD 

symptoms with tcVNS versus sham stimulation after three months of twice daily treatment 

[182] the FDA granted Breakthrough Device Designation for the gammaCore for PTSD on 

January 11, 2022. VNS blocks the sympathetic, cardiovascular, and inflammatory activation 

associated with opioid withdrawal and modulates central brain regions involved in anxiety 

and reward systems, has the potential to facilitate conversion to long-term therapies such 

as opioid receptor antagonists and prevent relapse during the critical, potentially lethal, 

withdrawal period [47,183].
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Physiological Correlates of Vagal Nerve Stimulation

The vagus nerve originates in the brain stem and has fibers that travel to both central brain 

areas as well as peripheral organs [184,185]. Mostly afferent projections of myelinated A 

fibers of the vagus, relay sensory activity of the visceral organs to the brain through the 

Nucleus Tractus Solitarius (NTS) in the medulla oblongata. Efferent branches of mostly 

unmyelinated C fibers of the vagus nerve modulate autonomic and inflammatory function 

[152] through peripheral anti-sympathetic, pro-parasympathetic, and anti-inflammatory 

effects [185–187]. These effects may benefit patients with OUD [147,188].

The effects of nVNS, however, are likely mediated through the brain [189]. Projections of 

the vagus to the brain through the Nucleus Tractus Solitarius (NTS) extend to the locus 

ceoruleus and hypothalamus [187], key areas involved in sympathetic hyperarousal during 

opioid withdrawal, as well as to brain areas such as the amygdala and anterior cingulate that 

mediate emotion and anxiety [187]. Afferent vagal nerve fibers travel through the carotid 

sheath in the neck (cervical) just medial to the sternocleidomastoid muscle [190] as well as 

in the ear (auricular), and devices have been developed to non-invasively stimulate the vagus 

nerve at either branch.

VNS has effects on a number of neurotransmitters that mediate symptoms of mental 

disorders including OUD [191]. The NTS has direct projections to the Locus Coeruleus 

(LC), which is located in the pons and is the major site of Norepinephrine (NE) cell 

bodies in the brain [187]. One of the primary effects of VNS on the brain is activation of 

norepinephrine in the LC. VNS acts through the LC to increase norepinephrine release in 

the medial prefrontal cortex, amygdala and hippocampus [192–195], an effect mediated by 

vagal afferent fibers [193]. Increased NE has a secondary effect on the serotonin (5HT) 

system through excitatory alpha-1 adrenoreceptors that increase 5HT in the dorsal raphe 

[192,196–198]. Chronic VNS treatment increases the firing rates of norepinephrine neurons 

in the LC, hippocampus, and prefrontal cortex and of serotonergic neurons in the dorsal 

raphe but not in the hippocampus or prefrontal cortex [197,199]. VNS increases both the 

firing rate and burst pattern of NE neurons [192], an effect which can be blocked by the 

muscarinic acetylcholine antagonist scopolamine [200]. Chronic VNS decreases dopamine 

neuronal firing in the ventral tegmental area but leads to increases in extracellular dopamine 

in the nucleus accumbens and prefrontal cortex [161,197]. Two months of VNS treatment 

raises levels of dopamine and serotonin metabolites in the Cerebrospinal Fluid (CSF) of 

patients with epilepsy [142]. Thus, VNS has similar effects to antidepressants [192] without 

the autoreceptor desensitization seen with chronic use of these medications [192,197].

VNS also has effects on learning and memory systems that may be relevant to stimulus 

reinforcement and stress diathesis theories of addiction [19,154,201]. Hormones and 

neurotransmitters released during stress, including cortisol and epinephrine, have effects 

on learning and memory [198,202–207] even though they don’t cross the blood-brain barrier 

[208]. One possible explanation for this phenomenon is that the vagus nerve transmits this 

information to the brain [209]; in fact, lesions of the vagus nerve block the effects of 

peripheral hormones and neurotransmitters on memory [208,209]. VNS enhances memory 

retention in a U-shaped curve, with maximum effect at 0.4 mA in rat models [210], an 
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effect mediated through afferent vagus pathways and not efferent pathways [211]. VNS 

acts through the LC to increase NE in the basolateral nucleus of the amygdala (BLA) to 

concentrations capable of modulating emotional memory [193]. Its enhancement of synaptic 

transmission [212,213], Long-Term Potentiation (LTP) [139], and neurogenesis [214] in 

the hippocampus likely accounts for its effects on learning and memory as well as its 

anti-depressant effects (215–217). When paired with conditioned cues, VNS also facilitates 

extinction in animal models of classic fear conditioning [156–158,218] and reduces fear-like 

behaviors [156,218]. This effect is mediated through enhancement of the infralimbic (medial 

prefrontal) amygdala (basal nucleus of the amygdala) pathway [158].

VNS plays a role in neural plasticity and autonomic nervous system function that are 

relevant to production and maintenance of addictions as well as reinforcement and 

reinstatement of drug use [159,191,219,220]. Evidence for the role of VNS in neural 

plasticity comes from animal models showing beneficial effects in treatment of tinnitus 

when paired with an auditory tone [132–135], recovery of cognitive function after stroke 

[136], and motor movement when paired with training [221–224]. Animal studies show 

that VNS reduces ventricular arrhythmia in the setting of myocardial ischemia [225] and 

promotes recovery from cerebral hemorrhage [226] congestive heart failure [227] and other 

cardiovascular events [219,228]. VNS promotes learning and memory in patients with 

Alzheimer’s Disease [229,230] and acts through the LC in animal models of TBI to enhance 

new learning and memory, synaptic plasticity and motor recovery [231,232]. In summary, 

VNS has a broad range of effects on neural circuits and symptoms that likely are beneficial 

for patients with OUD, including opioid withdrawal.

The anti-inflammatory and anti-stress hormone effects of VNS may be beneficial for 

alleviating symptoms of opioid withdrawal. Opioids activate the Hypothalamic-Pituitary-

Adrenal (HPA) axis (which through cortisol plays a critical role in stress) and inflammatory 

systems, and dysregulation of these systems during opioid withdrawal likely plays a key 

role in the symptoms of withdrawal in OUD patients [233]. VNS has modulatory effects 

on the HPA axis which may benefit symptoms of withdrawal [47,234–236]. Repeated 

administration of opioids, including morphine, in animal models activates inflammasomes 

[237] including p38 Mitogen-Activated Protein Kinase (MAPK), nuclear factor-κB (NF-κB) 

p65 and Nod-like Receptor Protein (NLRP3) [237]. Opioids also lead to increases in the 

inflammatory factors interleukin-6 (IL-6) [183,233,238] and Tissue Necrosis Factor- α 
(TNF- α) [239], as well as corticosterone (cortisol in humans) [233]. Opioid dependence 

is associated with increases in IL-1β, IL-2, and IL-8 [183]. Stress, which is often linked 

to OUD, is associated with increases in IL-1B, IL-6, TNF-α, Interferon Gamma (IFNγ) 

and C Reactive Protein (CRP) in animal models [240,241], and we have shown an increase 

in mental stress-induced IL-6 and IFNγ in PTSD patients [178,182,242]. Opioid-addicted 

animals show greater increases in IFNγ [243] and TNF-α when under stress than non-

addicted animals [239], and post-mortem studies show increased TNF-α in the LC of 

patients with OUD [244,245]. These inflammatory markers interacting with the HPA axis 

may mediate, in part, symptoms of withdrawal in OUD and contribute to the development 

and maintenance of addictions [240,241,246]. VNS counters these inflammatory responses 

to opioids, through a reduction of high mobility group protein B 1 (HMGB1) [237,247,248], 

TNF-α production [249], RANTES (CCL5) (250), Macrophage Inhibition Factor (MIF) 
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[214,251,252], and kynurenines [153,245,249,253,254]. Emerging evidence indicates the 

anti-inflammatory effects of VNS seen in response to opioids may also benefit individuals 

living with co-occurring chronic pain [255]. These studies demonstrate the potential for 

VNS to have utility in opioid withdrawal symptom reduction through its modification 

of immune, neuropeptidal and neurohormonal systems. Some key questions remain to 

be addressed by future research, including why VNS acts through the locus coeruleus 

to stimulate release of norepinephrine in the hippocampus while simultaneously reducing 

sympathetic function in the periphery.

Effects of Vagal Nerve Stimulation on Brain Function: Relevance to Mental 

Disorders and Addictions

Studies have begun to map neural correlates of VNS, improving understanding of potential 

mechanisms of action in OUD [256–258]. Functional imaging studies in human subjects 

show that VNS, as predicted from animal models, results in effects on brain regions 

connected to the Nucleus Tractus Solitarius (NTS), including the medial prefrontal cortex 

(anterior cingulate) and amygdala [259–261]. Successful treatment of depression with VNS 

also results in changes to brain regions implicated in that disorder [262–265] as well as 

beneficial effects on cardiovascular function [266] and cognition [131]. These findings from 

studies of implanted VNS devices have been replicated in functional imaging studies of 

healthy human subjects with non-invasive vagal nerve stimulation applied both through the 

ear [267] and the neck [268,269]. We have shown that tcVNS blocks insula response to 

stress and enhances anterior cingulate function in PTSD [180,181].

In 2017, the FDA approved a percutaneous form of VNS for the treatment of opioid 

withdrawal [270]. This was based on the results of an open label trial of 73 patients with 

OUD, where significant reductions in opioid withdrawal symptoms were observed within 

one hour of VNS treatment initiation [271]. This study did not use a sham control or obtain 

objective physiological measurements of sympathetic nervous system activity. Other studies 

have shown that transcutaneous auricular VNS (taVNS, applied to the ear) is beneficial in 

promoting oral feeding in infants with brain damage [272] and in withdrawal from opioids in 

infants born addicted to opioids [273].

Transcutaneous Cervical Vagal Nerve Stimulation for Acute Opioid 

Withdrawal

To further evaluate the clinical uses of VNS, we assessed the effects of tcVNS on 

opioid withdrawal in 21 patients with OUD. Patients were randomized to a double-blind 

administration of active tcVNS (N=10), or sham stimulation (N=11) paired with viewing 

of neutral and opioid use videos designed to elicit opioid craving (Figure 2). Participants 

stopped using opioids the night before experimentation and were studied prior to initiation 

of medication for their OUD. Each administration of vagal nerve stimulation occurred two 

minutes. There were a total of six stimulations per subject. Subjective opioid withdrawal 

and craving as well as pain and anxiety were measured using numerical rating scales 

with a range of 0 to 10 with 10 being most severe. Perceived distress was measured due 
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its role in craving and relapse [88,274–276] using the Subjective Units of Distress Scale 

(SUDS) which rates subjective distress on a scale of 0 to 100 [277]. Peripheral autonomic 

activity was measured using wearable sensing devices [278]. Active tcVNS compared to 

sham stimulation resulted in significant reductions in withdrawal (−1.9±3.7 versus 0.4±1.0, 

p=.047) [279] and pain [280] (−0.8±2.4 versus 0.9±1.0, p=.045) as well lower opioid 

craving which reached trend significance (−2.2±3.6 versus 0.1±2.7, p=0.1) [279] (Table 

1). tcVNS also resulted in significant decreases in subjective distress measured with the 

SUDS compared to sham stimulation (−17.5±26.5 versus 2.2±5.9, p=.004). Active tcVNS 

also had an effect on peripheral autonomic function measured with a significant reduction 

in heart rate measured with wearable sensing devices (−5.5±3.5 bpm versus −1.4±4.6 bpm, 

p=.035) [279] as well as a reduction in breathing irregularity (i.e., respiratory variability) 

(−368.5±514.1 ms versus 74.2±253.1 ms, p=.02) [281]. Another finding of this study was 

that opioid withdrawal was associated with an increase in sinusoidal movements in the 

peripheral extremities that were associated with increased severity of subjective opioid 

withdrawal [282]. These findings support adjunctive use of tcVNS in mitigating acute opioid 

withdrawal symptoms, especially during detoxification and transitional periods (e.g., prior to 

MOUD) – periods of increased vulnerability [4] when opioid withdrawal symptoms can be 

highly uncomfortable and precipitate relapse in patients with OUD [283–287].

Avoidance of withdrawal symptoms, with associated in increases in pain and anxiety, is 

often cited as a primary factor in continuing opioid use [283]. Pain intensification during 

opioid withdrawal has been independently associated with relapse risk [288,289]. For many 

patients, opioid treatment of a primary pain disorder represents an entry phase into opioid 

addiction. The return of pain either from the primary pain disorder that was previously 

masked by opioid use or a new injury in a patient recovering from OUD with an increased 

pain sensitivity due to the withdrawal state can motivate opioid use, thus perpetuating the 

addictive cycle [290,291]. Even mild pain can catalyze the learned associations between pain 

and drug relief among individuals with chronic pain and OUD [292]. Further, increased pain 

sensitivity and undermanaged pain are associated with worst treatment outcomes, including 

relapse, for patients with co-occurring chronic pain and OUD [293]. Anxiety and distress 

can also trigger relapse [88,274,275,287]. Patients with OUD will often continue to use 

opioids to avoid negative affective states [283,287], which as outlined above are often linked 

to a history of trauma [79,80]. Affective distress can trigger relapse, even after lengthy 

periods of abstinence [276,294]. Continued use of VNS into the period of recovery when 

withdrawal symptoms are reduced but still present in diminished form may reduce the risk 

of relapse in OUD patients.

Opioid craving and withdrawal are mediated by complex interaction of brain and 

peripheral autonomic and inflammatory processes in response to the withdrawal of opioids 

[19,285,294]. The extended amygdala, prefrontal, hypothalamic, and brainstem regions are 

postulated to mediate dysphoria and autonomic imbalance associated with opioid withdrawal 

[19,285,294], brain regions which are also implicated in PTSD and other stress-related 

disorders [295,296].

The effects of tcVNS on signs of opioid withdrawal were greatest for heart rate. Heart 

rate is mediated by both the parasympathetic and sympathetic branches of the autonomic 
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nervous system, where decreases in sympathetic arousal and/or increases in parasympathetic 

activity cause heart rate to decrease [65,297]. Subjective withdrawal is also driven by factors 

including overdrive of the locus coeruleus/noradrenergic/sympathetic nervous system [65]. 

Symptoms of withdrawal including increased heart rate, sweating, and respiration, and pupil 

constriction, are driven by increased sympathetic arousal and/or decreased parasympathetic 

activity [65,68], a similar physiology and presentation to that of patients with stress-related 

psychiatric disorders [23,24,298,299]. Successful interventions with tcVNS would be 

expected to reduce both autonomic signs as well as behavioral symptoms in both disorders 

by intervening at the level of the autonomic nervous system.

Conclusions

Acute opioid withdrawal in the context of opioid addiction in patients with OUD is related 

to a complex interaction of central brain regions involved in emotion and peripheral 

autonomic and inflammatory processes. Non-invasive Vagal Nerve Stimulation (nVNS) 

non-pharmacological intervention that offers a promising new tool in the treatment of opioid 

withdrawal. Safety is demonstrated by successful administration in thousands of patients 

with a range of disorders from mTBI to depression, PTSD and OUD without adverse effects. 

Adjunctive use of nVNS and medication management of opioid withdrawal may be useful 

when establishing long-term treatment for OUD with opioid agonists including methadone 

and buprenorphine, or during the abstinence period before the initiation of treatment with 

opioid antagonists like naltrexone treatment, reducing symptoms and enhancing the potential 

for a successful recovery [284]. The non-invasive, non-pharmacological nature of nVNS 

as well as its ease of use in the home and ability to self-administer during periods of 

vulnerability make it a useful tool to reduce the risk of opioid relapse by decreasing 

withdrawal symptoms, pain, and distress. NVNS may be in particular be a useful tool in 

the window of heightened vulnerability to relapse during the initial period of abstinence 

[38]. NVNS poses minimal risk, requires minimal training for self-administration and has 

the potential to be a widely-applied, effective treatment for patients with OUD due to lower 

cost and enhanced convenience [300].
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Figure 1: 
Neural circuits in Opioid Use Disorder (OUD) and Post-traumatic Stress Disorder 

(PTSD) and effects of Non-invasive Vagal Nerve Stimulation (nVNS). OUD and PTSD 

share overlapping brain circuits (hence the association of trauma with OUD) including 

Orbitofrontal Cortex (OFC), thalamus and hippocampus (red colored regions in diagram) 

as well as areas also impacted by nVNS like Prefrontal Cortex (PFC), Anterior Cingulate 

Cortex (ACC), insula and amygdala. nVNS additionally has effects on Somatosensory 

Cortex (SC).
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Figure 2: 
Study protocol for Transcutaneous Cervical Vagus Nerve Stimulation (tcVNS) in Opioid 

Use Disorder (OUD). Patients with OUD discontinued use of opioids by midnight of 

the night before the protocol. They presented early in the morning before initiation of 

Medication for Opioid Use Disorder (MOUD) initiation and underwent measurement of 

physiological variables with wearable sending devices (heart rate, respiratory variability) 

and behavioral variables with rating scales (withdrawal, pain, distress). tcVNS or sham was 

paired with opioid use cues (videos) in a double blind randomized fashion. There were 

significant increases in behavioral and physiological measures of withdrawal in the sham 

versus tcVNS group (i.e. tcVNS blocked measures of opioid withdrawal both subjective and 

objective related to sympathetic nervous system function).
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Table 1:

Active tcVNS and Sham Group Behavioral Measures Before and After Stimulation in Patients with OUD in 

active Opioid Withdrawal.

Outcome Timepoint Active (n=10) Sham (n=11)

VAS-Withdrawal
Pre 5.8±3.1 5.3±2.5

Post 3.9±3.1* 6.3±2.5

VAS-Craving
Pre 7.4±2.7 6.8±2.5

Post 5.2±3.4 6.9±3.5

VAS-Anxiety
Pre 5.6±3.6 6.4±2.3

Post 3.7±3.0* 6.3±2.6

SUDS
Pre 43.1±32.3 45.1±24.5

Post 25.6±30.4* 47.6±28.5

NRS-Pain
Pre 3.5±2.6 4.4±1.7

Post1 2.4±2.5* 5.3±2.3

COWS Total
Pre 7.6±3.4 8.5±3.1

Post 8.2±4.6 10.3±4.2

Abbreviations: VAS, Visual Analog Scale; SUDS, Subjective Units of Distress Scale; NRS, Numerical Rating Scale; COWS, Clinical Opiate 
Withdrawal Scale.

*
p<0.05 for reduction post treatment in the active but not the sham stimulation group.

1
Missing data for one participant in the active group. Adapted from Gazi et al 2022 [279,280].
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