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Abstract
Motivation: In many high-dimensional prediction or classification tasks, complementary data on the features are available, e.g. prior biological
knowledge on (epi)genetic markers. Here we consider tasks with numerical prior information that provide an insight into the importance (weight)
and the direction (sign) of the feature effects, e.g. regression coefficients from previous studies.

Results: We propose an approach for integrating multiple sources of such prior information into penalized regression. If suitable co-data are avail-
able, this improves the predictive performance, as shown by simulation and application.

Availability and implementation: The proposed method is implemented in the R package transreg (https://github.com/lcsb-bds/transreg,
https://cran.r-project.org/package=transreg).

1 Background

For many biomedical prediction or classification studies, there
is a previous study with a similar target and a similar high-
dimensional feature space, e.g. hundreds of microRNAs
(miRNAs), thousands of genes, or millions of single-
nucleotide polymorphisms (SNPs). Given a trained model
from a previous study, we could use it to obtain predicted val-
ues or predicted probabilities for the study of interest, but
these predictions are only reliable if the two studies have the
same target, the same features, and the same population.
However, we expect the feature-target effects from two stud-
ies to be strongly correlated in more situations: slightly differ-
ent targets (e.g. disease status versus disease stage), slightly
different features (e.g. imperfectly overlapping feature space,
different measurement technique), slightly different popula-
tions (e.g. hospitalized versus non-hospitalized patients), or
even different modelling approaches (e.g. simple regression
versus multiple regression). As it is challenging to estimate
feature-target effects in high-dimensional settings, it might be
advantageous to use results from previous studies as prior in-
formation for the study of interest.

Consider two prediction or classification problems, each
one with a target vector and a feature matrix (samples in the
rows, features in the columns). Suppose that both feature ma-
trices cover the same features (each column in the first matrix
corresponds to a column in the second matrix). In two special
cases, the two problems reduce to a single problem: (i) if both
problems have the same target and concern samples from the
same population, they are in essence one ‘single-target’ prob-
lem (combine target vectors and feature matrices by rows,

respectively), potentially with batch effects; and (ii) if both
problems concern the same samples, they are in essence one
‘multi-target’ problem (combine target vectors by columns,
feature matrices are the same). In other cases, however, we
might be in a transfer learning setting (Table 1).

In such settings—two or more regression problems with re-
lated targets and matched features—it might be possible to
transfer information from one problem to another. Transfer
learning, in contrast to multi-target regression and seemingly
unrelated regressions, addresses related regression problems
not for the same but for different samples. If the regression
problems are sufficiently related to each other, we expect their
regression coefficients to be correlated (positively or nega-
tively). When fitting the regression model of interest, we could
therefore account for the estimated regression coefficients
from the other model. Transferring information on the impor-
tance and the direction of the feature effects, we could poten-
tially increase the predictive performance.

Jiang et al. (2016) proposed the prior lasso to account for
prior information in high-dimensional predictive modelling.
Their method involves a preprocessing step and a weighting
step. In the preprocessing step, the prior information is used
to predict the target from the features. They present a solution
for one set of prior effects from a closely related study (multi-
plying the feature matrix by the prior effects), but extensions
to multiple sets of prior effects or loosely related studies may
be feasible. Let y represent the target and let ŷprior represent
the fitted values based on the prior information. In the weight-
ing step, they minimize the penalized combined likelihood
Lðx; y; bÞ þ gLðx; ŷprior; bÞ � qðk; bÞ with respect to the
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coefficients b, where g � 0 (balance) and k � 0 (regulariza-
tion). If the balancing hyperparameter g is larger than zero,
the prior predictions ŷprior influence the estimation of the
parameters b.

Dhruba (2021) proposed a transfer learning method based
on distribution mapping. Even if features or targets follow dif-
ferent distributions in two datasets, it is possible to build a
predictive model using the first dataset and make predictions
for the second dataset. Requiring matched features and tar-
gets in the source dataset and unmatched features and targets
in the target dataset, their method transfers (i) features from
the target to the source domain and (ii) predictions from the
source to the target domain. In contrast, we consider transfer
learning settings with matched features and targets in the tar-
get dataset.

Tian and Feng (2022) proposed and implemented transfer
learning for ridge and lasso regression. Their transfer learning
algorithm involves two steps: (i) estimating common coeffi-
cients for the target dataset and the transferable source data-
sets (x̂) and (ii) estimating the deviations from the common
coefficients to the target coefficients (d̂). Both steps together
lead to the estimated target coefficients (b̂ ¼ x̂þ d̂). Before
applying their transfer learning algorithm, Tian and Feng
(2022) apply a transferable source detection algorithm to ex-
clude source datasets that are too different from the target
dataset. This avoids that non-transferable sources render the
common coefficients misleading for the target dataset (‘nega-
tive transfer’). In the case of lasso regularization in the two
steps, there is sparsity in the common estimates as well as in
the deviations from the common estimates to the target esti-
mates (and thereby also in the target estimates).

The method from Tian and Feng (2022) requires not only the
target dataset but also the source dataset(s). However, data pro-
tection regulations or restrictive data sharing policies might pre-
vent researchers from accessing a source dataset, or the
available storage or processing capacity might be insufficient
for analysing massive source datasets. Although federated trans-
fer learning (Liu et al. 2020) enables the joint analysis of related
datasets without sharing them, it is often not practically feasible
for biomedical researchers to set up corresponding collaborative
analyses with multiple data holders. There is therefore a need
for transfer learning methods that require neither direct nor in-
direct access to the source data but only to the complementary
data (co-data) derived from the source data. Such methods

allow us to exploit publicly available summary statistics from
external studies, e.g. P-values and effect sizes from a genome-
wide association study (GWAS), to increase the predictive per-
formance in the study of interest.

We propose a two-step transfer learning method, modelling
with and without co-data in the first step and combining dif-
ferent models in the second step. Unless the source and target
datasets are very similar, the coefficients from the source data-
set(s) will not fit well to the target dataset. We therefore pro-
pose to calibrate these coefficients—preserving their signs and
their order—so that they can be transferred from the source
dataset(s) to the target dataset. Additionally, we also estimate
the coefficients directly from the target dataset, ignoring the
co-data. The calibrated coefficients from the source dataset(s)
as well as the estimated coefficients from the target dataset al-
low us to predict the outcome from the features. Finally, we
combine the linear predictors from the models with and with-
out co-data and calculate either predicted values (linear re-
gression) or predicted probabilities (logistic regression).

Kawaguchi et al. (2022) proposed a related transfer learn-
ing method. This method penalizes (i) the differences between
the coefficients and weighted sums of the prior effects (one dif-
ference for each feature) and (ii) the weights for these weighted
sums (one weight for each set of prior effects), possibly with
two different penalties (e.g. ridge and lasso). It not only allows
for high-dimensional data (i.e. more features than samples) but
also for high-dimensional co-data (i.e. more sets of prior effects
than samples). When the unknown feature effects are non-
linearly related to an important source of prior effects, however,
this method might leave room for improvement.

In a related transfer learning setting, prior information is
only available on the importance but not on the direction of
the feature effects, i.e. with complementary data consisting of
prior weights rather than prior effects. In the generalized lin-
ear model framework, the weighted lasso (Bergersen et al.
2011), the feature-weighted elastic net (Tay et al. 2023), and
penalized regression with differential shrinkage (Zeng et al.
2021) account for prior weights in the penalty function,
through feature-specific penalty factors or feature-specific reg-
ularization parameters. Adaptive group-regularized ridge re-
gression (van de Wiel et al. 2016) is not only applicable to
categorical co-data but also to numerical co-data (prior
weights), by the means of creating groups of features from
numerical co-data and forcing the group-penalties to be

Table 1. Abstract representation of the dataset of interest (without asterisk, black) and an additional dataset (with asterisk, grey).a
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a Single-target learning (left): same targets, same features�, different samples (from one population). Multi-target learning (centre): different targets, same
features�, same samples. Transfer learning (right): same or different targets, matched features�, different samples (from one or two populations). �Partially
overlapping feature spaces are also possible. See, for example, Rauschenberger and Glaab (2021) for multi-target learning or Section 2.8 “Extension” for
transfer learning.

2 Rauschenberger et al.



monotonically decreasing. An extension from van Nee et al.
(2021) makes this approach even more suitable for numerical
co-data. For single sources of co-data, it might be possible to
extend these methods to prior information on the importance
as well as the direction of feature effects by imposing sign
constraints on the coefficients. Prior weights have not only
been exploited in regression analysis, e.g. co-data moderated
random forests (te Beest et al. 2017) adapt the sampling
probabilities of the features to the prior weights.

2 Materials and methods

2.1 Model

Suppose one target and p features are available for n samples,
with many more features than samples (p� n). We index the
samples by i in f1; . . . ;ng and the features by j in f1; . . . ;pg.
Our aim is to estimate the generalized linear model:

E½yi� ¼ h�1 b0 þ
Xp

j¼1

bjxij

0
@

1
A :

For any sample i, the model expresses the expected value of
its target (yi) as a function of its features (xi1; . . . ; xip). The
link function hð�Þ depends on the family of distributions for
the target (Gaussian: identity, binomial: logit, Poisson: log).
In the linear predictor, b0 represents the unknown intercept,
and bj represents the unknown slope of feature j (i.e. the effect
of the feature on the linear predictor of the target). Given the
estimated intercept b̂

?

0 and the estimated slopes fb̂?1; . . . ; b̂
?

pg,
we could predict the target of previously unseen samples:

ŷi ¼ h�1 b̂
?

0 þ
Xp

j¼1

b̂
?

j xij

0
@

1
A :

2.2 Co-data

Suppose m sources of co-data are available, indexed by k in
f1; . . . ;mg, with many fewer sources than samples (m� n).
Let zjk indicate the prior effect from source k for feature j.
Our method is designed for quantitative co-data that provide
an insight into the importance (absolute value) and the direc-
tion (sign) of the feature effects. Each set of prior effects
(�1 	 z
k 	 1) is assumed to be positively correlated with
the true coefficients (corðz
k;bÞ > 0). For any source of co-
data, the prior effects may be re-scaled (not re-centred), for
example to the interval from �1 to þ1. In other words, the
proposed method is invariant under multiplication of the
prior effects by a positive scalar (z! c� z where c> 0). We
explain in the next section why this is important.

It might seem trivial to also allow for co-data that only pro-
vide an insight into the importance but not the direction of the
feature effects (i.e. prior weights instead of prior effects). Each
set of prior weights (0 	 z
k 	 1) is assumed to be positively
correlated with the true absolute coefficients (corðz
k; jbjÞ > 0).
To obtain prior effects, one might want to assign the signs of
the Spearman correlation coefficients between the target and
the features to the prior weights. However, marginal effects and
conditional effects can have opposite signs. If we wanted to ex-
tend our approach to prior weights, we would have to discover
the signs inside the calibration procedure (see below), which

would be related to high-dimensional regression with binary
coefficients (Gamarnik and Zadik 2017).

2.3 Base-learners with co-data

Suppose we are in a transfer learning setting with two predic-
tion or classification problems. For simplicity, we assume that
the features do not differ in scale between the two problems.
For illustration, we consider two artificial situations (where
we would not use transfer learning in practice): (i) if both
problems concern the same target on the same scale and the
samples come from the same population, we could use the es-
timated regression coefficients from one problem to make pre-
dictions for the other problem; and (ii) if the two problems
concern the same target on different scales, we could also re-
cycle the estimated regression coefficients, but we would have
to adjust for the different scales.

When transferring estimated regression coefficients from
one problem to another problem, it might not only be neces-
sary to change their scale but it might also be beneficial to
change their shape. For example, it might be that for one
problem weak and strong effects matter, while for the other
problem only strong effects matter. We should therefore also
be able to make differences between small coefficients more
important or less important than those between large coeffi-
cients. We propose two calibration methods, namely expo-
nential and isotonic calibration, to adapt the prior
information to the data. For each source of co-data k, both
calibration methods estimate the model:

E½yi� ¼ h�1 ak þ
Xp

j¼1

cjkxij

0
@

1
A ;

where the calibrated prior effects fĉ1k; . . . ; ĉpkg depend on the
initial prior effects fz1k; . . . ; zpkg. The difference between ex-
ponential and isotonic calibration is how the former depend
on the latter.

• Exponential calibration: Let cjk ¼ hksignðzjkÞjzjkjsk , for j in
f1; . . . ; pg, where the factor hk and the exponent sk

are non-negative real numbers (hk � 0 and sk � 0). We
first fit one simple non-negative regression for different
values of sk (i.e. estimate ak and hk given sk), and then
optimize sk. Once hk and sk have been estimated, the
initial prior effects zjk determine the final prior effects
ĉjk ¼ ĥksignðzjkÞjzjkjŝk , for all j in f1; . . . ;pg. The esti-
mated factor ĥk and the estimated exponent ŝk allow the
model to change the scale and the shape of the prior
effects. For example, ĥk ¼ 0 sets them to zero, jĥkj < 1
makes them smaller, jĥkj > 1 makes them larger, ŝk ¼ 0
sets them to the same value, ŝk < 1 makes (absolutely)
large ones more similar, and ŝk > 1 makes (absolutely)
small ones more similar. If one or more sets of prior effects
might be negatively associated with the true coefficients,
we could remove the non-negativity constraints from the
simple regressions (allowing ĥk < 0 to invert the signs of
the prior effects).

• Isotonic calibration: We estimate fc1k; . . . ; cpkg under the
constraint that the signs of the initial prior effects zjk deter-
mine the signs of the final prior effects ĉjk (i.e.
ĉjk ¼ 0jzjk ¼ 0, ĉjk � 0jzjk > 0; ĉjk 	 0jzjk < 0) and un-
der the constraint that the order of the initial prior effects
determines the order of the final prior effects (i.e.

Penalized regression with multiple sources of prior effects 3



ĉjk � ĉlkjzjk � zlk; ĉjk 	 ĉlkjzjk 	 zlk), for all j and l in
f1; . . . ; pg. If one or more sets of prior effects might be
negatively associated with the true coefficients, we could
fit each model with these constraints and the inverted con-
straints, and then select the better fit.

• To make optimization more efficient, we rewrite the sign-
and order-constrained problem as a sign-constrained prob-
lem (see Table 2). For each source of co-data, we order the
columns of the feature matrix by increasing values of the
prior effects. Suppose the first q columns correspond to
negative prior effects and the last p–q columns correspond
to non-negative prior effects. We take the cumulative sum
of the feature columns from left to right for the former (col-
umns 1 to q) and from right to left for the latter (columns p
to qþ 1). We then estimate the coefficients on the left un-
der non-positivity constraints, and those on the right under
non-negativity constraints. Formally, the model equals

E½yi� ¼ h�1 ak þ
Xp

j¼1

djkwij

0
@

1
A ;

where wij ¼
Pj

l¼1 xiðlÞ and djk 	 0 for j in f1; . . . ;qg, and
wij ¼

Pp
l¼j xiðlÞ and djk � 0 for j in fqþ 1; . . . ;pg, with the

subscript within brackets indicating the order of the prior
effects. The linear predictor of the sign-constrained model, i.e.
ak þ

Pp
j¼1 djkwij, is equivalent to the linear predictor of the

order-constrained model, i.e. ak þ
Pp

j¼1 cðjÞkxiðjÞ, because

Xq

j¼1

djkwij ¼
Xq

j¼1

djk

Xj

l¼1

xiðlÞ

0
@

1
A

¼
Xq

j¼1

Xq

l¼j

dlk

0
@

1
AxiðjÞ

¼
Xq

j¼1

cðjÞkxiðjÞ ;

Xp

j¼qþ1

djkwij ¼
Xp

j¼qþ1

djk

Xp

l¼j

xiðlÞ

0
@

1
A

¼
Xp

j¼qþ1

Xj

l¼qþ1

dlk

0
@

1
AxiðjÞ

¼
Xp

j¼qþ1

cðjÞkxiðjÞ :

After estimating the coefficients of the sign-constrained
model by maximum likelihood, we therefore estimate those of

Table 2. Isotonic calibration.a

ðiÞ x
;1; z1;k x
;2; z2;k � � � x
;q�1; zq�1;k x
;q; zq;k

ðiiÞ x
;ð1Þ x
;ð2Þ � � � x
;ðq�1Þ x
;ðqÞ

ðiiiÞ w
;1 ¼
x
;ð1Þ

w
;2 ¼
x
;ð1Þ þ x
;ð2Þ

� � � w
;q�1 ¼
x
;ð1Þ þ � � � þ x
;ðq�1Þ

w
;q ¼
x
;ð1Þ þ � � � þ x
;ðqÞ

ðiiiÞ� d̂1;k d̂2;k � � � d̂q�1;k d̂q;k

ðiiÞ�
ĉð1Þ;k ¼

d̂1;k þ � � � þ d̂q;k

ĉð2Þ;k ¼
d̂2;k þ � � � þ d̂q;k

� � �
ĉðq�1Þ;k ¼

d̂q�1;k þ d̂q;k

ĉðqÞ;k ¼
d̂q;k

ðiÞ� ĉ1;k ĉ2;k � � � ĉq�1;k ĉq;k

ðiÞ x
;qþ1; zqþ1;k x
;qþ2; zqþ2;k � � � x
;p�1; zp�1;k x
;p; zp;k

ðiiÞ x
;ðqþ1Þ x
;ðqþ2Þ � � � x
;ðp�1Þ x
;ðpÞ

ðiiiÞ w
;qþ1 ¼
x
;ðqþ1Þ þ � � � þ x
;ðpÞ

w
;qþ2 ¼
x
;ðqþ2Þ þ � � � þ x
;ðpÞ

� � � w
;p�1 ¼
x
;ðp�1Þ þ x
;ðpÞ

w
;p ¼
x
;ðpÞ

ðiiiÞ� d̂qþ1;k d̂qþ2;k � � � d̂p�1;k d̂p;k

ðiiÞ�
ĉðqþ1Þ;k ¼

d̂qþ1;k

ĉðqþ2Þ;k ¼
d̂qþ1;k þ d̂qþ2;k

� � �
ĉðp�1Þ;k ¼

d̂qþ1;k þ � � � þ d̂p�1;k

ĉðpÞ;k ¼
d̂qþ1;k þ � � � þ d̂p;k

ðiÞ� ĉqþ1;k ĉqþ2;k � � � ĉp�1;k ĉp;k

a The aim is to (i) estimate the effects of the features under sign and order constraints determined by q negative (top) and p–q non-negative (bottom) prior
effects, i.e. estimate c1k; . . . ; cpk for x1; . . . ; xp under ĉ jk ¼ 0jzjk ¼ 0, ĉ jk � 0jzjk > 0; ĉ jk 	 0jzjk < 0; ĉ jk � ĉ lkjzjk � zlk, and ĉ jk 	 ĉ lkjzjk 	 zlk. This can be
solved by (ii) estimating the effects of the features ordered by the co-data under sign and order constraints, i.e. estimate cð1Þ;k; . . . ; cðpÞ;k for xð1Þ; . . . ; xðpÞ under
ĉðjÞ;k 	 0jj 	 p; ĉðjÞ;k � 0jj > p, and ĉð1Þ;k 	 . . . 	 ĉðpÞ;k. This in turn can be solved by (iii) estimating the effects of the combined features under sign
constraints, i.e. estimate d1; . . . ; dp for w1; . . . ;wp under d̂ j 	 0jj 	 p and d̂ j � 0jj > p. Our algorithm receives the original features and the prior effects (i),
orders the features by the prior effects (ii), combines the features (iii), estimates the effects of the combined features (iii)�, calculates the estimated effects of the
ordered features (ii)�, and returns the estimated effects of the original features (i)�. �A row with an asterisk contains the estimates for the features in the row
with the same number but without an asterisk.
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the order-constrained model by ĉðjÞk ¼
Pq

l¼j d̂lk for j in
f1; . . . ;qg and ĉðjÞk ¼

Pj
l¼qþ1 d̂lk for j in fqþ 1; . . . ;pg.

While exponential calibration involves three unknown
parameters, namely the intercept ak, the factor hk, and the ex-
ponent sk, isotonic calibration involves 1þ p unknown
parameters, namely the intercept ak and the slopes
ck ¼ fc1k; . . . ; cpkg, for each set of co-data. Figure 1 shows the
difference between exponential and isotonic calibration in
several empirically assessed scenarios.

After calibration, we pre-assess the utility of each set of co-
data. To do this, we calculate the residuals (depending on the
family of distributions) between the fitted and the observed
targets. We suggest to retain a set of co-data only if the resid-
uals are significantly smaller than those of the intercept-only
model (one-sided Wilcoxon signed-rank test) at the nominal
5% level (P-value 	 :05).

2.4 Base-learners without co-data

We also fit the model without any co-data. We estimate the
coefficients by maximizing the penalized likelihood:

b̂ ¼ argmax
b

fLðx; bÞ � qðk; bÞg ;

where Lðx;bÞ is the likelihood and qðk; bÞ is the penalty. The
likelihood depends on the family of distributions (Gaussian,
binomial, Poisson), and the penalty can be the ridge (L2) or

the lasso (L1) penalty. The penalty shrinks the squared (ridge)
or absolute (lasso) slopes fb1; . . . ;bpg towards zero (without
penalizing the intercept b0). We denote the estimated intercept
by b̂0 and the estimated slopes by fb̂1; . . . ; b̂pg.

2.5 Cross-validation

We split the samples into 10 folds to perform 10-fold internal
cross-validation. In each iteration, we fit the models to nine
included folds and predict the target for the excluded fold.

Let the n�m matrix Ĥ
ð0;cvÞ

represent the feature-
dependent part of the cross-validated linear predictors from
the models with co-data. Specifically, the entry in row i (sam-
ple) and column k (source of co-data) equals

gð0;cvÞ
ik ¼ 0� â�jðiÞ

k þ
Xp

j¼1

ĉ�jðiÞ
jk xij ;

where the superscript �jðiÞ indicates that the (ignored) inter-
cept ak and the slopes cjk for j in f1; . . . ; pg are estimated
without using the fold of sample i, as in Rauschenberger and
Glaab (2021).

The models without any co-data do not only have 1þ p un-
known parameters, namely the intercept b0 and the slopes
fb1; . . . ; bpg, but also the unknown hyperparameter k. In each
iteration, we fit this model for a decreasing sequence of 100
values for the regularization parameter k, indexed by l in
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Figure 1. Final prior effects c (y-axis) against initial prior effects z (x-axis), under exponential calibration (red points on continuous curve) and isotonic

calibration (blue points on discontinuous curve). The thin black line corresponds to perfect calibration (c ¼ b). We simulated the feature matrix X from a

standard Gaussian distribution (n¼ 200, p¼ 500) and the initial prior effects z from a trimmed standard Gaussian distribution (trimmed below the 1% and

above the 99% quantile). We set the true coefficients to (1) b ¼ z, (2) b ¼ signðzÞ
ffiffiffiffiffi
jzj

p
, (3) b ¼ signðzÞz2, (4) b ¼ I½z > 0�z, (5) b ¼ I½z > 1�, or

(6) b ¼ �I½z 	 0�
ffiffiffiffiffi
jzj

p
þ I½z > 0�z2. And we simulated the response vector y from Gaussian distributions with the means g and the variance VarðgÞ, where

g ¼ b. While exponential calibration performs slightly better in the first three scenarios (top), isotonic calibration performs much better in the last three

scenarios (bottom).
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f1; . . . ;100g, using the computationally efficient approach
from Friedman et al. (2010, glmnet).

Accordingly, let the n� 100 matrix Ĥ
ð1;cvÞ

represent the
cross-validated linear predictors from the model without co-
data. Specifically, the entry in row i (sample) and column l
(regularization parameter) equals

gð1;cvÞ
il ¼ b̂

�jðiÞ;l
0 þ

Xp

j¼1

b̂
�jðiÞ;l
j xij ;

where the superscripts �jðiÞ and l indicate that the intercept
b0 and the slopes fb1; . . . ;bpg are estimated without using the
fold of sample i and given the regularization parameter kl.

To optimize the predictive performance of the co-data inde-
pendent model, we would select the k that minimizes the
cross-validated loss (kmin). As we base our predictions not
only on the co-data independent model but also on the co-
data dependent model(s), kmin might be too small. The reason
is that the co-data might be informative to the extent that the
co-data independent model requires more penalization. We
could let the meta-learner select the optimal k from the whole
sequence, but this might render the inclusion and exclusion of
co-data dependent models unstable. Our ad hoc solution is to
include the optimal regularization parameter for the co-data
independent model (kmin) and a slightly larger one (k1se). The
latter is given by the one-standard-error rule, which increases
k until the cross-validated loss equals its minimum plus one
standard error.

We concatenate Ĥ
ð0;cvÞ

with the columns of Ĥ
ð1;cvÞ

that cor-
respond to kmin and k1se to obtain the n� ðmþ 2Þ matrix

Ĥ
ðcvÞ

. The first m columns correspond to the models with co-
data, and the last two columns correspond to the model with-
out co-data.

2.6 Meta-learner

We combine the base-learners with and without co-data by
stacked generalization (Wolpert 1992), on the level of the lin-
ear predictors (Rauschenberger et al. 2021). In the meta-layer,
we regress the target on the cross-validated linear predictors
from the base-layer:

E½yi� ¼ h�1 x0 þ
Xmþ2

k¼1

xkĤ
ðcvÞ
ik

0
@

1
A :

Leaving the intercept unrestricted ð�1 < x0 < þ1Þ but
imposing the lower bound zero on the slopes ðx1 � 0; . . . ;
xmþ2 � 0Þ, we estimate these coefficients under lasso regulari-
zation. Due to the feature selection property of the lasso, a
source of co-data can be excluded (x̂k ¼ 0) or included
(x̂k > 0), where k is in f1; . . . ;mg. Similarly, the models with-
out co-data can be excluded (x̂k ¼ 0) or included (x̂k > 0),
where k ¼ mþ 1 for the model with kmin and k ¼ mþ 2 for
the model with k1se. The estimated slopes function as weights
for the co-data dependent models (x̂1; . . . ; x̂m) and for the co-
data independent models (x̂mþ1; x̂mþ2). Thus, we do not only
select sources but also weight them according to their relevance.

2.7 Interpretation

The coefficients b̂min and b̂1se give insight into the feature-
target effects estimated without co-data, with b̂min;j and b̂1se;j
representing the effect of feature j, where j is in f1; . . . ; pg.

The coefficients x̂ give insight into the importance of the sour-
ces of co-data, with x̂k representing the importance of source
k, where k is in f1; . . . ;mg. For a previously unseen sample i,
the predicted value is:

ŷi ¼ h�1 x̂0 þ
Xmþ2

k¼1

x̂kĤ ik

0
@

1
A ¼ h�1 b̂

?

0 þ
Xp

j¼1

b̂
?

j xij

0
@

1
A ;

where b̂
?

0 ¼ x̂0 þ x̂mþ1b̂min;0 þ x̂mþ2b̂1se;0

and b̂
?

j ¼
Xm
k¼1

x̂kĉjk

 !
þ x̂mþ1b̂min;j þ x̂mþ2b̂1se;j :

(1)

Thus, the estimated effect for a feature (b̂
?

j ) is a weighted sum
of estimated coefficients with co-data (ĉj1; . . . ; ĉjm) and the es-
timated coefficients without co-data (b̂min;j; b̂1se;j).

Sparse models (few non-zero coefficients) are often consid-
ered to be more interpretable than dense models (many non-
zero coefficients). While the original coefficients are dense
(
Pp

j¼1 I½b̂j 6¼ 0� ¼ p) or sparse (
Pp

j¼1 I½b̂j 6¼ 0� � p) depending
on the choice between ridge and lasso regularization, the
weights may contain some zeros due to significance filtering
or lasso regularization (

Pmþ2
k¼1 I½x̂k 6¼ 0� 	 mþ 2). As soon

as one set of dense prior effects is selected, however, the com-
bined coefficients also become dense (

Pp
j¼1 I½b̂

?

j 6¼ 0��p). This
means that the feature selection property of the lasso is not
maintained. We should therefore choose between ridge and
lasso regularization (i) to make the model without co-data
more predictive or interpretable (ii) or to make the model
with co-data more predictive (iii) but not to make the model
with co-data more interpretable.

2.8 Extension

In some applications, prior information might be available
and reliable for some features but missing or unreliable for
other features. Note that a missing prior effect can be
interpreted as an unreliable prior effect of zero. Although the
base-learners with co-data might still be predictive, the meta-
learner (weighted average of the base-learners with and
without co-data) might be not more predictive than the base-
learner without co-data. The reason is that the meta-learner
assigns the same weight to all prior effects, rather than more
weight to available and reliable prior effects and less weight
to missing or unreliable prior effects. We therefore propose an
alternative approach for applications with partially informa-
tive sources of co-data.

In the following, we use the term ‘meta-features’ for the
cross-validated linear predictors from the base learners with
co-data. Each meta-feature—one column of the n�m matrix

Ĥ
ð0;cvÞ

—corresponds to one source of co-data. In the meta-
layer, we regress the target on the meta-features and the base-
features:

E½yi� ¼ h�1 b0 þ
Xm
k¼1

xkĤ
ð0;cvÞ
ik þ

Xp

j¼1

bjxij

0
@

1
A ;

with non-negativity constraints for the weights for the meta-
features ðx1 � 0; . . . ;xm � 0Þ but without constraints for the
intercept (b0) and the slopes for the base-features ðb1; . . . ;bpÞ.

We estimate the weights for the meta-features and the slopes
for the base-features using penalized maximum likelihood:
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fx̂; b̂g ¼ argmax
fx;bg

fLðx; x;bÞ � qðk; bÞg ;

where Lðx; x;bÞ is the likelihood and qðk; bÞ is the penalty.
We do not penalize the weights for the meta-features (m� n)
but only the slopes for the base-features (p� n). The more
sources of co-data are available, the more it becomes neces-
sary to penalize their weights. But then the weights x and the
slopes b might need differential penalization, for example a
lasso penalty for the meta-features (selection of sources) and a
ridge penalty for the base-features (many small effects). To
make this computationally efficient, we would need a fast
cross-validation procedure for multiple penalties (cf. van de
Wiel et al. 2021) with non-negativity constraints (meta-fea-
tures) and mixed lasso and ridge penalization (meta-features
versus base-features). This extension is therefore only applica-
ble in settings with few sources of co-data.

The predicted value for a previously unseen sample i is

ŷi ¼ h�1 b̂0 þ
Xm
k¼1

x̂kĤ
ð0Þ
ik þ

Xp

j¼1

b̂jxij

0
@

1
A

¼ h�1 b̂
?

0 þ
Xp

j¼1

b̂
?

j xij

0
@

1
A ;

where b̂
?

0 ¼ b̂0

and b̂
?

j ¼
Xm
k¼1

x̂kĉjk

 !
þ b̂j :

(2)

As the coefficients b are shrunk towards zero but the coeffi-
cients x are not penalized, the combined coefficients b? are
shrunk towards a weighted sum of the calibrated prior effects
(ĉx̂). When the regularization parameter tends to infinity
(k!1), the estimated deviations from this weighted sum ap-
proach zero ðb̂! 0Þ and the combined estimates approach
this weighted sum ðb̂? ! ĉx̂Þ. Lasso regularization ensures
sparsity in the deviations from the calibrated prior effects
(
Pp

j¼1 I½b̂j 6¼ 0� � p)—in contrast to ridge regularization—
but not in the combined coefficients (

Pp
j¼1 I½b

?
j 6¼ 0� � p). As

the combined coefficients may deviate more from unreliable
than from reliable calibrated prior effects, this extension is
suitable for partially informative co-data. As opposed to
‘standard stacking’, we refer to this extension as ‘simulta-
neous stacking’. Algorithm 1 includes the pseudo-code for
both approaches.

3 Simulation

We performed two simulation studies to compare the predic-
tive performance between our transfer learning method and
the one from Tian and Feng (2022). In contrast to the method
from Tian and Feng (2022), which requires the feature-target
effects in the target and the source dataset(s) to be positively
correlated and on the same scale (i.e. btarget � bsource), our
method also allows for negatively correlated effects and for
effects on different scales (i.e. btarget � c� bsource). Although it
is possible to overcome this restriction by inverting the target
(Gaussian: ysource ! �ysource, binomial: ysource ! 1� ysource),
by re-scaling the target (Gaussian: ysource ! 1=c� ysource), or
by inverting or re-scaling the features (X source ! c� X source),
we believe it is more user-friendly to directly allow for

negative correlations and different scales. To ensure a fair
comparison between the two methods, we simulate positively
correlated effects on the same scale. Furthermore, although
the method from Tian and Feng (2022) is in theory also suit-
able for mixed response types, the current version of the re-
lated R package glmtrans requires the source dataset(s) and
the target dataset to have the same response type (Gaussian,
binomial, Poisson). We therefore always simulate the same re-
sponse type in the source and target domains. In addition, we
also compared our method with the one from Kawaguchi
et al. (2022, xrnet).

3.1 External simulation

We use the simulation approach from Tian and Feng (2022).
In each iteration, we call the function glmtrans::models
with the arguments (1) family of distributions: family¼
”gaussian” (default) or family¼”binomial”, (2) source
or target datasets: type¼”all” (default), (3) difference be-
tween source and target coefficients: h¼5 (default) or
h¼250, (4) number of source datasets: K¼5 (default), (5)
sample size for target dataset: n.target¼100 (default), (6)
sample size for each source dataset: n.source¼150 (de-
fault), (7) number of non-zero coefficients: s¼15 (default) or
s¼50, (8) number of features: p¼1000 (default), number of
transferable source datasets: Ka¼1, Ka¼3 or Ka¼K¼5
(default).

The simulation from Tian and Feng (2022) involves the fol-
lowing steps:

• Features: The correlation between features i and j is set to
Rij ¼ 0:5ji�jj, where i and j are in f1; . . . ;pg. Let R repre-
sent the correlation matrix and let R ¼ R>R represent its
Cholesky decomposition, where R is an upper triangular
matrix. For the target dataset (n0 ¼ 100) and each source
dataset (n1 ¼ � � � ¼ n5 ¼ 150), the n0 � p matrix X0 ¼
E0R and the nk � p matrices Xk ¼ EkR for k in f1; . . . ;5g
represent the features, where the n0 � p matrix E0 and the
nk � p matrices Ek contain Gaussian noise.

• Coefficients: Let bj represent the effect of feature j, for j in
f1; . . . ; pg, and denote the p-dimensional coefficient vec-
tors by b0 for the target dataset and fb1; . . . ; b5g for the
source datasets. For the target dataset, the first s elements
are set to bj ¼ 0:5 (causal) and the last p–s elements are
set to bj ¼ 0 (non-causal). For transferable source data-
sets, the first s elements are set to bj ¼ 0:5þ ð�1Þzj h=p
and the last p–s elements are set to bj ¼ ð�1Þzj h=p, where
zj is a realization of zj  Bernoullið0:5Þ. For non-transfer-
able source datasets, the first s elements are set to bj ¼
ð�1Þzj 2h=p (non-causal), the next s elements are set to
bj ¼ 0:5þ ð�1Þzj 2h=p (causal), and the last p� 2s ele-
ments are a random sample of s causal and p� 3s non-
causal elements generated in the same way. To obtain a
non-transferable source, it would be sufficient to ran-
domly select causal elements rather than inverting causal
and non-causal elements (indices 1 to 2s).

• Targets: In the Gaussian case, the target vector is the
n-dimensional vector y0 ¼ X0b0 þ �0 for the target data-
set, and the n-dimensional vector yk ¼ 0:5þ Xkbk þ �k
for source dataset k, where the n-dimensional vectors
f�0; . . . ; �5g contain Gaussian noise. In the binomial case,
let p0 ¼ 1=ð1þ expð�X0b0ÞÞ for the target dataset and
pk ¼ 1=ð1þ expð�0:5� XkbkÞÞ for the source datasets.
The n-dimensional vectors fy0; . . . ; y5g are the target
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vectors, with each element following a Bernoulli distribu-
tion with the probability given by fp0; . . . ;p5g.

3.2 Internal simulation

The simulation from Tian and Feng (2022) uses the same ef-
fect size for all causal features and a decreasing correlation
structure with a fixed base. We therefore designed our own

data-generating mechanism (i) to simulate different effect sizes
for different causal features (bj 2 R instead of bj 2 f0; 0:5g)
and (ii) to vary the strength of correlation between features
(rij ¼ qx

ji�jj instead of rij ¼ 0:5ji�jj).
Our simulation involves the following steps:

• Features: Setting the mean of feature i to li ¼ 0, the vari-
ance of feature i to rii ¼ 1, and the covariance between

Algorithm 1. Pseudo-code for the proposed transfer learning method with standard stacking (left) and simultaneous stacking

(right). Sub-procedures (italicized) are explained below.

• Exp/Iso-Calibrate
†

: Performs exponential or isotonic calibration (Section). Requires target vector, feature matrix, and prior effects. Ensures

calibrated prior effects.

• Ridge/Lasso-CV
†

: Tunes the hyperparameter of ridge or lasso regression by k-fold cross-validation. Requires target vector, feature matrix,

and fold identifiers. Ensures optimal regularization parameter.

• Ridge/Lasso-Fit
†

: Estimates the parameters of ridge or lasso regression. Requires target vector, feature matrix, and regularization

parameter. Ensures estimated coefficients.

• Sta/Sim-Combine: Combines estimated parameters from standard stacking (Equation 1) or simultaneous stacking (Equation 2). Requires

estimated parameters from base-learners and meta-learner. Ensures combined estimates.

†

Note: The procedures Exp/Iso-Calibrate, Ridge/Lasso-CV, and Ridge/Lasso-Fit depend on the family of distributions (Gaussian versus bino-

mial), but they also require choices (exponential versus isotonic, ridge versus lasso).
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features i and j to rij ¼ qji�jj
x , for all i and j in f1; . . . ;pg,

we simulate multiple feature matrices from the multivari-
ate Gaussian distribution with mean vector l and covari-
ance matrix R, namely the n0 � p feature matrix X0 for
the target dataset, and the n1=2=3 � p feature matrices
fX1;X2;X3g for the source datasets (n0 ¼ 100; n1 ¼ n2 ¼
n3 ¼ 150;p ¼ 500).

• Coefficients: Setting the mean and the variance for dataset k
to lk ¼ 0 and rkk ¼ 1, for all k in f0; 1;2;3g, and the co-
variance between datasets k and l to rkl ¼ 0 if either k or l
equals 1, or to rkl ¼ qb if both k and l are in f0, 2, 3g, we
simulate two p� 4 matrices from the multivariate Gaussian
distribution with mean vector l and covariance matrix R,
namely B1 and B2. We define the coefficients as
B ¼ B1I½B2 > /�1ð1� pÞ�, where / is the Gaussian cumu-
lative distribution function and p equals 0.2 (dense) or 0.05
(sparse), and denote the p-dimensional coefficient vectors by
b0 for the target dataset and by fb1; b2; b3g for the source
datasets. While one set of coefficients is non-transferable
(b1), we transform the transferable sets of coefficients with
b2 ! signðb2Þjb2j2 and b3 ! signðb3Þ

ffiffiffiffiffiffiffiffi
jb3j

p
.

• Targets: For the target dataset, we compute z0 ¼ X0b0
and standardize z0 to obtain z�0. For the source datasets,
we proceed similarly to obtain fz�1; z�2; z�3g. The simulated
targets equal yk ¼ h�1ð

ffiffiffiffi
w
p

z�k þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�w
p

�kÞ, where hð�Þ is
a link function and �k follows a standard Gaussian
distribution, for k in f0; . . . ;3g. Given 0 	 w 	 1,
we have Varð

ffiffiffiffi
w
p

z�k þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�w
p

�kÞ ¼ wVarðz�kÞ þ ð1�wÞ
Varð�kÞ ¼ 1. While hð�Þ is the identity link in the Gaussian
case, it is the logit link in the binomial case, where the sim-
ulated probabilities are rounded to simulated classes. We
set the signal-to-noise ratio to 4:1 (w ¼ 0.8).

3.3 Simulation results

In addition to the target dataset, the method from Tian and Feng
(2022, glmtrans) requires the source datasets, while our
method (transreg) and the method from Kawaguchi et al.
(2022, xrnet) require the prior effects derived from the source
datasets. Since these methods have different requirements, we
first simulate the source datasets (for glmtrans) and then de-
rive the prior effects from the simulated source datasets (for
xrnet and transreg). As prior effects, we use the estimated
coefficients from penalized regression on the source datasets. We
choose the type of regularization for all methods subject to the
simulation setting, namely ridge regularization for dense settings
(glmtrans: a¼ 0; xrnet and transreg: asource ¼ atarget ¼ 0)
and lasso or lasso-like elastic net regularization for sparse
settings (glmtrans: a¼ 1; xrnet and transreg:
asource ¼ 0:95; atarget ¼ 1). The idea of the lasso-like elastic net
regularization is to render the prior information more stable.

In each simulation setting, we simulate 100 training sam-
ples and 10 000 testing samples (hold-out) for the target data-
set. Tables 3 and 4 show the predictive performance for the
testing data in the external and internal simulation, under ex-
ponential and isotonic calibration. We observe that transfer
learning (with glmtrans, xrnet, or transreg) often leads
to a significant improvement with respect to standard penal-
ized regression (with glmnet). Concerning the proposed
method, this holds for the two different calibration
approaches and the two different stacking approaches. These
simulation studies do not show that the proposed transfer
learning method outperforms other transfer learning methods.

The advantage of the proposed method as compared to the
method from Tian and Feng (2022, glmtrans) is that it does
not require the source data but only the prior effects derived
from the source data, and the advantage as compared to the
method from Kawaguchi et al. (2022, xrnet) is that it allows
for non-linear relationships between the prior effects and the
true effects. While the method from Kawaguchi et al. (2022,
xrnet) shrinks the coefficients towards a linear function of
the prior effects, the proposed method adapts the prior effects
to the true effects through exponential or isotonic calibration.

4 Applications

4.1 External applications

First, we consider an adapted version of the application on
cervical cancer from van de Wiel et al. (2016). The aim is to
transfer information from a methylation study with biopsy
samples to another methylation study with self-collected sam-
ples in order to better discriminate between low-grade and
high-grade precursor lesions. Specifically, we transfer the
signs of the effect sizes and the P-values from the source data-
set to the target dataset (n¼ 44 samples, p ¼ 9491 features).
We then examine whether this prior information increases the
predictive performance of ridge regression, which is more pre-
dictive than lasso regression in this application. Next to our
transfer learning method (transreg) and the one from
Kawaguchi et al. (2022, xrnet), we consider the co-data
learning methods from Tay et al. (2023, fwelnet) and van
Nee et al. (2021, ecpc). While these transfer learning meth-
ods exploit information on the importance and direction of
the effects (co-data: �signðcoefÞ log 10ðP� valueÞ), these co-
data learning methods only exploit information on their im-
portance (co-data: � log 10ðP� valueÞ). After 10 repetitions
of 10-fold cross-validation, we observe that the proposed
method (not with exponential but with isotonic
calibration) often increases the predictive performance of
ridge regression (transreg.exp.sta: 0/10, transreg.
exp.sim: 4/10, transreg.iso.sta: 7/10, transreg.
iso.sim: 10/10, fwelnet: 7/10, ecpc: 5/10, xrnet: 3/10).
We also observe that exploiting information on the impor-
tance as well as the direction of the effects (transreg)
can be more beneficial than exploiting information on the im-
portance of the effects only (fwelnet, ecpc), as can be seen
in the mean change in cross-validated logistic deviance
(transreg.exp.sta: þ6:56%, transreg.exp.sim:
þ0:43%, transreg.iso.sta: �2.50%, transreg.
iso.sim: �9.25%, fwelnet: �0.12%, ecpc: �1.52%,
xrnet: þ2:59%). The relatively poor performance of the
competing transfer learning method (xrnet) might be caused
by a non-linear relationship between the prior effects (trans-
formed P-values) and the true effects. Here, isotonic calibra-
tion outperforms exponential calibration, and simultaneous
stacking outperforms standard stacking. A potential explana-
tion for the large difference in performance between exponen-
tial and isotonic calibration is that positive effects might be
more important than negative effects in this application, for a
biological reason (methylation increases the probability of
cancer) and a statistical reason (effects of overexpression are
easier to detect than those of underexpression). While expo-
nential calibration behaves symmetrically for negative and
positive prior effects, isotonic calibration can shrink negative
prior effects towards zero.
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Second, we consider an adapted version of the application
on pre-eclampsia from Tay et al. (2023). Measurements of
p ¼ 1125 plasma proteins are available for n¼ 166 patients
at multiple time points (48� 2þ 8� 3þ 20� 4þ 74� 5
þ16� 6 ¼ 666). The aim is to transfer information from
late time points (gestational age > 20 weeks) to early time
points (gestational age 	 20 weeks). We repeatedly split
the patients into one source dataset and one target dataset.
Patients with only late time points are always in the source
dataset, and other patients are randomly allocated to the
source and the target dataset. (Note that this application is
somewhat artificial, as it might be better to drop transfer
learning in favour of using all earliest time points in the re-
gression of interest.) Using the source dataset, we estimate
two logistic regression models under ridge regularization,
once using the early time points and once using all time
points. For each patient, all time points are assigned to the
same cross-validation fold, and the weight is split
evenly among the time points. We then use the two sets of
estimated regression coefficients as co-data for the target
dataset. In the regression for the target dataset, we only in-
clude the earliest time point of each patient. Using 10-fold
cross-validation, we estimate the predictive performance of
ridge regression with and without transfer learning. After
repeating source-target splitting and cross-validation 10
times, we observe that transfer learning tends to decrease
the cross-validated logistic deviance (transreg.exp.sta:

8/10, transreg.exp.sim: 7/10, transreg.iso.sta:
7/10, transreg.iso.sim: 9/10, fwelnet: 5/10, ecpc:
6/10, xrnet: 10/10). It is more beneficial to share informa-
tion not only on the importance but also the direction of
the effects, according to the mean change in cross-
validated logistic deviance (transreg.exp.sta:
�2.61%, transreg.exp.sim: �4.29%, transreg.
iso.sta: �3.67%, transreg.iso.sim: �8.33%,
fwelnet: þ0:04%, ecpc: �6.87%, xrnet: �12.12%).
Simultaneous stacking again outperforms standard stack-
ing, but exponential and isotonic calibration show a similar
performance. In this application, where the prior effects are
probably close to the true effects, the competing transfer
learning method (xrnet) outperforms the proposed one.

For both applications, Fig. 2 shows the change in predictive
performance from modelling without to modelling with prior
information.

4.2 Internal application

In this application, we transfer information from a meta-
analysis of genome-wide association studies on Parkinson’s
disease (PD-GWAS, Nalls et al. 2019) to the Luxembourg
Parkinson’s study (LuxPARK, Hipp et al. 2018). The aim is
to classify samples into Parkinson’s disease (PD) patients and
healthy controls based on SNPs.

At the time of our study, the LuxPARK dataset included
genotyping and clinical data of 790 PD cases and 766 healthy

Table 3. Predictive performance in external simulation.a

transreg

Ka h a Family qx maxðq̂bÞ glmnet glmtrans xrnet exp.sta exp.sim iso.sta iso.sim

1 5 0 Gaussian 0.01 1.00 73.2 6 3.0 43.9 6 9.2* 47.1 6 1.8* 32.2 6 3.2* 30.9 6 2.8* 24.5 6 3.6* 23.4 6 3.3*
3 5 0 Gaussian 0.01 1.00 73.2 6 3.0 33.5 6 6.5* 29.3 6 2.4* 18.1 6 2.5* 16.7 6 2.0* 13.5 6 2.0* 12.7 6 1.6*
5 5 0 Gaussian 0.01 1.00 73.2 6 3.0 24.0 6 3.7* 22.6 6 1.5* 14.2 6 1.7* 13.2 6 1.7* 10.6 6 1.0* 10.0 6 0.9*
1 250 0 Gaussian 0.01 0.40 73.2 6 3.0 31.8 6 9.4* 63.8 6 3.6* 54.8 6 6.0* 57.8 6 6.5* 49.5 6 6.9* 50.0 6 7.3*
3 250 0 Gaussian 0.01 0.42 73.2 6 3.0 33.3 6 8.2* 51.4 6 4.7* 46.5 6 7.9* 47.0 6 9.2* 39.4 6 6.5* 37.6 6 7.5*
5 250 0 Gaussian 0.01 0.43 73.2 6 3.0 33.3 6 5.0* 43.4 6 3.4* 40.0 6 6.3* 39.2 6 7.3* 32.7 6 4.4* 30.0 6 4.7*
1 5 1 Gaussian 0.01 1.00 17.3 6 3.8 12.5 6 1.4* 14.6 6 1.7 12.2 6 1.9* 14.7 6 1.9* 11.0 6 1.6* 11.6 6 1.6*
3 5 1 Gaussian 0.01 1.00 17.3 6 3.8 10.5 6 0.7* 11.5 6 0.6* 10.8 6 0.6* 11.7 6 1.6* 9.8 6 0.5* 9.9 6 0.6*
5 5 1 Gaussian 0.01 1.00 17.3 6 3.8 10.0 6 0.4* 11.0 6 0.6* 10.5 6 0.5* 11.1 6 1.3* 9.6 6 0.3* 9.8 6 0.4*
1 250 1 Gaussian 0.01 0.24 17.3 6 3.8 22.2 6 13.4† 17.6 6 4.1 14.7 6 3.4* 17.8 6 4.8 14.7 6 3.4* 18.2 6 5.0
3 250 1 Gaussian 0.01 0.27 17.3 6 3.8 19.8 6 6.7† 17.7 6 3.6† 14.7 6 3.4* 18.4 6 4.8 14.8 6 3.4* 18.7 6 5.5†

5 250 1 Gaussian 0.01 0.27 17.3 6 3.8 19.8 6 6.7† 17.5 6 3.6 14.8 6 3.3* 19.0 6 4.6 14.7 6 3.5* 21.3 6 6.6†

1 5 0 Binomial 0.01 1.00 91.5 6 1.5 91.0 6 4.2 84.5 6 1.0* 82.4 6 5.6* 82.7 6 5.4* 77.8 6 3.7* 78.5 6 4.7*
3 5 0 Binomial 0.01 1.00 91.5 6 1.5 85.9 6 3.7* 75.9 6 2.9* 69.8 6 3.6* 70.0 6 3.8* 66.7 6 3.7* 66.6 6 4.5*
5 5 0 Binomial 0.01 1.00 91.5 6 1.5 79.9 6 2.4* 70.8 6 2.9* 63.1 6 3.8* 63.2 6 3.9* 61.2 6 3.0* 62.2 6 5.7*
1 250 0 Binomial 0.01 0.41 91.5 6 1.5 92.0 6 5.0 91.1 6 2.0 89.4 6 2.9* 90.2 6 3.0 88.3 6 3.2* 88.7 6 3.0*
3 250 0 Binomial 0.01 0.42 91.5 6 1.5 89.7 6 4.3 86.5 6 4.2* 86.3 6 4.6* 87.8 6 4.5* 84.0 6 7.5* 84.2 6 5.6*
5 250 0 Binomial 0.01 0.43 91.5 6 1.5 85.3 6 3.5* 83.0 6 3.2* 84.3 6 4.8* 85.9 6 5.5* 79.4 6 4.4* 79.0 6 5.0*
1 5 1 Binomial 0.01 1.00 80.4 6 8.2 77.8 6 12.2 77.1 6 8.4 71.4 6 5.8* 73.0 6 4.0* 70.3 6 5.2* 72.4 6 5.0*
3 5 1 Binomial 0.01 1.00 80.4 6 8.2 70.5 6 12.5* 69.5 6 11.8* 67.9 6 5.7* 70.8 6 10.3* 64.7 6 4.8* 64.4 6 5.1*
5 5 1 Binomial 0.01 1.00 80.4 6 8.2 59.5 6 2.5* 64.4 6 4.2* 65.7 6 6.4* 65.5 6 9.6* 62.7 6 4.5* 61.8 6 4.2*
1 250 1 Binomial 0.01 0.25 80.4 6 8.2 82.1 6 8.7† 82.4 6 9.9† 81.5 6 9.2 81.5 6 9.1 81.2 6 7.2 82.4 6 10.1†

3 250 1 Binomial 0.01 0.26 80.4 6 8.2 80.5 6 9.3 82.0 6 8.8† 80.7 6 8.8 81.3 6 9.5 79.2 6 8.3 82.7 6 11.2
5 250 1 Binomial 0.01 0.27 80.4 6 8.2 78.9 6 9.4* 84.6 6 15.5 80.3 6 8.3 83.4 6 8.8† 79.4 6 10.7 86.3 6 16.8†

a In each setting (row), we simulate 10 datasets, calculate the performance metric (mean-squared error for numerical prediction, logistic deviance for
binary classification) for the test sets, express these metrics as percentages of those from prediction by the mean, and show the mean and standard deviation
of these percentages. Settings: number of transferable source datasets (Ka), differences between source and target coefficients (h), dense setting with ridge
regularization (s¼ 50, a¼ 0) or sparse setting with lasso regularization (s¼ 15, a¼ 1), family of distribution (‘gaussian’ or ‘binomial’). These parameters
determine (i) the mean Pearson correlation among the features in the target dataset (qx) and (ii) the maximum Pearson correlation between the coefficients in
the target dataset and the coefficients in the source datasets (maxðq̂bÞ). Methods: regularized regression (glmnet), competing transfer learning methods
(glmtrans, xrnet), proposed transfer learning method (transreg) with exponential/isotonic calibration and standard/simultaneous stacking. In each
setting, the colour black (grey) highlights methods that are more (less) predictive than regularized regression without transfer learning (glmnet), asterisks
(daggers) indicate methods that are significantly more (less) predictive at the 5% level (one-sided Wilcoxon signed-rank test), and an underline highlights the
most predictive method.
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controls. DNA samples were genotyped using the NeuroChip
array (Blauwendraat et al. 2017). Quality control steps of
genotyping data were conducted according to the standard
procedures reported previously (Pavelka et al. 2022). Missing
genotyping data were imputed using the reference panel from
the Haplotype Reference Consortium (release 1.1) on the
Michigan Imputation Server (Das et al. 2016) (RRID:
ID_017579), with a filter for imputation quality (r2 > 0.3).

As common SNPs exhibit weak effects on PD, the sample
size is likely insufficient to train a highly predictive model.
However, publicly available summary statistics from the
largest-to-date PD-GWAS (with around 38 000 cases and
1 400 000 controls from European ancestry) (Nalls et al.
2019) might serve as prior information on the SNP effects.
For each SNP, these summary statistics are the combined
results from simple logistic regression of the PD status on the
SNP, namely the estimated slope (logarithmic odds ratio), its
standard error, and the associated P-value. Importantly, the
LuxPARK cohort was not part of the PD-GWAS, meaning
that the prior information comes from independent data. As
the LuxPARK cohort and the PD-GWAS cohorts have a simi-
lar ethnic background, the prior information might allow us
to increase the predictive performance.

The two lists of SNPs—from the LuxPARK genotyping
data (target dataset) and the PD-GWAS summary statistics
(source dataset)—are partially overlapping. SNP data are
high-dimensional and strongly correlated. From each block of
SNPs in the target dataset (250 kb window), we retain the

most significant one and those that are in weak pairwise link-
age disequilibrium with it (r2 < 0:1). Next, we only retain
the SNPs appearing also in the source dataset. These two fil-
tering steps together reduce the dimensionality in the target
dataset from around 18 million SNPs to 196 018 SNPs. We
code the SNP data for dominant effects, with 0 meaning no al-
ternate allele (0/0) and 1 meaning one or two alternate alleles
(0/1 or 1/1).

It seems that the results from the source dataset are
informative, because 5.80% of the P-values are nominally
significant at the 0.05 level (11 377 out of 196 018), 77 are sig-
nificant at a false discovery rate of 5% (Benjamini–Hochberg),
and 35 are significant at a family-wise error rate of 5% (Holm–
Bonferroni). As SNPs with a low minor allele frequency might
have large effect sizes but insignificant P-values, we base the
prior effects not on the estimated coefficients (b̂) but on the
signed logarithmic P-values (�signðb̂Þ log 10ðPÞ). For each SNP,
we compared the reference and the alternate alleles between the
two datasets: (i) if both datasets have the same reference allele
and the same alternate allele, the signed logarithmic P-value
from the source dataset becomes the prior effect for the target
dataset; (ii) if the reference allele of each dataset is the alternate
allele of the other dataset (swapped alleles), we invert the sign
of the signed logarithmic P-value; and (iii) if the two datasets
have two different sets of alleles (multiallelic SNP), we set the
prior effect to zero.

Rather than using the 196 018 SNPs for predictive model-
ling in the target dataset, we also filter them based on their

Table 4. Predictive performance in internal simulation.a

transreg

qx qb a Family qx maxðq̂bÞ glmnet glmtrans xrnet exp.sta exp.sim iso.sta iso.sim

0.95 0.60 0 Gaussian 0.08 0.32 46.1 6 7.3 48.5 6 6.3 45.2 6 7.0* 45.2 6 7.6* 45.4 6 7.1 45.1 6 7.5* 44.5 6 6.8*
0.99 0.60 0 Gaussian 0.32 0.32 33.2 6 4.8 33.2 6 6.4 32.6 6 4.4* 32.2 6 4.6* 32.5 6 4.4* 32.1 6 4.7* 32.0 6 4.1*
0.95 0.80 0 Gaussian 0.08 0.54 45.1 6 6.7 47.9 6 11.1 42.0 6 6.4* 43.7 6 7.1* 43.3 6 6.9* 43.8 6 7.1* 41.9 6 6.5*
0.99 0.80 0 Gaussian 0.32 0.54 32.5 6 4.8 31.8 6 4.2 31.1 6 4.7* 32.0 6 4.8* 31.6 6 4.7* 31.6 6 4.7* 30.4 6 3.9*
0.95 0.99 0 Gaussian 0.08 0.89 44.1 6 5.1 42.2 6 5.6 37.3 6 4.4* 40.9 6 5.3* 37.6 6 4.5* 40.1 6 5.7* 38.8 6 5.7*
0.99 0.99 0 Gaussian 0.32 0.89 31.0 6 5.1 29.4 6 2.1 27.6 6 3.0* 30.4 6 5.3 28.4 6 3.8* 29.8 6 4.8* 29.1 6 3.9*
0.95 0.60 1 Gaussian 0.08 0.27 37.7 6 6.8 39.1 6 7.2 37.9 6 6.6 37.3 6 7.2 38.0 6 7.3 37.4 6 7.0 41.5 6 6.4†

0.99 0.60 1 Gaussian 0.32 0.27 28.5 6 2.4 29.9 6 3.5† 29.1 6 3.4 28.8 6 2.5 29.0 6 2.7 28.7 6 2.7 28.7 6 2.5
0.95 0.80 1 Gaussian 0.08 0.45 37.5 6 4.8 37.4 6 5.0 36.9 6 5.2 35.7 6 4.2* 36.8 6 4.7 35.9 6 4.7* 39.5 6 5.4†

0.99 0.80 1 Gaussian 0.32 0.45 29.9 6 2.4 29.9 6 2.8 29.5 6 3.4 29.1 6 2.5 29.4 6 3.3 29.1 6 2.8 29.6 6 3.8
0.95 0.99 1 Gaussian 0.08 0.87 38.0 6 6.4 33.0 6 5.7* 34.5 6 7.9* 34.8 6 8.2* 34.1 6 6.8* 34.0 6 7.6* 35.2 6 8.0
0.99 0.99 1 Gaussian 0.32 0.87 30.2 6 4.4 29.5 6 4.5 29.2 6 4.6 29.4 6 4.8 29.1 6 4.2* 28.6 6 3.5* 29.4 6 4.4
0.95 0.60 0 Binomial 0.08 0.32 77.1 6 4.5 81.2 6 6.1† 76.7 6 4.4 76.8 6 4.8 76.1 6 5.0 77.7 6 4.8 77.7 6 5.2
0.99 0.60 0 Binomial 0.32 0.32 65.5 6 4.7 67.0 6 5.9 65.0 6 4.7 63.7 6 4.8* 65.3 6 4.4 63.8 6 4.8* 64.0 6 4.9
0.95 0.80 0 Binomial 0.08 0.54 74.9 6 4.4 81.2 6 10.7† 73.5 6 5.1* 75.0 6 5.7 73.9 6 5.6 74.7 6 4.7 73.5 6 5.4*
0.99 0.80 0 Binomial 0.32 0.54 64.3 6 3.6 64.7 6 4.6 61.8 6 4.7* 63.2 6 4.5* 63.7 6 5.0 63.0 6 4.7* 63.6 6 5.1
0.95 0.99 0 Binomial 0.08 0.89 75.4 6 5.0 74.8 6 4.7* 69.5 6 4.2* 72.4 6 6.5* 71.5 6 6.3* 71.7 6 4.9* 71.4 6 4.8*
0.99 0.99 0 Binomial 0.32 0.89 62.4 6 5.0 61.8 6 5.0 58.1 6 4.6* 61.0 6 6.7 58.9 6 6.7* 60.4 6 6.2* 59.6 6 5.0*
0.95 0.60 1 Binomial 0.08 0.27 76.5 6 6.0 75.8 6 3.9 75.7 6 4.1 75.8 6 5.8 76.5 6 4.9 75.9 6 5.4 75.9 6 2.3
0.99 0.60 1 Binomial 0.32 0.27 61.2 6 4.4 61.5 6 4.9 63.4 6 6.8† 63.1 6 5.6† 62.2 6 5.7 62.7 6 5.4† 61.5 6 4.6
0.95 0.80 1 Binomial 0.08 0.45 78.2 6 10.5 76.6 6 10.2 76.3 6 9.8 75.0 6 6.0 77.1 6 9.0 75.2 6 6.1 77.9 6 6.6
0.99 0.80 1 Binomial 0.32 0.45 64.9 6 4.9 64.8 6 5.6 65.5 6 2.9 66.3 6 6.7 64.4 6 5.2 65.2 6 6.0 65.5 6 4.3
0.95 0.99 1 Binomial 0.08 0.87 80.1 6 6.0 73.3 6 5.7* 70.7 6 6.3* 69.2 6 4.5* 68.8 6 6.8* 70.1 6 5.2* 69.3 6 5.3*
0.99 0.99 1 Binomial 0.32 0.87 63.2 6 5.1 62.9 6 4.7 61.2 6 5.6* 62.7 6 6.1 61.1 6 5.7* 61.8 6 5.8 61.2 6 6.2*

a In each setting (row), we simulate 10 datasets, calculate the performance metric (mean-squared error for numerical prediction, logistic deviance for
binary classification) for the test sets, express these metrics as percentages of those from prediction by the mean, and show the mean and standard deviation of
these percentages. Settings: correlation parameter for features (qx), correlation parameter for coefficients (qb), dense setting with ridge regularization
(p ¼ 30%, a¼ 0) or sparse setting with lasso regularization (p ¼ 5%, a¼ 1), family of distribution (‘gaussian’ or ‘binomial’). These parameters determine (i)
the mean Pearson correlation among the features in the target dataset (qx) and (ii) the maximum Pearson correlation between the coefficients in the target
dataset and the coefficients in the source datasets (maxðq̂bÞ). Methods: regularized regression (glmnet), competing transfer learning methods (glmtrans,
xrnet), proposed transfer learning method (transreg) with exponential/isotonic calibration and standard/simultaneous stacking. In each setting, the colour
black (grey) highlights methods that are more (less) predictive than regularized regression without transfer learning (glmnet), asterisks (daggers) indicate
methods that are significantly more (less) predictive at the 5% level (one-sided Wilcoxon signed-rank test), and an underline highlights the most predictive
method.
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significance in the source dataset (which is already a type of
transfer learning). For each cut-off in f5� 10�2;
5� 10�3; . . . ;5� 10�10g, we exclude all SNPs above and in-
clude all SNPs below. This means that for the target dataset,
we retain a specific number of the most significant SNPs from
the source dataset. For each significance cut-off, we compare
three modelling approaches:

• Uninformed approach: We use logistic regression with
ridge or lasso penalization to model the PD status based
on the included SNPs. All included SNPs are treated
equally, irrespective of their estimated effect in the source
dataset.

• Naı̈ve transfer learning: After calculating for each sample
the sum across the signed logarithmic P-values from the
source dataset multiplied by the SNPs from the target
dataset, we fit a simple logistic regression of the PD status
on this sum.

• Transfer learning: The proposed transfer learning ap-
proach uses the signed logarithmic P-values from the
source dataset as prior effects for the target dataset.

Figure 3 shows the predictive performance of modelling
with estimated effects (uninformed approach), with prior
effects (naı̈ve transfer learning), or with both (transfer learn-
ing). We obtained the results with repeated nested cross-
validation (10 repetitions, 10 external folds, 10 internal
folds), using the same folds for all methods. If the significance

cut-off is very strict, leading to a small number of significant
SNPs, transfer learning does not improve the predictive per-
formance of ridge and lasso regression. In these low-
dimensional settings with many fewer SNPs than samples,
prior information on the SNPs is not helpful. But otherwise
transfer learning does improve the predictive performance of
ridge and lasso regression. This holds for all four flavours of
the proposed transfer learning method (exponential versus
isotonic calibration, standard versus simultaneous stacking),
but isotonic calibration works considerably better than expo-
nential calibration and simultaneous stacking works margin-
ally better than standard stacking.

Depending on the significance cut-off determining the num-
ber of significant SNPs, the performance of naı̈ve transfer
learning can be as high as the one of transfer learning with
isotonic calibration. In these cases, the prior effects are predic-
tive to the extent that it is not even necessary to estimate any
effects. An explanation for the high performance of naı̈ve
transfer learning might be (i) the large sample size in the
source dataset for testing the marginal effects of the SNPs to-
gether with (ii) the linkage disequilibrium clumping leading to
a selection of relatively independent SNPs.

5 Discussion

We proposed a two-step transfer learning method for exploit-
ing estimated coefficients from related studies to improve the
predictive performance in the study of interest. First, we adapt

fwelnet ecpc xrnet
exp.sta exp.sim iso.sta iso.sim
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Figure 2. Change in predictive performance in external applications due to prior information. Percentage change in cross-validated logistic deviance

(y-axis) from ridge regression (with glmnet) to other methods (x-axis), for 10 repetitions of 10-fold cross-validation. A negative value (blue) indicates an

improvement, and a positive value (red) indicates a deterioration, based on the metric ’logistic deviance’. Top: application on cervical cancer. Bottom:

application on pre-eclampsia. From left to right: co-data learning methods (fwelnet, ecpc), competing transfer learning method (xrnet), proposed
transfer learning method (transreg) with exponential/isotonic calibration and standard/simultaneous stacking.
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the prior effects from the source datasets to the target dataset,
either with exponential or isotonic calibration. While exponen-
tial calibration is more robust to outliers (only three free param-
eters), isotonic calibration is more flexible (only maintains order
of prior effects). We expect the former to be superior if the prior
effects are close to the true effects, and the latter to be superior
if there is no exponential relationship. Second, we combine the
calibrated prior effects with information from the observed
data, based on two variants of stacked generalization. While
the first variant (standard stacking) is more suitable if there are
many sources of co-data (‘averaging calibrated prior effects and
estimated effects’), the second variant (simultaneous stacking) is
more suitable if there is one source of co-data with partially
unreliable or partially missing prior effects (‘shrinking combined
effects towards calibrated prior effects’).

The proposed transfer learning method allows for multiple
sources of prior information. It does not require the source
dataset(s) but only the prior effects derived from the source
dataset(s). The proposed sequential transfer learning method
has a competitive predictive performance with the less flexible
parallel transfer learning method from Tian and Feng (2022,
glmtrans). In the case of closely related tasks, accounting
for prior effects with transfer learning seems to be more bene-
ficial than accounting for prior weights with the co-data

methods from Tay et al. (2023, fwelnet) and van Nee et al.
(2021, ecpc). And in the case of non-linearly related prior
effects, the proposed method seems to outperform the one
from Kawaguchi et al. (2022, xrnet). We therefore believe
that the proposed method could tackle many biomedical pre-
dictions problems with one or more sets of prior effects.

In some applications, only one type of prior information
derived from the source datasets is available. In other applica-
tions, multiple types of prior information are available (or the
source datasets themselves). Then we can choose from multi-
ple types of prior information. If the source and target data-
sets have the same feature space, estimated coefficients from
penalized regression might be a reasonable choice. If the fea-
ture spaces are different, however, it is problematic that (i)
lasso regression erratically selects among correlated features
and (ii) ridge regression distributes weight among correlated
features. This means that the presence or absence of addi-
tional correlated features in the source datasets might change
the prior information on the features of interest. The same
problem arises under contamination of a subset of features
(van de Wiel et al. 2016). We therefore expect that signed log-
arithmic P-values from pairwise testing (�signðb̂Þ log 10ðPÞ)
will often be more informative than estimated coefficients
from multiple regression (b̂).
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Figure 3. Predictive performance in internal application. Mean cross-validated area under the ROC curve (AUC) from 10 times 10-fold cross-validation

(y-axis) against P-value cutoff (x-axis) for regression without (solid line) and with (dashed lines) transfer learning (bright blue: standard stacking, dark blue:

simultaneous stacking), under either ridge (left) or lasso (right) regularization and either exponential (top) or isotonic (bottom) calibration. The numbers

within brackets indicate the dimensionality, and the dotted line is for naı̈ve transfer learning. While AUC ¼ 0:5 represents random classification,

AUC ¼ 1:0 represents perfect classification. Given 766 controls and 790 cases, a random classifier achieves an AUC above 0.524 in 5% of the cases.
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Dudelange, Luxembourg, 5Centre Hospitalier Emile

Mayrisch, Esch-sur-Alzette, Luxembourg, 6Centre Hospitalier
du Nord, Ettelbrück, Luxembourg, 7Parkinson Luxembourg
Association, Leudelange, Luxembourg, 8Oxford Parkinson’s
Disease Centre, Nuffield Department of Clinical
Neurosciences, University of Oxford, Oxford, UK, 9Oxford
Parkinson’s Disease Centre, Department of Physiology,
Anatomy and Genetics, University of Oxford, Oxford, UK,
10Oxford Centre for Human Brain Activity, Wellcome Centre
for Integrative Neuroimaging, Department of Psychiatry,
University of Oxford, Oxford, UK, 11Center of Neurology
and Hertie Institute for Clinical Brain Research, Department
of Neurodegenerative Diseases, University Hospital
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Data availability

The R package transreg is available on GitHub (https://
github.com/lcsb-bds/transreg) and CRAN (https://cran.r-proj
ect.org/package=transreg), with the code for the simulations
and the applications in a vignette (https://lcsb-bds.github.io/
transreg/). We obtained our results using R 4.3.0 (RRID:
ID_001905) on a physical machine (aarch64-apple-darwin20,
macOS Ventura 13.5.2). Data for the application on cervical
cancer are available from van de Wiel et al. (2016), in the R
package GRridge in the dataset ‘dataVerlaat’ (source data:
Farkas et al. 2013, target data: van de Wiel et al. 2016). Data
for the application on pre-eclampsia are available from Erez
et al. (2017), in the supporting file ‘pone.0181468.s001.csv’.
For the application on Parkinson’s disease, the source data
are available from Nalls et al. (2019), in the online file
‘nallsEtAl2019_excluding23andMe_allVariants.tab’, and the
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target data are available upon request (request.ncer-pd@uni.
lu). Information on reproducibility is also available on a fro-
zen page (doi: 10.17881/hczj-3297).
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