
Racial and ethnic and socioeconomic disparities in
childhood cancer incidence trends in the United States,
2000-2019
Pablo S. Monterroso , BA,1 Zhaoheng Li, BS,2 Allison M. Domingues , MS,1 Jeannette M. Sample, MPH,1

Erin L. Marcotte , PhD1,3,*
1Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
2Department of Biostatistics, University of Washington, Seattle, WA, USA
3Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA

*Correspondence to: Erin L. Marcotte, PhD, Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, MMC 715,
420 DE St S.E., Minneapolis, MN 55455, USA (e-mail: marcotte@umn.edu).

Abstract

Background: Population-based surveillance of pediatric cancer incidence trends is critical to determine high-risk populations, drive
hypothesis generation, and uncover etiologic heterogeneity. We provide a comprehensive update to the current understanding of
pediatric cancer incidence trends by sex, race and ethnicity, and socioeconomic status (SES).

Methods: The Surveillance, Epidemiology, and End Results 22 data (2000-2019) was used to summarize age-adjusted incidence rates
for children and adolescents aged 0-19 years at diagnosis. The annual percentage change (APC) and 95% confidence interval (CI) were
estimated to evaluate incidence trends by sex, race and ethnicity, and SES overall and for cancer subtypes. Tests of statistical
significance were 2-sided.

Results: Substantial variation was observed overall and for several histologic types in race and ethnicity– and SES–specific rates.
Overall, we observed a statistically significant increase in incidence rates (APC ¼ 0.8%, 95% CI¼ 0.6% to 1.1%). All race and
ethnic groups saw an increase in incidence rates, with the largest occurring among non-Hispanic American Indian and Alaska
Native children and adolescents (APC ¼ 1.7%, 95% CI¼ 0.5% to 2.8%) and the smallest increase occurring among non-Hispanic White
children and adolescents (APC¼ 0.7%, 95% CI¼ 0.5% to 1.0%). The lowest SES quintiles saw statistically significant increasing trends,
while the highest quintile remained relatively stable (quintile 1 [Q1] APC ¼ 1.6%, 95% CI¼ 0.6% to 2.6%; quintile 5 [Q5] APC¼ 0.3%, 95%
CI¼ –0.1% to 0.7%).

Conclusions: Childhood cancer incidence is increasing overall and among every race and ethnic group. Variation by race and ethnic-
ity and SES may enable hypothesis generation on drivers of disparities observed.

Childhood cancers are rare, heterogeneous diseases, which will
have been diagnosed in approximately 10 470 children aged
0-14 years in the United States in 2022 (1). Although cancer mor-
tality rates for children aged 0-14 years and adolescents aged
15-19 years have dropped by 71% and 61% over the last 5 decades,
respectively, the overall incidence rate for both groups has
increased by 0.8% annually since 1975 (1). Due to their rarity, the
etiology of malignant neoplasms in these age groups remain elu-
sive. This highlights the need for continuous population-based
surveillance of incidence trends by various factors, which could
shed light on the underlying causes of disease.

Although there has been research on pediatric US incidence
trends over the last decades, there is large variance in time range
and population coverage (2-11). The population of the United
States has undergone changes in demographic characteristics
and in exposure to certain risk factors, necessitating periodic
updates to assess trends overtime. Historically, the effect of
socioeconomic status (SES) on US incidence trends has been

underreported, with existing studies focusing on adult popula-
tions or specific cancer types (12-14). Marcotte et al. (15) hypothe-
sized that racial and ethnic variations in incidence of some
tumor types may be attributable to SES. We provide an updated
comprehensive report of national incidence trends overall and by
sex, race and ethnicity, and SES, using population-based data.
Further investigation of this area is important for determining
high-risk populations, driving hypothesis generation, and uncov-
ering etiologic heterogeneity.

Methods
Incidence data and population denominators
Cancer incidence data were obtained from the Surveillance,
Epidemiology, and End Results (SEER) program of the National
Cancer Institute. The SEER 22 database provides long-term, high-
quality, population-based data from 22 cancer registries in the
United States for the years 2000-2019, which covers 47.9% of the
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total US population (16). Cancers were classified as per the

International Classification of Childhood Cancer, Third Revision,

Oncology codes for tumor morphology and primary site, as

reported in SEER (17). Race and ethnicity and sex information

were obtained as reported in SEER. Cases were restricted to

patients diagnosed with primary malignant neoplasms during

the years 2000-2019 and aged 0-19 years at diagnosis. Twelve

major histologic groups and 50 subgroups were investigated

(Supplementary Table 1, available online).
Frequency counts and age-adjusted rates and by sex, age, race

and ethnicity, and year were obtained from the SEER 22 database

(16). Frequency counts and age-adjusted rates of cancer cases by

SES were obtained from the SEER 18 census tract–level SES and

Rurality Database (2006-2018). According to SEER (16), census-

tract level Yost US-based SES quintiles were defined using the

Decennial Census 2010 census tract boundaries and generated

using various sets of American Community Survey 5-year esti-

mates. Matching the American Community Survey year to the

tumor diagnosis year, SES quintiles were linked to tumor cases at

the census tract level. Tumors diagnosed between 2006 and 2007

were linked with quintiles calculated using American

Community Survey 2006-2010 survey data. Tumors diagnosed

between 2008 and 2017 were linked to quintiles calculated using

American Community Survey data from different survey years

spanning that period. Quintiles for tumors diagnosed in 2018

were linked to the index estimated from 2015 to 2019 data. The

composite SES scores for census tracts were derived through a

factor analysis using 7 SES variables, including median house-

hold income, median house value, median rent, percent below

150% of the poverty line, education index, percent working class,

and percent unemployed (16). Unknown race and ethnicity cases

were excluded.

Statistical analysis
Incidence rates were age adjusted to the 2000 US Census stand-

ard population and reported as cases per 100 000. The annual

percentage change (APC) for age-adjusted incidence rates and

corresponding 95% confidence interval (CI) were reported for

each cancer type overall, by sex, and by race and ethnicity (non-

Hispanic White, non-Hispanic Black, Hispanic, non-Hispanic

Asian and Pacific Islander, and non-Hispanic American Indian

and Alaska Native) for the years 2000 to 2019. Because of the

observation that there is etiologic heterogeneity by acute lym-

phoblastic leukemia (ALL) subtype (18) and that the distribution

of cytogenetic subtype varies by age at diagnosis (19), we

hypothesized that there may be differences in ALL incidence

trends by age group. Therefore, the APC and 95% CI were also

reported for age at diagnosis grouping (0 years, 1-4 years, 5-

9 years, 10-14 years, and 15-19 years) in ALL by sex and race and

ethnicity for the years 2000-2019. Finally, we reported the APC

and 95% CI for each cancer type by SES quintile (quintile 1 [Q1]:

lowest through quintile 5 [Q5]: highest) for the years 2006-2018.
APCs were computed using the weighted least squares

method. The APC was not calculated when 1 or more years in the

range 2000-2019 contained zero cases. Groups were considered

evaluable if the APC was calculated. The reported results were

restricted to cancers with at least 10 cases reported within each

year for each group. Tests of statistical significance were 2-sided,

and the threshold for statistical significance was set at an alpha

of 0.05. All analyses were done using SEER*Stat 8.4.0.1 and

SAS 9.4.

Results
During the period 2000-2019, there were 148, 888 malignant neo-
plasms reported in SEER 22 among children and adolescents aged
0-19 years at diagnosis. There was evidence of a positive trend
overall (APC¼ 0.8%, 95% CI¼ 0.6% to 1.1%) and in a similar magni-
tude for both sexes. All race and ethnic groups saw an increase in
incidence rates, with the largest occurring among non-Hispanic
American Indians and Alaska Native persons (APC¼ 1.7%, 95%
CI¼ 0.5% to 2.8%) and the smallest increase occurring among non-
Hispanic White persons (APC¼ 0.7%, 95% CI¼ 0.5% to 1.0%).
Trends within SES quintiles decreased in magnitude as SES
increased. The first 3 SES quintiles, representing the groups with
lowest SES, showed similar increasing rates of approximately 1.5%
per year, after which there was a moderate but noteworthy
decrease that saw the incidence trend in the highest SES quintile
remain relatively stable (APC¼ 0.3%, 95% CI¼ –0.1% to 0.7%).

Incidence rates and trends for all histologies across all years
reported by race and ethnicity, sex, and SES quintile are available in
Supplementary Tables 2-4 (available online). Incidence rates and
trends for ALL by pediatric age group and stratified by sex and race
and ethnicity are available in Supplementary Tables 5 and 6 (avail-
able online). APCs were not calculated by tumor type overall for 80
cases (unspecified malignant renal, n¼ 23; unspecified malignant
hepatic, n¼ 18; Kaposi sarcoma, n¼ 39) due to insufficient case
counts reported within each year. A total of 1,609 cases were
excluded from the race and ethnicity analysis because of an
unknown race and ethnicity classification.

Overall
Both ALL and acute myeloid leukemia (AML) saw a statistically
significant increase of 0.6% per year. Hodgkin lymphoma
remained stable (APC¼ 0.1%, 95% CI¼ –0.2% to 0.4%). Non-
Hodgkin lymphoma, renal carcinoma, hepatoblastoma, and
Ewing tumor and Askin tumor of soft tissue had moderate statis-
tically significant positive trends (Figure 1). The largest increasing
trends among specified cancers were observed for medulloepi-
thelioma/atypical teratoid/rhabdoid tumor (APC¼ 3.4%, 95%
CI¼ 1.4% to 5.6%) and thyroid carcinomas (APC¼ 4.3%, 95%
CI¼ 3.6% to 5.0%). We observed statistically significant decreases
for primitive neuroectodermal tumors and malignant melanoma.

Race and ethnicity
For ALL, the only statistically significant increase was observed
among the Hispanic group (Figure 2). Non-Hispanic Asian and
Pacific Islander individuals saw a statistically significant positive
trend for AML, while a large statistically significant increase for
chronic myeloproliferative diseases was observed among the
non-Hispanic Black group (APC¼ 3.3%, 95% CI¼ 0.9% to 5.8%).
Although none reached significance, all evaluable groups saw an
increase in Hodgkin lymphoma except the Hispanic group, which
saw a decrease (Figure 2). Non-Hodgkin lymphoma increased sig-
nificantly for all evaluable groups, with the largest annual
increase observed among non-Hispanic Asian and Pacific
Islander persons (APC¼ 2.3%, 95% CI¼ 0.2% to 4.4%). Burkitt lym-
phoma decreased among non-Hispanic Black and Hispanic
groups, remained stable among non-Hispanic White individuals,
and increased among non-Hispanic Asian and Pacific Islander
persons, although no trends were significant.

For hepatoblastoma, there was a statistically significant
increase among non-Hispanic White, Hispanic, and, with the
largest increase, non-Hispanic Black individuals (APC¼ 3.7%, 95%
CI¼ 0.3% to 7.2%). An increasing incidence for Ewing tumor and
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Askin tumor was seen only among the Hispanic group

(APC¼ 2.7%, 95% CI¼ 0.4% to 5.1%). We observed a large increase

for intracranial and intraspinal germ cell tumors only among

non-Hispanic Black persons (APC¼ 3.9%, 95% CI¼ 1.0% to 6.9%)

and a moderate increase for malignant gonadal germ cell tumors

only among Hispanic persons. Thyroid carcinomas saw statisti-

cally significant positive trends across all evaluable groups, the

largest among the non-Hispanic Asian and Pacific Islander group

and the smallest among the non-Hispanic White group (Figure 2).

Sex
A statistically significant increase was observed only among

males for ALL and chronic myeloproliferative diseases. AML

increased statistically significantly only among females. For reti-

noblastoma, we observed an increase among males and a

decrease among females, although neither were statistically

significant (Figure 3). Osteosarcoma increased statistically signifi-

cantly only among males (APC¼ 0.9%, 95% CI¼ 0.4% to 1.4%). A

statistically significant increase was observed for Ewing tumor

and Askin tumor of soft tissue in females, while a statistically sig-

nificant decrease was observed for fibrosarcoma in females

(Figure 3). For most histologies, trends were not different by sex.

SES quintiles
Across leukemias, myeloproliferative and myelodysplastic dis-

eases, there were either suggested or statistically significant

increasing trends for the lowest quintiles, whereas the highest

quintile saw a statistically significant decrease (Q2 APC¼ 0.9%,

95% CI¼ 0.1% to 1.8%; Q5 APC¼ –0.8%, 95% CI¼ –1.6% to –0.1%).

This trend was reflected for ALL and AML. Lymphomas and retic-

uloendothelial neoplasms were increasing more rapidly among

lower quintiles than higher ones by a small margin (Figure 4). For

Figure 1. Annual percentage change by malignant tumor histology type among children and adolescents aged 0-19 years at diagnosis stratified by
tumor type, Surveillance, Epidemiology, and End Results 22 (2000-2019). PNET ¼ primitive neuroectodermal tumors; pPNET ¼ peripheral primitive
neuroectodermal tumors.
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central nervous system (CNS) and intracranial and intraspinal
neoplasms, we observed a suggested increase among the lowest
three quintiles as opposed to a suggested decrease in the highest
two quintiles. Among germ cell tumors, a suggested positive trend
was observed in the lowest quintile (Q1 APC¼ 3.5%, 95% CI¼ –
0.3% to 7.5%), whereas the highest quintiles pointed toward
decreasing trends. For other malignant epithelial neoplasms,
although an increasing trend was observed across all quintiles, the
effect size was larger in the lowest three quintiles (Q1 APC¼ 5.3%,
95% CI¼ 3.7% to 7.0%; Q5 APC¼ 2.5%, 95% CI¼ 1.2% to 3.9%).

Age at diagnosis (ALL)
For ALL, a statistically significant decrease was observed in
infants aged 0 years overall and among females. There was no
evidence of change for those aged 1 to 4 years. A similar statisti-
cally significant positive trend of near 1% increase in incidence
per year was seen in each subsequent age group overall and
among males. Only females aged 10-14 years displayed a statisti-
cally significant increase, similar in magnitude to males
(Figure 5). We observed a decline only among Hispanic infants
aged 0 years (APC¼ –2.1%, 95% CI¼ –3.9% to –0.2%). Rising trends

Figure 2. Annual percentage change by malignant tumor histology type and race and ethnicity among children and adolescents aged 0-19 years at
diagnosis stratified by tumor type, Surveillance, Epidemiology, and End Results 22 (2000-2019). CNS ¼ central nervous system; PNET ¼ primitive
neuroectodermal tumors; pPNET ¼ peripheral primitive neuroectodermal tumors.

P. S. Monterroso et al. | 1579



were noted for non-Hispanic White children aged 5-9 years
(APC¼ 0.7%, 95% CI¼ 0.1% to 1.4%) and for Hispanic adolescents
aged 10-14 years (APC¼ 1.7%, 95% CI¼ 0.8% to 2.7%) and 15-
19 years (APC¼ 1.4%, 95% CI¼ 0.7% to 2.0%).

Discussion
We observed increasing rates of childhood cancer overall, for
both sexes, and for all racial and ethnic groups. When investigat-
ing by SES overall, lower quintiles had increasing trends while
the highest quintile was stable. For histologic subgroups overall,
thyroid carcinomas displayed the highest increase, while the only
statistically significant decreases were observed for PNET and
malignant melanoma. The Hispanic group experienced the only
statistically significant increase for ALL, while the non-Hispanic
Asian and Pacific Islander group experienced the only statisti-
cally significant increase for AML. Both the leukemias and lym-
phomas displayed higher increases in the lowest SES quintiles as

compared with the highest quintile. Many differences were
revealed within each stratum and across most histologies, indi-
cating that etiologic heterogeneity exists across most cancer
types and that numerous drivers of disease create different high-
risk populations.

Although racial and ethnic disparities in childhood cancer
incidence rates have been well investigated in the literature (15),
disparities in incidence trends, which are distinct from incidence
rates, are not well established for all tumor types and generally
do not cover trends during more recent years. Racial and ethnic
disparities in pediatric cancer incidence trends have been previ-
ously reported for some cancer types in the United States (6-9).
There are fewer analyses on incidence trends for all cancer types,
but those that are available report increasing rates overall
(10,11). Although other publications have investigated the effect
of SES on trends (12-14), to our knowledge, this is the first analy-
sis to examine the effect of SES on incidence trends across all
major childhood cancer types.

Figure 3. Annual percentage change by malignant tumor histology type and sex among children and adolescents aged 0-19 years at diagnosis stratified
by tumor type, Surveillance, Epidemiology, and End Results 22 (2000-2019). PNET ¼ primitive neuroectodermal tumors; pPNET ¼ peripheral primitive
neuroectodermal tumors.
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As we investigated those diagnosed with cancer between ages
0 and 19 years from 2000 to 2019, the data set represents birth
years from 1981 to 2019. During this near 40-year range in birth
years, the prevalence of maternal and perinatal risk factors asso-
ciated with childhood cancer have changed, such as maternal
obesity, parental age, and birth by cesarean section. Maternal
obesity is a known teratogen and has been associated with leuke-
mia and hepatoblastoma risk (20-29). From 1988-1994 to 2017-
2018, obesity among women of childbearing age rose from 20.7%
to 39.7% (30, 31). Advanced parental age, particularly maternal
age, is associated with an increased risk for various solid tumors
and ALL (32-35). Since 1970, the mean maternal and paternal age
have been on the rise, and the proportion of first births has
shifted toward advanced maternal age groups (36-38). Birth by
cesarean section, particularly when it occurs before the onset of

labor, is associated with increased risk of ALL (39-42). In 1980,
16.5% of births were by cesarean section, which rose to account
for 32% of births in 2015 (43-45). Although the etiology of child-
hood cancers are complex, changes in the prevalence of these
and other maternal and perinatal risk factors associated with
childhood cancer may be contributing to the increasing trends
observed in our results.

Changes in environmental exposures are also potential drivers
of trends observed in our analysis. Benzene production is increas-
ing over time (46), and both maternal and child exposure are
associated with an increased risk for AML and non-Hodgkin lym-
phoma (47,48). Similarly, pesticide and air pollution exposure are
associated with an increased risk for childhood leukemias (49-
55). The persistent nature of pesticides coupled with their
increased application in food production have put more people at

Socioeconomic status quintiles

I Leukemias,
myeloproliferative and

Myelodysplastic
Diseases

II Lymphomas and
Reticuloendothelial

Neoplasms

III Cns and intracranial and
Intraspinal neoplasms

IV Neuroblastoma and
Other peripheral

Nervous cell tumors

V Retinoblastoma

VI Renal tumors

VII Hepatic tumors

VIII Malignant bone
Tumors

IX Soft tissue and other
Extraosseous sarcomas

X Germ cell tumors

XI Other malignant
Epithelial neoplasms

Annual percent change

-5 0 5 10

Q1

Q2

Q3

Q4

Q5

Figure 4. Annual percentage change by malignant tumor histology type and socioeconomic quintile among children and adolescents aged 0-19 at
diagnosis stratified by tumor type, Surveillance, Epidemiology, and End Results 22 (2000-2019). CNS ¼ central nervous system; Q ¼ quintile.
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risk of exposure in recent decades (56). Moreover, studies have
shown that the impacts of air pollution and pesticides dispropor-
tionally affect poor and minority groups (57-60). Although there
is insufficient evidence to make direct links to increasing child-
hood cancer incidence, there is the possibility that the dispropor-
tionate exposure of such chemicals to those in lower SES
quintiles and minority groups might contribute to the disparities
found in this analysis.

Race and ethnicity and SES are intrinsically linked in the
United States, with minority groups disproportionally repre-
sented in lower SES areas (61). Studies have shown the effect of
individual and neighborhood economic status on adverse health
outcomes, including cancer incidence and mortality (62-66).
Access to resources depend on SES and may further harm
socially disadvantaged groups. These groups have elevated
behavioral, occupational, and environmental exposures to poten-
tial carcinogens, causing cancer-related health disparities (66-
68). This underlies the need for monitoring SES-level cancer inci-
dence trends and quantifying temporal shifts in health dispar-
ities. We observed overall increasing rates only among the lowest
SES groups for all cancer types and higher increasing rates among
the lowest SES groups for the leukemias, lymphomas, and CNS
tumors.

Attributable to the 2016 change in the World Health
Organization diagnostic classification for this tumor type, we
observed a large statistically significant overall decrease for
PNET, which is no longer recognized as a cancer classification
(69). These cases are now classified into CNS embryonal sub-
types. Increased sun-protective behaviors and decreased ultra-
violet radiation exposure may underlie the observed decrease in
malignant melanomas, which has been reported previously (70).
Changes in diagnostic procedures may have affected rates for
thyroid carcinomas, the largest overall increase in our results.
Although changes in exposures to risk factors such as radiation
cannot be ruled out, the increased use and sensitivity of
advanced diagnostic technologies coincide with global incidence
increases for this cancer type (13,71-73).

We used a population-based dataset spanning 20 years, which
contains high-quality data following SEER standards and coded
using International Classification of Childhood Cancer, Third Revision,
Oncology guidelines. The dataset has high case ascertainment and
is large enough to examine disease stratifications by race and
ethnicity, sex, and SES for many cancers. The SEER registries
were chosen to overrepresent non-White individuals making it
not completely representative, however, because of the extensive
coverage of these registries, the SEER population is comparable to

Figure 5. Annual percentage change by age at diagnosis grouping and sex among children and adolescents aged 0-19 years at diagnosis stratified by age
grouping among children with acute lymphoblastic leukemia (ALL), Surveillance, Epidemiology, and End Results 22 (2000-2019).
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the general US population (16). Although the dataset was large,
there were insufficient numbers to provide evaluable stratified
rates for rare cancers and minority race and ethnic groups, espe-
cially non-Hispanic American Indian and Alaska Native children
and adolescents. Insufficient numbers limited SES stratification
by race and ethnicity, which could highlight trends not otherwise
seen. For the rare cancers, there is a greater possibility of type 1
errors, as some statistically significant findings are close to the
cutoff margin. Due to the lack of available data, we did not look
at molecular tumor subtypes.

Future studies should aim to analyze risk factors by tumor
subtypes and racial and ethnic subpopulations. The findings that
hold true across several subgroups should be the subject of
future investigations that would help us better understand the
forces driving this change.
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