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A significant amount of researcher and practitioner effort has focused on developing new chemical controls for 
the parasitic Varroa destructor mite in beekeeping. One outcome of that has been the development and testing 
of “glycerol–oxalic acid” mixtures to place in colonies for extended periods of time, an off-label use of the 
otherwise legal miticide oxalic acid. The majority of circulated work on this approach was led by practitioners 
and published in nonacademic journals, highlighting a lack of effective partnership between practitioners and 
scientists and a possible failure of the extension mandate in beekeeping in the United States. Here, we summa-
rize the practitioner-led studies we could locate and partner with a commercial beekeeper in the Southeast of the 
United States to test the “shop towel–oxalic acid–glycerol” delivery system developed by those practitioners. 
Our study, using 129 commercial colonies between honey flows in 2017 split into 4 treatment groups, showed 
no effectiveness in reducing Varroa parasitism in colonies exposed to oxalic acid–glycerol shop towels. We 
highlight the discrepancy between our results and those circulated by practitioners, at least for the Southeast, 
and the failure of extension to support practitioners engaged in research.
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Introduction

Despite their importance, honey bee populations in Europe and 
North America have been in decline or struggling to meet market 
demand, due in large part to management regimes, declining forage 
quality, agrochemical exposure, (re-)emerging parasites, and the 
insidious interaction of these various stressors (Smith et al. 2013, 
Goulson et al. 2015, Bruckner et al. 2023). In the United States, the 
major cause of western honey bee (Apis mellifera L.) population loss 
is the invasive Varroa destructor (Anderson and Trueman), an ecto-
parasitic mite that feeds on the fat body of honey bees and serves 
as a vector for certain viruses (Ramsey et al. 2019, Traynor et al. 
2020, Wilfert et al. 2020). Varroa shifted its host from A. cerana 
to A. mellifera during the first half of the 20th century, resulting 
in an epidemic of re-emerging deformed wing virus (Wilfert et al. 
2016). As one of the most prolific and harmful honey bee parasites, 
a large body of research has been invested in V. destructor control 
and continues to be a focus of beekeeping research (Bartlett 2022).

In the United States, there are currently 3 synthetic acaricides 
licensed for use in controlling V. destructor populations: amitraz, 
coumaphos, and (tau-)fluvalinate with others under research (Haber 
et al. 2019, Bahreini et al. 2020, Jack et al. 2021). However, Varroa 
have evolved resistance to all 3 available synthetic acaricides (Guo 
et al. 2021, Millán-Leiva et al. 2021, Vlogiannitis et al. 2021), with 
these treatment options exhibiting reduced effectiveness against 
mite populations (Rinkevich 2020). Alternative chemical treatment 
options include naturally derived acaricides, such as the widely used 
oxalic acid (ethanedioic acid). Oxalic acid is commonly applied 
through trickling, vaporization, or spraying (Rosenkranz et al. 2010, 
Jack and Ellis 2021). However, these acute application methods 
do not kill V. destructor that are located within cells of developing 
honey bee brood where they reproduce (Al Toufailia et al. 2015, 
Berry et al. 2022), as the cells are protected by waxy caps. These 
methods are often also time and labor intensive and can require spe-
cialized equipment, prohibiting widespread use (Bartlett 2022).
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Due to these shortcomings in oxalic acid application techniques, 
new methods of extended-release application of oxalic acid are nec-
essary to ensure the elimination of mites in both the brood and the 
hive at large (Maggi et al. 2016, Rodríguez Dehaibes et al. 2020). 
Successful development of glycerol-based oxalic acid solutions 
for Varroa control is documented (Maggi et al. 2016, Rodríguez 
Dehaibes et al. 2020, Sabahi et al. 2020, Kanelis et al. 2023). 
Paralleling this scientific research into organic acaricides for bee-
keeping, there has been increased interest in the experimental con-
trol of Varroa by practitioners or industry beekeeper communities. 
Publications popular among beekeepers have published multiple 
articles detailing practitioner-led inquiries into the effectiveness of 
different extended-release oxalic acid applications, which are read 
by scientists but often absent from our own reviews of the litera-
ture. One Varroa control method explored by the practitioner com-
munity is the use of a “shop towel” (a hard-wearing paper towel 
product) for oxalic acid extended-release. In this method, oxalic acid 
dissolved into glycerin over heat is poured onto a shop towel, which 
is then applied to the hive, often on the top bars of the lower brood 
box’s frames. The use of these home-made soaked shop towels is 
currently illegal in the United States. However, identifying the ef-
fectiveness of this method is important to open paths towards legal 
slow-release oxalic acid technologies. Sabahi et al. (2020) showed 
some success with this practitioner-developed method to control 
Varroa when tested at a small scale in Ontario, Canada.

Given practitioner interest in delivering oxalic acid via glycerol 
(Glycerol and glycerin(e) are both used in this article, they are in-
terchangeable names for the same chemical and usually reflect con-
text of purchase and use.) suspensions in colonies, we evaluated the 
possible effectiveness of this popular extended-release oxalic acid 
method in 2 ways. We undertook a large experimental trial following 
the practitioner-published methodology and using colonies provided 
by a commercial beekeeper in South Georgia, USA. We searched 
for all instances of practitioner-led studies on this technique, with a 
mind to undertaking a reanalysis of those results in composite; how-
ever, we were unable to achieve this latter approach satisfactorily.

Methods

Field Experiment
We worked with a commercial beekeeper in South Georgia be-
tween honey flows to test extended-release oxalic acid treatments 
during the summer foraging dearth under realistic field conditions. 
We identified queenright, otherwise healthy colonies from 12 to 14 
June 2017. Colonies were included for analysis if they remained 
queenright and alive throughout the 4-week experiment, with 129 
colonies total across the analysis. To assess mite parasitism levels at 
the beginning of the experiment, adult bees from brood frames were 
shaken into collection trays so that approximately 300 bees could be 
collected into 70% ethanol solution for Varroa assessment. Colonies 
within yards were, at this time, assigned to one of 4 treatment 
groups: negative control (CTRL) with no intervention, high oxalic 
acid (HOA), medium oxalic acid (MOA), and sham (0-OA) receiving 
shop towels containing 18, 12, and 0 g of oxalic acid, respectively. 
The 129 colonies were divided unevenly between 4 apiaries and 4 
treatments (all treatments present in all apiaries); 38 colonies re-
ceived the “HOA” treatment, 39 received the “MOA” treatment, 28 
received the “0-OA” treatment, and 24 colonies received the “CTRL” 
treatment. Larger sample sizes were biased towards groups receiving 
oxalic acid to reduce the economic impact on the collaborating com-
mercial beekeeper as best as possible. At the start of the experiment, 

mean parasitism rates (mites per 100 bees or ‘percent mite intensity’, 
PMI) across the 129 colonies were 2.1, and the median was 1.15. 
There was no significant difference in starting PMI values between 
assigned treatment groups (ANOVA: F3,125 = 0.25; P = 0.0.863). 
Apiaries (yards) were separated by multiple miles from one another, 
and colonies within apiaries were separated by a few feet typical of 
a normal commercial apiary.

Oxalic acid-impregnated shop towels were made 1 day prior 
to application using a modified protocol based on studies in 
Supplementary Table S1 and Maggi et al. (2016). In brief, 715-ml 
distilled water (Nice!, Deerfield, IL) was slowly brought to 83 °C, 
then added to a beaker containing 660 g oxalic acid dihydrate (Brushy 
Mountain Bee Farm, Moravian Falls, NC), which was heated using 
a hot plate (VWR, Radnor, PA) set to 325 °C until the oxalic acid 
dihydrate was fully dissolved. Temperatures were monitored using a 
calibrated thermometer (VWR, Radnor, PA). Next, 550-ml vegetable 
glycerin (Froggy’s Fog, Columbia, TN), previously warmed in a mi-
crowave (Sunbeam, Boca Raton, FL) for 1 min, was added, and the 
solution was homogenized by stirring. The solution was allowed to 
cool, then poured onto a 13.95 × 13.2 cm 55-sheet-roll of blue shop 
towels (Scott, Neenah, WI) that was previously cut in half trans-
versely and placed in a metal cake pan (Mainstays, Bentonville, AR). 
The fully soaked towel roll, containing 55 sheets cut in half, was left 
in a ventilated room overnight to allow the evaporation of excess 
moisture. Sham shop towels (0-OA treatment) were made using the 
same protocol but omitting the oxalic acid.

Shop towel sections were deployed in colonies by placing them 
on the top bars of the lower brood box’s frames, with the upper 
brood box placed on top, and were left in the colony for 42 days. 
Colonies were dosed with either 0, 12, or 18 g of oxalic acid, where 
0-g colonies received 3 shop towel sections containing only glycerol, 
while 12- and 18-g colonies received 2 or 3 shop towel sections with 
the glycerol–oxalic acid mixture, respectively (6 g per shop towel 
section). Mite parasitism levels were measured again at the end of 
the treatment period for each colony.

Statistical Analyses
All data handling and analysis were undertaken in R (R Core 
Team 2019) v.3.6.1. We provide a Zenodo-archived GitHub re-
pository with all analysis and data freely available (DOI: 10.5281/
zenodo.8381423). For each colony, we calculated the change in per-
cent mite intensity between the start and end of the treatment period 
(ΔPMI). We analyzed this ΔPMI response variable using linear 
mixed-effects modeling and type-III ANOVA approach, following 
the “afex” package (Singmann et al. 2019), which wraps around the 
“lme4” (Bates et al. 2015) package. In all cases, we included “Yard” 
(apiary) as a random effect and a single fixed predictor, with ΔPMI 
as the response variable. In the first instance, we analyzed the full 
dataset with “treatment” as an unordered factor as the predictor. We 
followed this with analyses of data subsets, in one case using the bi-
nary predictor of whether a glycerin towel was present (True/False) 
on only the CTRL and 0OA treatments, and in a second instance, 
we used a continuous “dose” predictor of either 0, 12, or 18 g of 
oxalic acid on a data subset including the 0OA, MOA, and HOA 
treatments.

Narrative Review and Reanalysis
We comprehensively reviewed US-based practitioner articles from 
2015 onwards for data on slow-release oxalic acid for Varroa con-
trol, specifically the “shop-towel” method or similar approaches 
using other cellulose matrices (e.g., cardboard strips), to identify the 
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breadth of testing undertaken by practitioners using this technique. 
We initially anticipated undertaking a meta-analysis of this litera-
ture; however, we withdrew that approach on the basis of the few 
number of studies, all by one author, and the availability of the re-
quired data to undertake a reanalysis.

Results

Experimental Trial
All experimental results are presented in Fig. 1. Across the full 
dataset, we found no clear evidence of differences between treat-
ment groups in their change in per-capita mite parasitism (delta per-
cent mite intensity, ∆PMI), when using a linear mixed-effects model 
and corresponding ANOVA, with “∆PMI” as the response variable, 

“Treatment (factor)” as the only fixed predictor, and “Yard” as 
random effect (F3,121.6 = 1.76; P = 0.158). Correspondingly, we found 
no evidence of glycerin-oxalic acid shop towels affecting ∆PMI 
when we analyzed a data subset including only colonies with towels 
(HOA, MOA, and 0-OA), where we used the same modeling ap-
proach as above, however used a “Dose (continuous)” fixed effect 
instead of treatment (F1,102.1 = 2.32; P = 0.131). We further found no 
effect on ∆PMI from exposure to the glycerin towel, comparing the 
“no intervention” negative control (CTRL) to the 0-OA treatment, 
again as above using the corresponding data subset and a binary 
“GlycerineTowel” fixed predictor variable (F1,43.83 = 0.76; P = 0.389).

Across the whole experiment, ∆PMI remained on average close 
to 0. Only the “CTRL” group (no intervention) showed on average 
a marginal increase in ∆PMI of +1.34 (0.19 to 2.49 95% confidence 

Fig. 1. ∆PMI for all colonies (points) across treatment groups (colored box plots). (a) The full data set and analysis of each treatment as its own unordered factor. 
(b and c) Data subsets of (a), reflecting alternative analyses. In (b), we compare the effect of the glycerin towel being present (CTRL vs. 0 g OA), and in (c), we 
analyzed only colonies with glycerin towels based on oxalic acid dose (0 g OA vs. 12 g OA vs. 18 g OA). Coloring of treatment groups is consistent across panel.
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interval [CI]). The remaining groups (0-, 12-, and 18-g oxalic acid 
in glycerin towels) showed +0.41 (−0.65 to 1.47 95% CI), +0.50 
(−0.40 to 1.40 95% CI), and −0.43 (−1.34 to 0.48 95% CI) average 
∆PMI values, respectively. Quoted numbers are linear mixed-model 
coefficients and corresponding 95% CI ranges.

Narrative Review and Reanalysis
We identified 8 published studies in the practitioner publication 
“American Bee Journal” spanning 2017–2021, all by R. Oliver. 
American Bee Journal is a wide-reaching practitioner journal and 
arguably comes under the “gray literature” umbrella. Differences 
in approach to publishing studies between the beekeeper literature 
and the academic literature, including around data ownership, study 
design, response variables, and presentation of results, prevented 
reanalysis.

Discussion

We found no significant evidence that extended-release oxalic acid 
shop towels reduced mite levels at either treatment dose. We found 
mixed evidence overall that mite populations increased over the du-
ration of the experiment. Though we found that the negative con-
trol group’s ∆PMI was higher than 0, none of the treatments were 
significantly different from one another. We could not present a 
reanalysis of practitioner-published data, as no described studies met 
the criteria of adequate reporting and correct experimental design.

Data from our experiment does not support the use of a “home-
made” shop towel delivery for extended-release oxalic acid applica-
tion in hives, at least in the Southeast United States and at the doses 
used here. This is in contrast to the results of Sabahi et al. (2020) in 
Canada. It is plausible that the climate, notably the high humidity, 
in the Southeast interferes with this mite control method (Patricia et 
al. 2013, Gregorc et al. 2017). The sites in our test region during the 
month of the experiment saw daily average highs of 34 °C and av-
erage lows of 22 °C, with an average relative humidity of 76% across 
the day, typical for the time of year. Any further direct comparisons 
or speculations are difficult, as Sabahi et al. (2020) only tested 10 
colonies when considering an oxalic acid—glycerin mixture (5 con-
trol, 5 treated). Additionally, our results contrast with beekeeper-led 
experiments in California (Supplementary Table S1); however, the 
response variables and experimental designs significantly differed 
from ours, which may not be the cause of the discrepancies but does 
limit our ability to draw insightful comparisons. However, the same 
climate variables may be a leading cause of our failure to recreate 
the documented results. Similar if differently formulated products, 
such as Aluen CAP, studied by Maggi et al. (2016) in Argentina, may 
or may not face the same discrepancies in our region and may not 
suffer from the same discrepancies; studies on those products have 
recently been  completed for this region (Aurell D et al., personal 
communication).

The discrepancies between our scientific study and the practitioner-
led ones could indicate that cooperative extension agents fail to 
adequately support practitioners who wish to contribute and experi-
mentally test novel control applications. Without guidance, experiments 
can be limited by the ability of regulators or research colleagues to make 
use of the results (Supplementary Table S1). We consider this a failing 
of the extension mission, where better relationships between scientists 
and practitioners could have led to effective collaboration, making the 
best use of the considerable resources practitioners are willing to de-
vote to science. This is a gross inefficiency on our part as industry-
serving scientists, not only concerning wasted colonies and details of 

experimental design, but also lost time, effort, and personnel needed to 
communicate contradictory results or explain nuance once adequate 
field testing has been completed. By better supporting those beekeepers 
willing to donate time and resources, extension and research programs 
can ensure that community science remains robust and widely 
implemented. The resources devoted to scientific enquiry by Oliver and 
other industry/stakeholder practitioners, including the commercial bee-
keeper who collaborated in this study, are significant and show that 
the industry pursues the same goals as the applied academic research- 
funding-extension engine. The disconnect between scientists and 
stakeholders has been previously identified in the beekeeping/bee 
science sector. The international ‘COLOSS’ bee research program 
has highlighted their need to break down the “Ivory Tower,” with 
thoughtful from Fabricius Kristiansen et al. (2022) explaining the 
need to achieve the ‘win-win’ situations sought in research-practitioner 
partnership. We note that this study was conducted using commercial 
apiaries, in collaboration with willing beekeepers, in the spirit of that 
message.

Our results support an ongoing effort to establish “off the shelf 
ready” formulations of oxalic acid to help control Varroa (Rodríguez 
Dehaibes et al. 2020, Kanelis et al. 2023), and caution against the 
use, adoption, or recommendation of “home-brew” Varroa control 
techniques that are off-label and published in nonacademic sources. 
We also highlight that without better bridges between researchers 
and beekeepers, efforts will continue to be wasted. Scientists 
should consider prioritizing how to capitalize on the willingness of 
beekeepers to run scientific studies when developing new mite con-
trol methods or formulations.
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