Table 2.
Data Type | ML classifier | AUC | Precision | Recall | F1 Score | Brier Score |
---|---|---|---|---|---|---|
Clinical data | Logit | 0.704 | 0.667 | 0.211 | 0.320 | 0.010 |
SVM | 0.663 | 1.000 | 0.053 | 0.100 | 0.010 | |
RF | 0.655 | 0.571 | 0.421 | 0.485 | 0.097 | |
XGBoost | 0.691 | 0.750 | 0.474 | 0.581 | 0.087 | |
Radiomics feature | Logit | 0.933 | 0.875 | 0.737 | 0.800 | 0.006 |
SVM | 0.923 | 0.857 | 0.632 | 0.727 | 0.002 | |
RF | 0.892 | 1.000 | 0.474 | 0.643 | 0.009 | |
XGBoost | 0.897 | 0.750 | 0.632 | 0.686 | 0.003 | |
Combined clinical and radiomics data | Logit | 0.937 | 0.737 | 0.737 | 0.737 | 0.006 |
SVM | 0.949 | 0.857 | 0.862 | 0.727 | 0.004 | |
RF | 0.862 | 0.900 | 0.474 | 0.621 | 0.008 | |
XGBoost | 0.913 | 0.875 | 0.737 | 0.800 | 0.010 |