Skip to main content
. 2023 Dec 2;16:3901–3913. doi: 10.2147/DMSO.S439127

Table 2.

Performance of ML Classifiers for Predicting Fibrosis Progression Risk Using Clinical Data, Radiomics Features, and Combined Datasets in T2DM Patients with NAFLD

Data Type ML classifier AUC Precision Recall F1 Score Brier Score
Clinical data Logit 0.704 0.667 0.211 0.320 0.010
SVM 0.663 1.000 0.053 0.100 0.010
RF 0.655 0.571 0.421 0.485 0.097
XGBoost 0.691 0.750 0.474 0.581 0.087
Radiomics feature Logit 0.933 0.875 0.737 0.800 0.006
SVM 0.923 0.857 0.632 0.727 0.002
RF 0.892 1.000 0.474 0.643 0.009
XGBoost 0.897 0.750 0.632 0.686 0.003
Combined clinical and radiomics data Logit 0.937 0.737 0.737 0.737 0.006
SVM 0.949 0.857 0.862 0.727 0.004
RF 0.862 0.900 0.474 0.621 0.008
XGBoost 0.913 0.875 0.737 0.800 0.010