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Cellular functions are mediated by protein-protein interactions, and mapping
theinteractome provides fundamental insights into biological systems. Affinity
purification coupled to mass spectrometry is an ideal tool for such mapping, butit has
beendifficult to identify low copy number complexes, membrane complexes and
complexes that are disrupted by protein tagging. As aresult, our current knowledge
oftheinteractomeis far from complete, and assessing the reliability of reported
interactions is challenging. Here we develop a sensitive high-throughput method
using highly reproducible affinity enrichment coupled to mass spectrometry combined
with a quantitative two-dimensional analysis strategy to comprehensively map the
interactome of Saccharomyces cerevisiae. Thousand-fold reduced volumes in 96-well
format enabled replicate analysis of the endogenous GFP-tagged library covering the
entire expressed yeast proteome’. The 4,159 pull-downs generated a highly structured

network of 3,927 proteins connected by 31,004 interactions, doubling the number

of proteins and tripling the number of reliable interactions compared with existing
interactome maps>. This includes very-low-abundance epigenetic complexes,
organellar membrane complexes and non-taggable complexes inferred by abundance
correlation. This nearly saturated interactome reveals that the vast majority of yeast
proteins are highly connected, with an average of 16 interactors. Similar to social
networks between humans, the average shortest distance between proteins is 4.2
interactions. AlphaFold-Multimer provided novel insights into the functional roles

of previously uncharacterized proteins in complexes. Our web portal (www.yeast-
interactome.org) enables extensive exploration of the interactome dataset.

Thelarge-scalestudy of cellularinteractomes using mass spectrometry-
based proteomics dates back over 20 years**, culminating in 2 studies
in which nearly half the expressed yeast proteome was successfully
purified withidentified interactors®®. These datasets have been mined
extensively, leading to anetwork-based view of the cellular proteome.
Giventheimportance of theinteractome for functional understanding
and the substantialimprovements in mass spectrometry technology
during the past decade’, we set out to generate a substantially com-
plete interactome of all proteins present in an organism in a given
state. We made use of an endogenously GFP-tagged yeast library con-
taining the 4,159 proteins that are detectable by fluorescence under
standard growth conditions’. Miniaturization and standardization
of the workflow in combination with an ultra-robust liquid chroma-
tography system with minimal overhead time coupled to a sensitive
trapped ion mobility mass spectrometer utilizing the PASEF scan
mode®° resulted in very high data completeness across pull-downs.
This workflow required only 1.5 ml instead of litres of yeast culture,
provided a constant throughput of 60 pull-downs per day and enabled
the use of the same conditions for soluble or membrane proteins of
vastly different abundances (Fig. 1a).

Measurement of the yeast interactome

Totest the quantitative reproducibility of our workflow, we performed
24 biological replicates of pull-downs of 3 nuclear complexes, which
resulted in complete retrieval of these complexes from a single bait
each, with 9% average coefficients of variation of enriched complex
members (Fig. 1b). This compares with a 69% repeatability of assigned
interactions in the previous large-scale screens™.

Three layers of evidence help to establish an interaction between
two proteins. The first two are statistically significant enrichment of
the proteinsinthe forward andin the reverse pull-downs (inwhich the
prey pull-down significantly enriches the bait). Instead of using only
a t-test of bait pull-down against a pull-down of a strain expressing
GFP, we made use of our vast number of diverse GFP-tagged strains, to
combine theminto asingle control group, thereby efficiently removing
false positives not specifically binding to the bait (Methods, ‘Enrich-
ment analysis’). Using this affinity enrichment (rather than affinity
purification) concept?, we quantitatively compared all proteins across
more than 8,000 pull-down measurements, making use of the profile
similarities of interacting proteins in correlation analysis. This third
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Fig.1|A comprehensive and scalable interactomics technology. a, Sample
preparationin 96-well formatand mass spectrometric measurement. Each
strain of the GFP-tagged library is lysed by mechanical disruptionand
transferred to anti-GFP nanobody coated microtitre plates, where weak
interactions are preserved by gentle washing. After enzymaticin-well
digestion, resulting peptides are transferred to standardized C,s-StageTips
fromwhich they are eluted directly into astandardized 60 samples per day
gradient.Dataareacquired in the PASEF scanmode on atrapped ion mobility—
time-of-flight mass spectrometer. LC, liquid chromatography. b, Streamlined
workflow and reduced transfer steps reduce the risk of manual errors and
sample variation. Demonstration of workflow reproducibility and sensitivity
onthreenuclear complexesinbiological replicates. Atagged member (bait) of
each complex pullsdown the known preysin very similaramounts based on
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label-free quantification (LFQ) intensities. Bottom, coefficient of variation
(within 24 replicates), meanwith standard deviation (n =16 (RSC), 7 (COMPASS)
and 18 (SAGA) complex members). ¢, Two-dimensional interaction scoring.
Columnsrepresent pull-down experimentsin replicates (light colour). Squares
depictintensities of detected proteins across the pull-down experiments.
Threelevels of evidence support eachinteraction: t-test of forward pull-down
against complementary experiments, t-test of reverse pull-down, and protein
profile correlation—the correlated abundance profile againstall other proteins
acrossall experiments (z-scored; Methods, ‘Protein correlation’).d, Overlap of
proteins with atleast one interactor and interactions detected in this study
with the previous state-of-the-art network?. e, The proportion of interactions
backed by multiple layers of evidence in the complete network and the network
excludinginter-clusterinteractions.
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type of evidence was highly informative owing to the high quantita-
tive accuracy combined with a nearly complete set of virtual controls
(Fig.1c and Methods, ‘Protein correlation’).

We combined all three layers of eachinteractioninto asingle interac-
tionscore and retained those withaminimum score of 2, corresponding
to: (1) asingle pull-down at 1% false discovery rate (FDR); (2) a correla-
tionz-score of atleast 5; (3) forward and reverse pull-downs at 5% FDR
each; or (4) apull-down at 5% FDR combined with a correlation z-score
greater than 4. To retrieve clusters and complexes from our interac-
tome data, we used Markov clustering with the interaction scores as
the edge weights, without any training or a priori knowledge (Fig. 1c
and Methods, ‘Network generation’).

Thereplicate GFP pull-down measurement inthe 4,147 yeast strains
resulted in the enrichment of 82% of the baits (Extended Data Fig. 1).
Our mass spectrometry data provided statistically significant evidence
for more than30,000 physicalinteractions, corresponding to an aver-
age of 15.8 interactions per protein. Most were supported by forward
pull-down (35%), followed by forward pull-down and significant prey
correlation (29%), whereas nearly all interactions with both forward
and reverse evidence also had significant correlation z-scores (95%)
(Extended DataFig. 2).

Owing to the limited overlap of the interactions reported by two
previous large-scale studies (13% shared interactions), Collins et al.
merged and reanalysed these datasets to create a consensus network
with 1,622 proteins? (nodes in a network). Our data encompass 95% of
these proteins, but places nearly the entire expressed yeast proteome
inanetwork (3,927 nodes). Our dataset of 30,000 significant protein-
protein interactions confirms 63% of the much smaller Collins et al.
dataset? (Fig.1d). Based ona comparison with the BioGRID database®,
more than two-thirds of the interactions reported here are novel.

Affinity enrichment coupled to mass spectrometry (AE-MS) is a
‘co-complex’-oriented approach, in contrast to binary interaction
mapping. AE-MS can define interactions between all complex mem-
bers eveniftheirinteractionis notdirect but bridged via other mem-
bers. By contrast, binary methods detect direct physical interactions
between protein pairs'**. By its nature, a large-scale, reproducible
co-complex-oriented approach will therefore generate higher num-
bers of interactions overall, and especially in large complexes. In
our dataset, the inherently high ‘redundancy’ in combination with
an efficient scoring turned out to be fundamental for a clustering
that identifies functional units. As also observed in human interac-
tion data®, about one-quarter of published interaction data within
our co-complex network overlaps that of binary detection methods
(Extended DataFig. 3).

Organization of interactionsin clusters

Markov clustering analysis—with our interaction scores as edge
weights—condensed the network into 617 clusters, with about 20,000
interactions, most supported by at least two statistically significant
levels of evidence (Fig. 1e). When we inspected known protein com-
plexes from different cellular compartments, especially membrane
complexes, we found them to recapitulate the literature to a large
degree. Furthermore, we retrieved 4,076 interactions between anno-
tated membrane proteins, compared with 853 in a dedicated membrane
proteome’®. We show this exemplarily for the endosomal retromer
complex, the conserved oligomeric Golgi complex and the plasma
membrane exocyst complex, which are fully retrieved in our experi-
ments (Fig. 2a). Our unbiased and high coverage analysis also identi-
fied novel subunits with tight association to known complexes. For
instance, we found three subunits of the essential endoplasmic reticu-
lummembrane oligosaccharyl transferase (OST) complex—anintegral
component of the translocon—associated with a-1,2-mannosidase
(Mns1; human homologue, MAN1B1), an enzyme that catalyses the
endoplasmic reticulum glycoprotein trimming reaction which is
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required for endoplasmic reticulum-associated protein degradation
(ERAD). This indicates that the enzymatic activity of N-linked oligo-
saccharide chain addition is physically connected to the removal of a
terminal sugar, at least in one isoform of the OST complex. The slow
enzymatic activity of Mnsl acts as a timer"” and we speculate that it
co-translationally primes stalled or erroneous proteins directly at its
site of translocation for ERAD.

Many biological complexes share members and these can be difficult
to disentangle by clustering algorithms. We speculated that our highly
quantitative data could nevertheless resolve these cases. Applying a
network layoutalgorithm (Methods, ‘Network generation’) to members
ofthetranscription factor TFIID and SAGA complexes separately recon-
structed these complexes while correctly assigning shared members
(Fig.2a). Atthe global scale, we found that about two-thirds of allinter-
actions connected members within clusters, whereas the remainder
connected clusters to each other. For example, the cytoplasmatic signal
recognition particle (SRP) is connected to another cluster containing
the SRPreceptor (SRP101-SRP102). The largest connected clusters were
the small and large subunits of the ribosome, with 400 inter-complex
connections.

Leveraging the common, endogenous GFP tag on more than 3,405
detected baits, we next investigated whether the mass spectrometry
signal of the GFP peptides could be used to quantify each bait. Indeed,
theseintensities correlated well (r= 0.77) with arecent compilation of
yeast proteinabundances™ (Fig. 2b). This validates our interaction work-
flow and enables tag-based estimation of the relative abundances of
proteinsina cluster, whichis useful to determine their functional role".

For further validation, we used strains with N-terminally tagged
proteins instead of C-terminally tagged proteins for a subset of baits
of special interest (highlighted in Figs. 4 and 5). All baits associated
with the corresponding 13 clusters that were tested and 12 of them
confirmed novel interactions or had uncharacterized proteins in the
cluster (Fig. 2c and Supplementary Fig. 1).

For some proteins—for example, the members of the chaperonin
containing t-complex (CCT)—tagging is not possible because it inter-
feres with protein stability or function®. Based on highly significant
correlations between profiles of the subunits, CCT was nevertheless
fully recovered (Fig.2d). Besides the 8 conserved, ring-forming mem-
bers, we also detected a distinct set of 21 interacting proteins, about
half of which were previously unreported. Two of these were catalytic
subunits of protein phosphatase 2A, suggesting regulatory functions,
and others, suchastubulinand actin-related proteins (Tubl, Tub3and
Arpl) were major known folding substrates. CCT may have arestricted
orbroadset of folding substrates®, and our results quantitatively sup-
port the former possibility.

Theabove examples only scratch the surface of the interesting biologi-
calleads contained in the data. To enable ready exploration of interac-
tions of interest, we created aweb portal (www.yeast-interactome.org),
which supplies statistical evidence for protein-protein associations,
and summarizes the resulting clusters (Fig. 2e).

Network architecture of the interactome

The availability of data for large networks in systems including power
grids, genetic networks and human social networks has enabled
the study of their underlying architecture, commonalities and dif-
ferences®. This topic also has a long history in protein interaction
networks. However, these analyses have been limited by the incom-
pleteness of the data, especially in multicellular species®. With an
in-depth protein-protein interaction map in hand, we compared its
characteristics with networks in different domains. Yeast proteins are
highly connected, with an average of 16 and amedian of 6 interactions
per protein, significantly more than the human BioPlex interactome*
(average interactions: 8) (Fig. 3a). Influential nodes—those with the
highest number of normalized interactors (or degree centrality)—were
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full validation panel, see Supplementary Fig.1.d, For the non-taggable

more commonthaninthe yeastbinary dataset and the human BioPlex
interaction dataset (Extended Data Fig. 4a).

One of the key features of most real-life networks with complex topol-
ogy in contrast to random networks is the scale-free power law distri-
bution of interactors®?*. Scale-free network properties are thought
to arise by preferential attachment over evolutionary time to already
well-connected nodes and can be identified by a linear relation of the
node degree or number of interactors with its frequency (number of
nodeswith thatdegree) plottedinlog-log space. Although thishasbeen
difficult to demonstrate for biological networks (they instead appear
tobe exponential or have a truncated power law degree distribution®),
ouryeastinteractome clearly indicates scale-free properties (Fig. 3c).
Inaccordance with previous protein-proteininteraction networks>,
the exponent wasbelow 2, at the lower end of the range 2to 4 for other
scale-free networks.

The high connectivity of most proteins organizes almost all of them
(3,839) into a single giant connected component, accompanied by 41
small components (88 proteins) (Fig. 3d). A total of 476 proteins were
outside of the network because mass spectrometry analysis of their
pull-downs only identified the bait itself. There was a highly significant
enrichment for 94% of these baits (FDR < 0.01%), indicating that there

chaperonin containing t-complex (CCT), profile correlation analysis
nevertheless revealsits subunits andinteractors. Proteins with two and
moreinteractions are shown. Interactions based on correlation only are shown
inred (dashed) and previously unreportedinteractions with CCT areingreen.
e, Theyeast-interactome web application (www.yeast-interactome.org) allows
exploration of interaction data for interactions of interest. For all bait proteins,
pull-downs are depicted as volcano plots together with abox plot that shows
themassspectrometryintensities of user-selected prey proteins. Subnetworks
from pull-downs of the selected bait and reverse pull-downs or significant
interactors canbe displayed. Further features include full and subnetwork
exploration, correlation visualization and an overview of sample quality.

were noidentifiable interactors under our standard conditions despite
asuccessful pull-down (Extended Data Fig. 5, see volcano plotsonthe
web portal).

We nextinvestigated the large-scale organization of the yeast inter-
actome using the Louvain community detection algorithm (Meth-
ods, ‘Network comparisons’). This revealed that yeast is organized
insmaller communities than the yeast binary curated network or the
human Bioplex (Fig. 3e). Important ‘bottleneck’ proteins that form
partof many shortest paths have a high ‘betweenness centrality’. The
yeast interactome has comparably more of these central nodes, and
bioinformatic enrichment analysis highlighted proteins involved in
‘RNA polymerase II',‘mitochondrial nucleoid’, ‘gluconeogenesis’ and
‘misfolded protein binding’ (Extended Data Fig.4b and Extended Data
Tablel).

Altogether, based on the total of 4,403 identified yeast proteins,
with 74.1% having at least two interactors, 15.1% had one and only 10.8%
had no discernable interaction partner. To investigate whether the
latter setis truly ‘non-social’ or is an artefact of expression level or its
tag position, we performed our workflow on a subset of the proteins
using N-terminal tagged strains withidentical promoters® (Extended
Data Fig. 5). This yielded additional interactors for about half of the
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proteins. Notably, the overall average of identified interactors in this
set was around 2, compared with 16 in the main dataset, indicating
that this set of proteins was indeed poorly connected (Supplemen-
tary Fig. 2). Although reciprocal tagging was beneficial, complexes
with higher numbers of interactions would already be picked up by
the redundancy effect of our screen. Given that some of our baits will
have context-dependentinteractions that are not captured here, our
estimates are conservative and we conclude that almost all yeast pro-
teins are ‘social’.

Insights from global organization

Intensive research over the past decades has made S. cerevisiae argu-
ably the best understood single-cell eukaryotic organism, leading to
the discovery of crucial conserved cellular functions such as meta-
bolic pathways, mechanisms of DNA replication and transcription,
protein quality control and modifications that were later confirmed
in human and other organisms. Nevertheless, our interactome con-
tained uncharacterized proteins or interactions that are not reported
in the BioGRID® database and thus provides novel biological insights
(extended selectionin Supplementary Fig. 3). Furthermore, BioGRID
has accumulated binding events from very disparate experiments
without acommon confidence score (133,900 physical interactions
from about 10,000 publications). We reasoned that our homoge-
neous, high-quality dataset would help biologists to highlight true
positive interactors with biological relevance, several of which we
discuss below.

196 | Nature | Vol 624 | 7 December 2023

Community size Shortest path length

ofthe network. An exponential fitis depicted inorange. d, Nearly allnodes
ofthenetwork areconnected with each otherinthe giant component.e, The
cumulative distribution function of the community sizes (Louvain algorithm)
detects more smaller communities for S. cerevisiaecompared with other
interactome datasets. f, Comparison of the yeast co-complexinteractome
(thisstudy) to a curated yeast binary network (APID database'), showing the
distribution of shortest pathlengths.

A total of 11 evidences connect the uncharacterized protein
YDL176Wp with the conserved glucose-induced degradation (GID)
complex, only afew of which had beenindicated by previous pull-down
orgeneticinteraction data>*° (Fig. 4c). These types of high-confidence
associations assist in prioritizing interactions and form the basis for
adetailed mechanism and structure discovery of anovel GID modula-
tor®., Similarly, our data ties the uncharacterized protein YJRO11Cp
to the conserved transcription and translation regulatory CCR4-Not
complex*via high-significance interactions to a majority of its subunits
(Fig.4h).Finally, YHR131Cpis linked to three subunits of the kinase CK2
and YLR407Wp is linked to the fourth subunit (Fig. 40).

We identified an interaction of Cue4—a protein of unknown func-
tion containing a ubiquitin-binding domain—with the endoplasmic
reticulum membrane complex (EMC), a potential membrane protein
chaperone (Fig.4m). As Cue4 is a paralogue of Cuel (coupling ubiquitin
conjugation to endoplasmic reticulum degradation), acomponent of
ERAD?, this physical link and the known aggravating genetic interac-
tions of Acuel with EMC knockouts® suggests an ERAD-related quality
control mechanism for EMC.

The transcriptional regulator SWI/SNF unexpectedly interacts with
the phosphate transporters Pho87 and Pho90 (Fig. 4e). Out of four
plasmamembrane phosphate transporters only Pho87 and Pho90 have
acytoplasmatic accessible SPX domain. Although an SPX-dependent
phosphate-sensing mechanism has been found in plants®, such a
mechanism remains unknownin S. cerevisiae. In Arabidopsis, inositol
pyrophosphate (InsPg) concentrationincreases under phosphate-rich
conditions and promotes the interaction between SPX domains and
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ity of a novel cytoplasmatic sensing and retention mechanism of
this key transcriptional regulator, which is known to be necessary
for a phosphate starvation response®*®. Of note, both the SWI/
SNF complex and a SPX domain-containing phosphate transporter
(XPR1, which has recently been shown to be controlled by InsPg*°) are
presentin humans.

Illustrating translational relevance, we expand the known interaction
ofthe GTPase-activating proteins Iral and Ira2 (neurofibromin (NF1) in
humans), and Gpbland Gpb2 (ETEA in humans)* by Trx2 a thioredoxin
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isoenzyme (human homologue, TXN) and Gpx1 (human homologues,
GPX3-6), an antioxidant enzyme whose glutathione peroxidase activ-
ity is neuroprotective in models of Huntington’s disease*? (Fig. 41).

Additionally, we find a new physical interaction between the two
uncharacterized proteins YPRO63Cp and YNRO21Wp (Supplementary
Fig.3), whose dimerization and structure has just been predictedina
deep learning approach®.

Aswell asknown and novel protein complexes, the yeast interactome
(depicted in Fig. 4) clearly shows evidence of high order connections.
These often map to different compartments of the cell, such as the promi-
nentconnections between ribosomes inthe cytoplasmand the nucleolus,
its site of maturation or those that connect large and small ribosomal
subunits that despite their ‘stickiness’ are organized inindividual clusters.
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holoenzyme. (ii) and (iii) Two major predicted models with the unstructured
loop actingeitherasalasso or a catalytic groove gag. (iv) Motifs of the
conserved DUF4050 domainare coloured and named based on the modelled
structure. Annotated phosphorylationsites are indicated with asterisks (black,
reported twice in UniProt; red, reported three or more times). (v) Superposition
of Ckaland Cka2, with the clash of the Ckal-specificinsertion loop with the
rear-clamp domain highlighted. b, Serial dilution spotting of yeast strains

Structural prediction by deep learning

We envisioned that recent breakthroughs in protein structure predic-
tion***¢, including the ability to model several subunits of protein
complexes**, would add an additional dimension to our interactome
dataset. Considering the current computational limitations for larger
protein complexes (Methods, ‘Structure predictions’), we started with
allclustersin our interactome that contained uncharacterized proteins
orunreportedinteractions (Supplementary Fig.3). We ran Alphafold2
on all of these below a size limit (2,500 amino acids) and recorded
results on those that yielded a model confidence score of at least 0.7.
Forincreased coverage, we thenrefined the results by running Alpha-
Fold2 on a subset of clusters of interest. From the entire collection
of these structurally predicted complexes (Supplementary Fig. 4),
we focused on a selection with high confidence score and biological
interest (Fig. 5).
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carrying aLeumarker plasmid overexpressing YLR407W under the galactose
inducible promoter or anegative control (empty vector). The growth defect
phenotype caused by YLR407W overexpressionis dependent on the presence
oftheinteractor Cka2 but not onthe non-interactor Ckal. ¢, Suggested binding
mode of the two homologous proteins Tcdland Tcd2 with YGRO12Wp. The
alignmentis coloured based onamino acid side chain hydrophobicity, with

the highestinredtothelowestinblue.pTM, predicted template modeling
score;ipTM, interface pTM. d, Selection of high-confidence complexes and
their scoring (for an extended version see Supplementary Fig. 4).

CK2is an essential eukaryotic kinase that is involved in a multitude
of cellular pathways covering most hallmarks of cancer—such as cell
death evasion and promotion of cell proliferation. The holoenzymeis
built from two regulatory betaand two catalytic active alpha subunits*®
(Ckbl, Ckb2, Ckaland Cka2). Our cluster for the yeast CK2 contains the
uncharacterized interacting protein YLR407Wp, and CK2 was its only
interaction partner (Fig.40). Furthermore, thisinteraction with Cka2is
directand does notinclude the other subunits (and vice versa, validated
by N-terminal tagging; Supplementary Fig. 1), suggesting acompetitive
binding mode. This was supported by the predicted structure, inwhich
one of the two binding domains of YLR407Wp directly overlaps with the
Ckb1-Ckb2-bindinginterface of Cka2 (Fig.5a (i)). YLR407Wp contains
aconserved domain of unknown function (DUF4050) that is found in
more than 3,000 proteins across1,000 eukaryotic species according to
InterPro®. The structural models revealed that only the bound state has
structurally defined domains, namely a clamp region (rear-hinge-front)



andalockregionthat closes the structure by binding to the front clamp
(Fig. 5a (iv)). Modelling suggested two conformations, one in which a
prominent loop is unstructured and reminiscent of alasso and one in
whichiit fits like a ‘gag’ into the catalytic groove (Fig. 5a (ii) and (iii)).
Notably, UniProt annotations indicate that this region contains up to
12 phosphorylatable sites, suggesting a kinase-driven mechanism of
conformation change.

For thisreason, we renamed YLR407Wp to Gagl. The major structural
difference between the two similar catalytic subunits Ckaland Cka2is
aninsertionloop at the rear of Ckal (S91-N128). Thisloop clashes with
the potential binding of Gagl (Fig. 5a (v)), which would explain Cka2
selectivity and provide a functional reason for this structural differ-
ence. Phenotypicassays support this competitive and selective binding
mode, whichisalready based onstronginteraction and modelling data
aswell. The growth defect caused by overexpression of YLR407Wp can
berescued by the deletion of the interacting subunit Cka2, but not by
the deletion of the non-interacting subunit Ckal (Fig. 5b).

We also identified a novel complex defined by three unreported
interactions (all with the maximum interaction score of 10) between
Tcdl, Ted2 (mitochondrial proteins that are involved in tRNA base
modification) and YGRO12Wp (a protein of unknown function that
we rename to Tcd3) (Figs. 2a and 5¢). A homologue of Tcdl and Tcd2
in Escherichia coli (TcdA) functions in a complex of three proteins in
the cyclization of an essential tRNA modification that is found in all
three domains of life, including humans®®. Whereas the two paralogues
Tcdl and Ted2 build the main interaction interface, Tcd3 interacts
largely with Tcd2. Our modelling suggests that thisinteractionis ena-
bled by a characteristic insertion loop (amino acids 277-281) of Tcd2
thatis not presentin Tcdl (see alignmentin Fig. 5c and Extended Data
Fig. 6), thereby explaining the preferential interaction of Tcd3 with
Tcd2 over Tedl.

A third example shows how structural information based on inter-
action data helps to foster biology-driven hypotheses. In our model
of the newly discovered interaction of ubiquitin E3 scaffold protein
Cul3 with YILOO1Wp (human homologue, ABTB1), Cul3 binds at the
location where known adapter proteins are located (Fig. 4a and Sup-
plementary Fig.4g).

Outlook

Here we have developed and applied anovel and highly scalable interac-
tometechnology, enabling replicate measurement of the yeast network
inafraction of the measurement time and starting materials needed
previously. Our screen reached near saturation and contained nearly
all complexes that were expected under our experimental conditions
(Figs.3aand 4). We show that high-confidence interaction dataprovides
anideal foundation for recently developed deep learning models that
predict complex structures from their sequences***, resulting in
functionally relevant de novo structural models.

The high connectivity of the resulting network is reflectedinamean
shortest path between yeast proteins of 4.2, ranging from highly con-
nected proteins with only three steps to less connected ones with an
average of more than 7 steps (Fig. 3b). This is very similar to the 4.7
path length for world-scale Facebook relationships™.

Givenits streamlined nature, our workflow can now be readily used
inother endogenously tagged model organisms*? or to study remodel-
ling of the interactomein the presence of dynamic biological processes
or perturbations. Similarly, we envision its use with other interaction
technologies such as BiolD or APEX® using tagged libraries that can
be easily generated using platforms such as SWAp-Tag**. The compre-
hensive yeastinteractome data can be further used as prior knowledge
for hypothesis-driven analysis of protein complexes—for example, for
native protein complex co-fractionation coupled to mass spectrom-
etry>. Additionally, weimagine that suchinteractome data could also
be combined with mass spectrometry-crosslinking studies.
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Methods

Cellgrowth

To achieve samples with similar cell numbers, pre-cultures of the
S. cerevisiae GFP-tagged library"* were grown in YPD medium (1% yeast
extract, 2% bacto peptone, 2% glucose) for two daysin 2 ml, U-bottom
96-deep-well plates. This allowed cell concentration convergence of
different strains during the slow growing post-exponential phase. Cells
were resuspended and 50 pl of each pre-culture was used to inocu-
late 1.5 ml of fresh YPD medium (corresponding to an optical density
of 0.5 at 600 nm) in 96-deep-well plates (LoBind, 2 ml, 0030504305,
Eppendorf). Plates were covered with an air-permeable membrane and
incubated while shakingat 300 rpmand 30 °C for 6 h. This allowed the
progression through the lag phase and three cell cycles followed by
collection under standard growth conditions. Cells were pelleted in the
96-deep-well plates by centrifugation at 3,500 rpm (2,451g) for 5 min.
The supernatant was discarded by fast decanting and quick dabbing
on paper towels. Plates with pellets were sealed with plastic covers and
stored at —80 °C until cell lysis.

Celllysis

Deep-well plates with cell pellets were thawed onice for 5 min.100 pl of
glassbeads (0.5 mm, acid-washed, G8772, Merck) were added to each well
usinga 96-wellbead dispenser (LabTIE International). After 5min 250 pl
of 4 °C cold lysis buffer (50 mM Tris HCl pH 7.5,150 mM NaCl, 5% glycerol,
0.05%IGEPAL CA-630, protease inhibitor EDTA-free (cOmplete, 1tablet
per50 ml, 11873580001, Merck),1 mMMgCl,, 0.75 U pl™in-house Serratia
marcescens endonuclease/SmDNase) were added. Plates were sealed
using aheatsealer (5200, 5392000005, Eppendorf), thelow-profile plate
adapter (5392070020, Eppendorf) and transparent heat-sealing films
(0030127838, Eppendorf) for 2 s at 180 °C and immediately put back
onice. Cell lysis was performed within the 96-deep-well plates at 4 °C
viabead-beating (2010 Geno/Grinder, SPEX SamplePrep) for 4 cycles
ofl.5mineachat1,750 rpm. Plates were cooled inice water and covered
with ice for 7 min in between cycles and for 10 min after the last cycle.
4 plates were processed in parallel during bead-beating and top and bot-
tompositions were switched at each cycle. Cell debris was spundown at
max speed (4,300 rpm (4,347g)) for 10 min at 4 °C. Plates were carefully
putbackoniceandimmediately used for the pull-down protocol (Fig. 1a).

Interactor enrichment

Pull-downs and all sample handling steps were performed at 4 °C.
Anti-GFP nanobody coated 96-well microtitre plates were custom made
and optimized for this protocol allowing efficient and high reproduc-
ible in-well digestion, and mass spectrometry compatibility (plates
are now commercially available as GFP-Trap Multiwell Plate, gtp-96,
Chromotek). Plates were prepared with 200 pl wash buffer1(50 mM Tris
HCIpH7.5,150 mMNacl, 5% glycerol, 0.05% IGEPAL CA-630) per well on
ashaker for1 minat 800 rpm followed by removal of the buffer. The cell
lysates were carefully transferred from the 96-deep-well plates by slow
uptake of 175 pl supernatant without dislodging glass beads nor the cell
debris pellet to the GFP-Trap plate. The GFP-Trap plate was incubated
for1hat 800 rpm on a small stroke (3 mm) shaker (TiMix 5 control,
Edmund Biihler) to enrich for GFP-tagged proteins and their interac-
tors. Celllysates were discarded and plate wells were washed twice with
200 pl wash buffer 1and twice with wash buffer 2 (50 mM Tris HCl pH
7.5,150 mM NacCl, 5% glycerol). To allow stable binding of unspecific
background proteins—an important factor for label-free quantifica-
tion—wash buffer was added slowly, and plates were not shaken during
wash steps. Emptied, protein-enriched plates were covered and stored
at —80 °C until mass spectrometry sample preparation (Fig. 1a).

Sample preparation for mass spectrometry
Protein-enriched GFP-Trap plates were brought to room temperature
and 50 pl of digestion mix 1(4.5Murea, 1.5 M thiourea, 10 mM Tris HCI

pH8.5,3 mMdithiothreitol, 2 ng pl™” LysC) were added per well. Plates
wereincubatedat30 °C and 1000 rpm onasmall stroke (3 mm) shaker.
After3 h,100 plof digestion mix 2 (10 mM TrisHCI pH 8.5,7.5 mM chlo-
roacetamide, 2 ng pl™ LysC) were added and microtitre plates and lids
were sealed with parafilm. The plates were incubated overnight at 30 °C
at800 rpm. The reaction was stopped and the sample was acidified with
15 nlof 10% TFA per well. Plates with peptides were stored at —-80 °Ctill
sample loading on EvoTips (Evosep) (Fig. 1a).

Loading of peptide samples on Evotips

Evotips (Evosep) were activated for 5 minin a1-propanol Evotips-box
reservoir at room temperature, followed by awash step with 50 plbuffer
B (acetonitrile with 0.1% formic acid) and centrifugation at 500g for
1minatroomtemperature. The flow-through was discarded and Evotips
were placed backinto 1-propanol. Evotips were conditioned with 50 pl
of buffer A (ddH,0 with 0.1% formic acid) and centrifugation at 500g
for 1.5 min at room temperature and were placed in a container with
buffer A. Forty microlitres of thawed peptide sample were loaded and
Evotips were centrifuged at 500g for 1.5 minat room temperature and
placed back in a container with buffer A. Two-hundred microlitres
of buffer A was added and partially washed through the Evotips by
centrifugationat 500gfor 50 s. Evotips boxes with buffer A at the con-
tainer bottomwere placed on the Evosep Oneliquid chromatography
platform (Evosep, Odense, Denmark) for liquid chromatography-mass
spectrometry (LC-MS) analysis. Pull-downs were acquiredin technical
duplicatesand theinjection order was reversed after the first measure-
ment (Fig. 1a).

Liquid chromatography

For separating peptides by hydrophobicity and eluting them into the
mass spectrometer, we used the EvoSep One liquid chromatography
systemand analysed the yeastinteractome pull-down proteomes with
the standardized 21 min (60 samples per day) gradient. We employed a
15 c¢m x 150 pminner diameter column with 1.9 um C18 beads (PepSep)
heated at 60 °C coupled to a20 pm ID electrospray emitter (Bruker
Daltonik). The column was replaced between replicate measurements.
Mobile phases Aand Bwere 0.1% formicacid in waterand 0.1% formic
acidinacetonitrile, respectively. The EvoSep system was coupled online
toatrappedion mobility spectrometry quadrupole time-of-flight mass
spectrometer® (timsTOF Pro, Bruker Daltonik) via a nano-electrospray
ion source (Captive spray, Bruker Daltonik). A 24-fraction library of
wild-type S. cerevisiaewas generated using the high-pH reversed-phase
‘spider fractionator*® and data were acquired using the same sample
set-up.

Mass spectrometry

Mass spectrometric analysis was performed in a data-dependent
(dda) PASEF mode. For ddaPASEF, 1 MS1 survey trapped ion mobility
spectrometry-mass spectrometry (TIMS-MS) and 4 PASEF tandem
mass spectrometry (MS/MS) scans were acquired per acquisitioncycle.
Thecycle overlap for precursor scheduling was set to 2. lon accumula-
tion and ramp time in the dual TIMS analyser was set to 100 ms each
and we analysed the ion mobility range from 1/K,=1.3Vscm™to
0.8 Vs cm™. Precursor ions for MS/MS analysis were isolated with a
2 Thwindow for m/z<700 and 3 Th for m/z> 700 in a total m/zrange
0f100-1,700 by synchronizing quadrupole switching events with the
precursor elution profile from the TIMS device. The collision energy
was lowered linearly as afunction of increasing mobility starting from
59eVatl/K,=1.6Vscm?to20eVatl/K,=0.6 Vscm™Singly charged
precursorionswere excluded with apolygon filter (otof control, Bruker
Daltonik). Precursors for MS/MS were picked at anintensity threshold
of2,000 arbitrary units (a.u.) and re-sequenced until reaching a target
value 0f 24,000 a.u. considering a dynamic exclusion of 40 s elution.
The capillary voltage was set to 1,600 V and dry gas temperature to
180 °C.
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Raw data processing

Mass spectrometry raw files were processed using MaxQuant
(v1.6.17.0)*%°, which extracts features from four-dimensional isotope
patterns and associated MS/MS spectra, on acomputing cluster (SUSE
Linux Enterprise Server 15SP2) utilizing UltraQuant (github.com/kent-
sisresearchgroup/UltraQuant). To allow processing in an acceptable
time frame, RAW files were handled in 5 parallel batches of approxi-
mately 1,700 files each containing plates equally distributed across
the measurement period. Files were searched against the S. cerevisiae
Uniprot databases (UP0O00002311_559292; canonical and isoform,
reviewed-sp and unreviewed-tr from 02/2020). For high-significance
identification the FDRs were reduced and controlled at 0.1% both on
peptide spectral match and protein levels. Peptides with a minimum
length of seven amino acids were considered for the searchincluding
N-terminal acetylation and methionine oxidation as variable modifica-
tions and cysteine carbamidomethylation as fixed modification, while
limiting the maximum peptide mass to 4,800 Da. Enzyme specificity
wasset to LysC cleaving C-terminal to lysine. A maximum of two missed
cleavages were allowed. The parameter ‘type’ was set to ‘TIMS-DDA’
with ‘TIMS half width’ at 4. The instrument was set to ‘Bruker TIMS’
and main search peptide tolerance reduced to 8 ppm, the maximum
charge set to 5and minimum peak length to 3. Peptide identifications
by MS/MS were transferred by matching four-dimensional isotope
patterns between the runs (4D-MBR) using a narrow elution match
time window of 12 s and a reduced ion mobility window of 0.011/K,.
Protein quantification was performed by label-free quantification
using aminimum ratio count of 2. The 24-fraction library was added as
anadditional parameter group with the same group-specific settings,
but LFQdisabled and ‘separate LFQin parameter groups’ under global
parameters enabled. The writing of additional tables was disabled for
performance reasons.

Data processing and normalization

Twelve outdated samples of the GFP library were eliminated. These
included wrongly annotated open reading frames that were merged
with others: YAR0O44W, YPRO9OW, YDR474C, YFR024C, YJLO21C,
YJLO17W, YGLO46W, YFLOO6W, YGR272C, YBR100W, YJLO18W and
YJLO12C-A. After the removal of potential contaminants, reverse and
‘only identified by site” hits, MaxQuant proteinGroups.txt output
files from the five batches were merged using the majority protein
IDs column. Values were filtered for two valid values within at least
onereplicate group. To adjust for potential differences between the 5
MaxQuantbatches caused by the parallel applied label-free normaliza-
tionalgorithm and for potential handling batch effects between 96-well
plates, values were median-normalized if there were more than 5% of
valid values in each of the corresponding groups.

Missing value imputation

Missing values were imputed in a two-tiered approach. For proteins
with measured valuesinmore than 5% of all samples (or minimally 400
samples), a protein-specific missing value imputation approach was
used. Here, arandom value was sampled from a normal distribution
with following properties: mean = median of all measured intensity
values for the given protein, standard deviation = standard deviation
ofallmeasured intensity values for the given protein. Lower and upper
bounds for the normal distribution were set to three standard devia-
tions from the mean and minimally to zero. The function rtruncnorm
from the R library truncnorm was employed. For proteins with less
than 5% valid values (or inless than 400 samples), global metrics were
employed for missing value imputation. Here, missing values were
sampled from a normal distribution with the following parameters:
mean = mean of all quantified values across all proteins and samples
minus 1.8 times the standard deviation, standard deviation = the stand-
ard deviation of all quantified values across all proteins and samples

multiplied by 0.3. Theaccompanying Rscriptisin Supplementary Data
lasPreprocessing.R.

Protein correlation

Due to the large sample number that would negatively influence cor-
relation, we chose asubsampling approach: For each protein pair across
the sample profile, the top 2% of samples with the highest intensities
for both proteins were selected (resulting in 2-4% depending on
their overlap) and complemented by twice the number of randomly
selected samples as background. The selected subset of samples was
used to calculate the Pearson correlation coefficients of the protein
pair (Fig. 1c). The effect of weighted correlation can be visualized by
enabling ‘subsample values’ under protein correlation in our web appli-
cation (yeast-interactome.org). Since the distributions of correlation
coefficients varies between proteins and in order to define a universal
cut-off for significant correlations, correlation coefficients were nor-
malized via row wise z-scoring. A z-scored Pearson correlation coef-
ficientabove 4 and 5therefore corresponds to achance probability of
below 3.2 x10and 2.9 x 107, respectively. The accompanying Python
scriptis available in Supplementary Data1as CorrelationAnalysis.py.

Enrichment analysis

Atwo-tailed Welch'’s ¢-test was performed on each replicate-grouped
pull-down sample using all corresponding complement samples as
a combined control™. Within the combined control group, samples
with the highest bait correlation (top 5%) were excluded in order to
provide a bait-unrelated control. FDR cut-off lines were calculated
using an analytical approach using an S, parameter of 0.5 (ref. 61).
The accompanying R script is available in Supplementary Data1as
DifferentialAnalysis.R. We performed analysis for the N-terminal subset
using PerseusNet®2,

Network generation

Interactions for the first two layers of evidence (forward and reverse
pull-down) were defined between bait proteins and significantly
enriched prey proteins fromthe t-tests. They were scored based on their
FDR of5%,1%,0.1%and 0.01% at1, 2,3 and 4, respectively (score_FDR).
For the third layer of evidence, an interaction for z-scored Pearson
correlation coefficients above 4 and 5 was scored at1and 2, respec-
tively (score_cor). All three layers of evidence were combined into a
single interaction score ranging from 1-10 (score_FDR+cor), thereby
weighting interactions based on their experimental significance
(Fig. 1c). The accompanying R script is available in Supplementary
Datalas networkCreatoR.R. Networks were created and exported
into Cytoscape® for further analysis and visualization strategies. The
network was filtered for interactions with a combined score equal to
orabove 2, thereby excluding interactions based only on asingle t-test
with an FDR of above 1% or a z-scored Pearson correlation coefficient
of below 5. Further individual filtering can be achieved via the edge
columns (that is, scores) within the Cytoscape filtering tab or any
other table handling software. The Markov clustering algorithm was
applied using the interaction score as edge weight and a granularity
parameter of 2.5 while retaining inter-cluster edges (interactions).
Clustering calculations were performed with 16 iterations and not
stopped ifresidualincreased. The CompoundSpringEmbedder (CoSE)
layout algorithm was applied to single clusters using an ‘ideal edge
length’ parameter of 150. A small subset of baits that did not gener-
ate a significant number of mass spectrometry detectable peptides,
but still enriched significantly for preys are marked as ‘inferred from
bait’. Protein abundance is based on the intensity of the GFP tag in
each sample (tag-based quantification, indicated in the TaBaQ col-
umn; see Fig. 2b) and the relative size of the nodes in the network is
based on that value. The network including edges (interactions) and
nodes (proteins), annotations, scores, and layouts (including the
‘highlight novel’ style) can be downloaded as Cytoscape session file at
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(www.yeast-interactome.org). Alternatively, the Cytoscape session
file and the interaction data including annotations and scores can be
found in Supplementary Data 2 as The_Yeast_Interactome.cys, The_
Yeast_Interactome_Edges.csvand The_Yeast_Interactome_Nodes.csv.

Organelle-based mapping of clusters

The AutoAnnotate plugin® v1.3.5 was used to generate a single
localization-based term for each Markov cluster utilizing WordCloud®*.
Within WordCloud clustering and normalization was disabled and
AutoAnnotate was run using a ‘minimum word occurrence’ and ‘max.
words per label’ of 1. Therefore, based on the Uniprot localization
annotation (most abundant word within the ‘Subcellular localiza-
tion [CC]_simplified’ column), a single cellular localization term was
defined for most clusters. Within the Cytoscape group preferences the
attribute aggregation was enabled and the ‘visualization for group’
was set to ‘none’. Collapsed localization (collapse singleton clusters
enabled)-based labelled groups were organized using the ‘Boundary
layout’ using self-defined areas representing major cellular organelles.
Node repulsion was increased to 1,000,000. Clusters were expanded
and their positions manually adjusted. For cluster annotation the
standard complex name from EMBL Complexportal was used. For each
cluster the most frequent names is shown, (maximumwords per label:
1, minimum word occurrence: 2; normalization and clustering off).
An extended naming can manually be selected in Cytoscape under
AutoAnnotate labelled ‘Complex name (long)’. The image of the back-
ground cell in Fig. 4, the Cytoscape session and the web application is
an adopted version from SwissBioPics by the Swiss-Prot group of the
SIB Swiss Institute of Bioinformatics®.

Network comparisons

Network comparison analysis was performed in Python 3.8.1. Tabu-
lar data was loaded via the pandas package (1.3.1) and converted to a
network via NetworkX (2.6.2). To calculate ‘Betweeness’ and ‘Degree
centrality’, the respective NetworkX functions were used. To per-
form community analysis, a Python implementation of the Louvain
algorithm was used (https://github.com/taynaud/python-louvain,
version 0.15). Cumulative distribution functions were plotted using
the matplotlib-library (3.4.2) and NumPy (1.20.3). Reference datasets
were downloaded from the Stanford Large Network Dataset Collection
(http://snap.stanford.edu/data/), the BioPlex Interactome homepage
(https://bioplex.hms.harvard.edu/interactions.php) and BioGRID
(https://downloads.thebiogrid.org/; Saccharomyces_cerevisiae_S288c-
4.3.196). The accompanying notebook is available in Supplementary
Datalas Yeast_Network_comparisons.ipynb. Gene annotation enrich-
ment was performed using the 1D toolin Perseus (v.1.6.7.0). Annotation
terms were filtered for 5% FDR (Benjamini-Hochberg correction) and
ascoreabove 0.

Structure predictions

Allstructures were calculated ona Linux cluster utilizing up to 4 Nvidia
A100 GPUs, 512 GBRAM and 72 CPUs. AlphaFold-Multimer version 2.2.0
(ref.47) was used and predictions are based on full length sequences.
Anexceptionto thisis the structureinFig. 5a (iii) which was predicted
using v2.1.1and Fig. 5¢,d, middle, which was predicted without the
N-terminally processed targeting sequences. Globalmodel confidence
scores (ipTM+pTM) are weighted in favour of the interface scoreipTM
asdescribed”. For the calculations of clusters in Supplementary Fig. 3
containing novel interactions and uncharacterized proteins, we filtered
based ontheir total residue size below 2,500—an approximate limit that
is set by the unified GPU memory size. For runs that did not succeed
within24 h or resulted inmodel confidences below 0.7 subclusters were
selected and resubmitted. The final structures were includedif they had
ascore above 0.7 (median scores above 0.85). Structures with not all
submitted subunits clearly participatingin a single complexinteraction
were excluded and Supplementary Fig. 9r,t were rerun with optimized

stoichiometry. Molecular graphics were generated with UCSF ChimeraX
(v1.4),developed by the Resource for Biocomputing, Visualization, and
Informatics at the University of California, San Francisco, with support
from National Institutes of Health RO1-GM129325 and the Office of
Cyber Infrastructure and Computational Biology, National Institute
of Allergy and Infectious Diseases®®. Alignments were generated using
Jalview (v2.11.2.0)” and the protein domain map with DOG 2.0 (ref. 68).

Spotting assay

We generated the knockout strains by replacing the endogenous loci
of CKAland CKA2 with the URA3 marker gene in the diploid wild-type
strain BY4743 via standard LiAc transformation and PCR validation®.
Haploid strains were retrieved by sporulation and tetrad dissection
of diploid strains and 2:2 segregation was validated by replica plating
on corresponding marker and mating type plates. We generated the
galactose-induced overexpression plasmid pGAL1-YLR407W via Gibson
cloning. Insert and plasmid backbone were generated by high-fidelity
PCR amplification of the endogenous locus of YLR407W and the plas-
mid p415-GALL, respectively. Plasmids were validated by sequencing
and transformed into competent haploid wild-type strain BY4742 and
corresponding haploid knockout strains. Spotting was carried out in
1:6 serial dilution series.

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Allmain mass spectrometry raw dataand MaxQuant output tables have
been deposited to the ProteomeXchange Consortium” via the PRIDE
partner repository with the dataset identifier PXD031940. The dataset
is publicly available under www.yeast-interactome.org.

Code availability

Custom code is available in Supplementary Datalas indicated in the
relevant sections in Methods.

57.  Meier, F. et al. Online parallel accumulation-serial fragmentation (PASEF) with a novel
trapped ion mobility mass spectrometer. Mol. Cell. Proteomics 17, 2534-2545 (2018).

58. Kulak, N. A., Geyer, P. E. & Mann, M. Loss-less nano-fractionator for high sensitivity, high
coverage proteomics. Mol. Cell. Proteomics 16, 694-705 (2017).

59. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized
p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol.
26, 1367-1372 (2008).

60. Prianichnikov, N. et al. MaxQuant software for ion mobility enhanced shotgun
proteomics. Mol. Cell. Proteomics 19, 1058-1069 (2020).

61. Gianetto, Q. G., Couté, Y., Bruley, C. & Burger, T. Uses and misuses of the fudge factor in
quantitative discovery proteomics. Proteomics 16, 1955-1960 (2016).

62. Rudolph, J. D. & Cox, J. A network module for the Perseus software for computational
proteomics facilitates proteome interaction graph analysis. J. Proteome Res. 18,
2052-2064 (2019).

63. Kucera, M., Isserlin, R., Arkhangorodsky, A. & Bader, G. D. AutoAnnotate: a Cytoscape app
for summarizing networks with semantic annotations. F1000research 5, 1717 (2016).

64. Oesper, L., Merico, D., Isserlin, R. & Bader, G. D. WordCloud: a Cytoscape plugin to create
a visual semantic summary of networks. Source Code Biol. Med. 6, 7 (2011).

65. Le Mercier, P. et al. SwissBioPics—an interactive library of cell images for the visualization
of subcellular location data. Database https://doi.org/10.1093/database/baac026 (2022).

66. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators,
and developers. Protein Sci. 30, 70-82 (2021).

67. Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview Version
2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25,
1189-1191(2009).

68. Ren, J. etal. DOG 1.0: illustrator of protein domain structures. Cell Res. 19, 271-273
(2009).

69. Janke, C. etal. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent
proteins, more markers and promoter substitution cassettes. Yeast 21, 947-962 (2004).

70. Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass
spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543-D552 (2021).

Acknowledgements The authors thank the former members of the S. Jentsch laboratory for
their support in yeast cell culture related issues, especially J. Rech for providing and handling


http://www.yeast-interactome.org
https://github.com/taynaud/python-louvain
http://snap.stanford.edu/data/
https://bioplex.hms.harvard.edu/interactions.php
https://downloads.thebiogrid.org/
https://www.ebi.ac.uk/pride/archive/projects/PXD031940
http://www.yeast-interactome.org
https://doi.org/10.1093/database/baac026

Article

the library; M. Y. Hein and F. Hosp for discussion on large-scale pull-down screens;

B. Schulman for project guidance and discussions; M. Schuldiner and E. Fenech for

providing SWAp-Tag library strains; all members of the Department of Proteomics and

Signal Transduction for help and discussions, in particular I. Paron and C. Deiml for mass
spectrometry assistance, M. Oroshi for technological assistance, J. M. Bader for discussions
and M. Steger for manuscript proofreading; our core facility for their services; and Bruker,
Chromotek and Evosep for their continuous technical support. This work was supported by the
Max Planck Society for the Advancement of Science. I.B. acknowledges funding support from
her Postdoc.Mobility fellowship granted by the Swiss National Science Foundation
(PAOOPB_191046). MT.S. is supported financially by the Novo Nordisk Foundation (Grant
agreement NNF14CCO001).

Author contributions M.M., A.C.M., A.-D.B. and F.M. designed the research. A.C.M. developed
the experimental methods. A.C.M. and M.Z. performed the sample preparation. A.C.M., A.-D.B.
and F.M. conducted the mass spectrometry measurements. A.C.M. performed the genetic
assays and validation experiments. M.Z. wrote the web application. M.Z., 1.B., A.C.M. and M.T.S.
wrote analysis scripts. A.C.M., M.Z., |.B., MT.S. and M.M. analysed data. A.C.M., MT.S., M.Z. and

M.M. visualized data. A.C.M. and MT.S. ran the structure predictions. M.M. and A.C.M.
supervised the research. M.M. acquired funding. M.M. conceptualized and conceived the
project. A.C.M. generated the figures. M.M. and A.C.M. wrote the manuscript. All the authors
commented on the manuscript draft.

Funding Open access funding provided by Max Planck Society.

Competing interests M.M. is an indirect investor in EvoSep. The other authors declare no
competing interests.

Additional information

Supplementary information The online version contains supplementary material available at
https://doi.org/10.1038/s41586-023-06739-5.

Correspondence and requests for materials should be addressed to Matthias Mann.

Peer review information Nature thanks Joshua Coon and Javier De Las Rivas for their
contribution to the peer review of this work.

Reprints and permissions information is available at http://www.nature.com/reprints.


https://doi.org/10.1038/s41586-023-06739-5
http://www.nature.com/reprints

4147 pull-downs

82% of baits enriched
82% of baits in network
94% of baits in network+single nodes

Extended DataFig.1|Schematic of the GFP-tagged library. 4,147 different
endogenous c-terminally tagged yeast strains' were used for 4,147 independent
pull-down experiments. Each strain therefore allows the purification of the
individually tagged protein (bait) and its specific interactors. The original
library of 4,159 strains was reduced by twelve strains to 4147, due to updatesin
ORF annotations (see Methods: Data processing and normalization).
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Up to 3 possible evidences
per interaction:

35% pull-down forward « pull-down forward
21 % correlation « pull-down reverse

56% « protein profile correlation
29% pull-down forward+correlation 1 out of 3 evidences

1% pull-down forward+reverse
2 out of 3 evidences

. 3 out of 3 evidences
All Interactions
(31,004)

Extended DataFig.2|Detailed layers of evidence for all interactions.
Detailed proportion ofinteractions backed by multiple layers of evidence.
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Extended DataFig. 3| Comparison of affinity-enrichment purification
coupled to mass-spectrometry (AE-MS) network (co-complex, this study)
to curated binary network (from APID database). a, Edge weighted network
(score and publication count, respectively) using spring-layout. Colors
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representing different Markov clusters. (Fruchterman-Reingold algorithm).
b, Frequency of degree (number of interactors) of both datasets. ¢, Overlap of
nodes and edges between both datasets. d,e, Distribution of shortest path
length (mean per node and all).
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Extended DataFig. 6 |Sequence alignment of Tcdland Tcd2. Alignment of
the paralogs Tcdland Tcd2 highlighting the insertion loop (red square).

&

N
N
B

N

2
8

&
3




Extended Data Table 1| Gene ontology term enrichment

I Gene ontology Name Score Benj. Hoch. FDR | -log10(p-value) | Size | Mean Median
Igluconeogenesis [GO:0006094] 0.68 1.60E-02 4.37 12 3.27E-03 1.78E-03
RNA polymerase II, core complex [GO:0005665] 0.66 3.82E-02 3.83 11 2.50E-03 1.36E-03
misfolded protein binding [G0:0051787] 0.63 5.74E-03 4.99 16 3.64E-03 1.34E-03
translational elongation [GO:0006414] 0.62 3.12E-02 3.96 13 1.69E-03 1.67E-03
mitochondrial nucleoid [GO:0042645] 0.59 1.22E-03 6.06 23 2.93E-03 1.34E-03
chaperone cofactor-dependent protein refolding [GO:0051085] 0.58 1.40E-02 4.49 17 3.45E-03 1.37E-03
response to unfolded protein [GO:0006986] 0.58 1.99E-02 4.25 16 3.89E-03 1.31E-03
translational initiation [GO:0006413] 0.54 2.13E-02 4.19 18 4.23E-03 1.68E-03
polysome [GO:0005844] 0.52 1.64E-03 5.84 28 2.68E-03 1.35E-03
protein refolding [GO:0042026] 0.51 1.10E-02 4.63 23 3.08E-03 1.31E-03
|glycolytic process [GO:0006096] 0.46 3.85E-02 3.80 22 3.34E-03 1.21E-03
ribosome binding [GO:0043022] 0.43 2.12E-02 4.17 29 1.51E-03 6.81E-04
ribosomal large subunit biogenesis [G0:0042273] 0.41 1.45E-02 4.45 34 1.34E-03 9.47E-04
maturation of LSU-rRNA [GO:0000463] 0.39 4.99E-02 3.62 30 1.28E-03 6.95E-04
cytoplasmic stress granule [GO:0010494] 0.38 8.99E-06 8.50 83 2.20E-03 9.26E-04
preribosome, large subunit precursor [G0:0030687] 0.34 1.87E-03 5.53 62 1.13E-03 5.67E-04
mitochondrial large ribosomal subunit [GO:0005762] 0.32 4.06E-02 3.76 46 1.13E-03 6.67E-04
ATPase activity [GO:0016887] 0.29 1.39E-03 5.83 92 2.17E-03 5.77E-04
mRNA binding [G0:0003729] 0.28 9.37E-07 9.78 174 1.17E-03 5.57E-04
rRNA processing [GO:0006364] 0.28 2.41E-02 4.09 67 1.27E-03 4.94E-04
unfolded protein binding [G0:0051082] 0.27 3.96E-02 3.83 68 1.94E-03 7.24E-04
mitochondrial translation [G0:0032543] 0.22 4.82E-02 3.62 97 9.26E-04 3.33E-04
identical protein binding [GO:0042802] 0.20 1.02E-02 4.70 158 1.02E-03 4.74E-04
nucleolus [GO:0005730] 0.20 1.20E-03 5.83 205 5.79E-03 3.31E-04
nucleoplasm [GO:0005654] 0.18 4.71E-02 3.66 138 1.04E-03 2.83E-04
RNA binding [G0:0003723] 0.18 7.81E-04 6.38 275 1.16E-03 3.53E-04
structural constituent of ribosome [G0:0003735] 0.18 1.42E-03 5.69 243 8.62E-04 2.63E-04

Gene ontology term enrichment on betweenness-centrality of nodes (proteins) in the network (1-dimensional annotation enrichment, two-sided, FDR<5%, score > 0).
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- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All mass spectrometry raw data and MaxQuant output tables have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the
dataset identifier PXD031940. Dataset is publicly available under www.yeast-interactome.org
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Sample size interactomics study with 4,159 pull-downs

Data exclusions  none

Replication benchmark dataset (24-biological replicates) Fig. 1B; main dataset technical injection duplicates
Randomization  not applicable

Blinding not applicable

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
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Involved in the study n/a | Involved in the study
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Antibodies

Antibodies used anti GFP nanobody (Chromotek GmbH, Martinsried, Germany)
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Validation commercially available (https://www.ptglab.com/products/chromotek-nanobody-based-reagents/nano-traps/)

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals study did not involve lab animals but the organism Saccharomyces cerevisiae strain ATCC 201388

Wild animals Provide details on animals observed in or captured in the field, report species and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method, if released,
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex.
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall
numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where
performed, justify reasons for lack of sex-based analysis.

Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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