Skip to main content
. 2023 Sep 25;128(12):1483–1496. doi: 10.1007/s11547-023-01722-6

Table 4.

Predictive performance of VOI_P models

*VOI #AUC Accuracy Sensitivity Specificity F1
Training and validation sets
VOI_P1 0.821 77.3% 78.3% 76.3% 78.8%
VOI_P2 0.849 78.9% 82.6% 74.6% 80.9%
VOI_P3 0.735 59.4% 27.5% 96.6% 42.2%
VOI_P4 0.835 75.0% 81.2% 67.8% 77.8%
VOI_P5 0.747 57.0% 27.5% 91.5% 40.9%
VOI_P10 0.778 68.8% 62.3% 76.3% 68.3%
VOI_P15 0.861 76.6% 81.2% 71.2% 78.9%
Internal testing set
VOI_P1 0.700 67.2% 79.7% 52.5% 72.4%
VOI_P2 0.687 61.7% 72.5% 49.2% 67.1%
VOI_P3 0.689 52.3% 21.7% 88.1% 33.0%
VOI_P4 0.676 68.0% 79.7% 54.2% 72.8%
VOI_P5 0.664 50.0% 17.4% 88.1% 27.3%
VOI_P10 0.703 60.9% 55.1% 67.8% 60.3%
VOI_P15 0.716 66.4% 75.4% 55.9% 70.7%
External testing set
VOI_P1 0.655 59.0% 73.2% 49.4% 59.0%
VOI_P2 0.686 56.8% 78.6% 42.2% 59.5%
VOI_P3 0.606 59.7% 7.1% 95.2% 12.5%
VOI_P4 0.635 59.0% 75.0% 48.2% 59.6%
VOI_P5 0.609 59.0% 1.8% 97.6% 3.4%
VOI_P10 0.601 63.3% 48.2% 73.5% 51.4%
VOI_P15 0.704 61.9% 78.6% 50.6% 62.4%

*VOI—volume of interest

#AUC—area under the curve