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A B S T R A C T   

Background: Disruptive behavior in children and adolescents can manifest as reactive aggression and proactive 
aggression and is modulated by callous-unemotional traits and other comorbidities. Neural correlates of these 
aggression dimensions or subtypes and comorbid symptoms remain largely unknown. This multi-center study 
investigated the relationship between resting state functional connectivity (rsFC) and aggression subtypes 
considering comorbidities. 
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Methods: The large sample of children and adolescents aged 8–18 years (n = 207; mean age = 13.30±2.60 years, 
150 males) included 118 cases with disruptive behavior (80 with Oppositional Defiant Disorder and/or Conduct 
Disorder) and 89 controls. Attention-deficit/hyperactivity disorder (ADHD) and anxiety symptom scores were 
analyzed as covariates when assessing group differences and dimensional aggression effects on hypothesis-free 
global and local voxel-to-voxel whole-brain rsFC based on functional magnetic resonance imaging at 3 Tesla. 
Results: Compared to controls, the cases demonstrated altered rsFC in frontal areas, when anxiety but not ADHD 
symptoms were controlled for. For cases, reactive and proactive aggression scores were related to global and 
local rsFC in the central gyrus and precuneus, regions linked to aggression-related impairments. Callous- 
unemotional trait severity was correlated with ICC in the inferior and middle temporal regions implicated in 
empathy, emotion, and reward processing. Most observed aggression subtype-specific patterns could only be 
identified when ADHD and anxiety were controlled for. 
Conclusions: This study clarifies that hypothesis-free brain connectivity measures can disentangle distinct though 
overlapping dimensions of aggression in youths. Moreover, our results highlight the importance of considering 
comorbid symptoms to detect aggression-related rsFC alterations in youths.   

1. Introduction 

Severe aggressive behavior in children and adolescents is a main 
characteristic of DSM-5 aggression-related disorders (American Psychi-
atric Association, 2013). Among them, conduct disorder (CD) is defined 
as a persistent violation of rules, norms, and rights, including physical 
and psychological aggressive behaviors. Oppositional defiant disorder 
(ODD) refers to a pattern of angry, argumentative, and vindictive 
behavior. Brain studies have associated CD and ODD with frontal, 
striatal, and limbic functional alterations (Blair et al., 2018). Notably, 
the combination of childhood CD and comorbid attention-deficit/ 
hyperactivity disorder (ADHD) is thought to be linked to persistent 
antisocial behavior (Frick, 2016; Moffitt, 2017; Moffitt et al., 2002). In 
addition to ADHD (Loeber et al., 2000), comorbid anxiety (Frick, 2012; 
Frick et al., 2014) also seems crucial for subtyping aggression at a psy-
chophysiological level (Fanti, 2018).These above observations under-
line the relevance of considering symptomatology co-occurring with 
aggression and suggest that brain-related measures may mark aspects of 
these juvenile disorders. 

Resting-state functional magnetic resonance imaging (rs-fMRI) al-
lows for the detection of intrinsic activity and functional synchroniza-
tions in brain regions during the absence of goal-directed behaviors (i.e., 
task-free mental state) (Fox et al., 2015; Greicius et al., 2003; Raichle 
et al., 2001). This well-established approach has provided important 
insights into biological psychiatry in general and, specifically, in relation 
to aggression-related disorders. For instance, a recent coordinate-based 
meta-analysis (Dugré and Potvin, 2021) showed that individuals with 
antisocial behavior exhibited abnormal resting-state functional con-
nectivity (rsFC) in frontal and parietal regions constituting the default- 
mode network (DMN), which confirms the findings of previous empir-
ical work conducted in male adolescents with CD (Lu et al., 2017a; Lu 
et al., 2015; Zhou et al., 2016). However, altered rsFC was not only 
restricted to the DMN but identified also in limbic (Cao et al., 2018; Wu 
et al., 2017; Zhou et al., 2015), motor (Cao et al., 2018; Dugré and 
Potvin, 2023; Lu et al., 2021a), cerebellar (Cao et al., 2019; Cao et al., 
2018; Wu et al., 2017), and visual regions (Lu et al., 2021a; Lu et al., 
2017b; Lu et al., 2015; Pu et al., 2017; Zhou et al., 2016). Furthermore, 
these alterations encompassed both decreased (Lu et al., 2017b; Lu et al., 
2017a; Zhou et al., 2016) and increased (Lu et al., 2017a; Pu et al., 2017; 
Uytun et al., 2017) rsFC patterns compared to controls, especially in the 
DMN. These studies, however, have been mostly restricted to case-
–control comparisons in male adolescents with CD and further limited 
by their small sample sizes. Research on the diverse aggression-related 
conditions and subclinical profiles beyond CD and ODD diagnoses is 
also necessary to characterize the functional brain organization under-
lying disruptive behavior across a spectrum. 

Aggression is a heterogeneous phenotype and has frequently been 
subdivided into reactive aggression (RA) and proactive aggression (PA) 
behaviors (Dodge and Coie, 1987; Romero-Martínez et al., 2022; Vitiello 
and Stoff, 1997). RA is described as perceiving the behavior of others as 

a provocation or threat and reacting aggressively (Smeets et al., 2017), 
while PA is characterized by planned, instrumental aggressive behav-
iors. A recent systematic review of RA and PA reported morphological 
differences in the amygdala and temporal regions as well as higher 
medial prefrontal cortex activation in both aggression subtypes along-
side several distinct morphological and brain activation alterations 
(Romero-Martínez et al., 2022). However, most of the studies they 
included were conducted in adults, and neural correlates of RA and PA 
in disruptive children and adolescents remain underexamined. To the 
best of our knowledge, only two previous studies have examined RA- 
and PA-related neural differences using functional connectivity in chil-
dren and adolescents (Ibrahim et al., 2022; Werhahn et al., 2021). 
Ibrahim et al. (2022) employed connectome-based predictive modeling 
during an implicit face perception task and identified largely similar 
patterns of network connectivity for PA and RA in children (alongside 
with some distinct alterations). In our previous study, we had investi-
gated rsFC differences related to PA and RA in children and adolescents 
with disruptive behavior disorder using a seed-based approach (Wer-
hahn et al., 2021). Our results showed that both subdimensions were 
associated with overlapping as well as distinct effects on rsFC. Altered 
rsFC between the left amygdala and precuneus (see also Wong et al., 
2019 for an ALE meta-analysis on aggression) was observed in both 
aggression subtypes, whereas RA was further associated with rsFC dif-
ferences between parietal, temporal, occipital, and limbic regions. 
However, these findings were limited to the connectivity pattern of a 
few regions of interest selected a priori. A global approach will offer the 
advantage of elucidating potential RA- and PA-related rsFC differences 
across the whole brain 

Callous-unemotional (CU) traits are thought to be important modi-
fiers of aggression and may further shape the manifestation of aggres-
sion. These traits, characterized by limited prosocial emotions, have 
been added to the DSM-5 (American Psychiatric Association, 2013) to 
further specify CD. They were also shown to be associated with a 
reduced treatment response and poorer clinical outcomes (Bakker et al., 
2017; Wilkinson et al., 2016). Moreover, CU traits are linked to impaired 
empathy (Blair et al., 2014; Ciucci et al., 2015), neurocognitive dys-
functions in emotion and reward learning processes (Reidy et al., 2017), 
and adult psychopathy (Frick et al., 2014; Frick and White, 2008). There 
is also evidence for CU traits being linked to both RA and PA (Pechorro 
et al., 2017) or PA alone (Urben et al., 2018). Importantly, youths with 
CU and CU-related traits but various levels of anxiety differ in their 
behavioral characteristics (Fanti et al., 2013; Kimonis et al., 2012). Prior 
investigations showed that male adolescents with CU traits exhibited 
altered amygdala sub-regional rsFC (Aghajani et al., 2016, 2017) and 
reduced amygdala efficiency (Jiang et al., 2021) compared to controls. 
Correlational studies conducted with large samples further demon-
strated that CU traits were linked to rsFC abnormalities in the DMN and 
attention networks (Umbach and Tottenham, 2021; Werhahn et al., 
2021) as well as disrupted connectivity between DMN and attention 
networks (Pu et al., 2017; Winters et al., 2023). However, these studies 
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were also biased in terms of a priori selection of regions or parcellation 
maps. In addition, despite anxiety commonly co-occurring with promi-
nent behavioral and psychophysiological effects (Dadds et al., 2018; 
Fanti et al., 2013; Guelker et al., 2014) and interacting with psychopa-
thy levels (Motzkin et al., 2011), knowledge on rsFC correlates of CU 
traits is still scarce, and the impact of comorbid anxiety is unknown. 

Using seed-based rsFC, we previously identified altered connectivity 
of the DMN and salience network regions with frontal, parietal, and 
occipital regions in children and adolescents with disruptive behavior 
disorder (Werhahn et al., 2021). In this present study, we extend our 
prior work by investigating unconstrained voxel-to-voxel rsFC to pro-
vide complementary and more comprehensive insights into whole-brain 
rsFC alterations related to disruptive behavior in this large sample of 
children and adolescents. Specifically, we examined the rsFC patterns in 
relation to RA and PA dimensions as well as CU traits, and simulta-
neously considered co-occurring ADHD and anxiety symptoms in the 
analyses. We focused on two parameters, namely global and local brain 
rsFC. On a global level, the intrinsic connectivity contrast (ICC) was 
computed to measure network centrality by calculating the global 
strength of connectivity for each voxel with other voxels in the rest of the 
brain (Martuzzi et al., 2011). This method has the advantage of cir-
cumventing the need for a priori definitions of regions of interest. ICC 
has been applied in prior studies (Browndyke et al., 2018; Cassady et al., 
2018; Vatansever et al., 2017; Walpola et al., 2017) and has recently 
been combined with a measure of local coherence (Browndyke et al., 
2018), i.e., integrated local correlation (ILC) (Deshpande et al., 2009). 
Both methods reveal complementary information on brain topology 
from a hemodynamic response. Based on our previous findings (Wer-
hahn et al., 2021), we hypothesized that we would find (1) between- 
group differences in rsFC in frontal regions, (2) RA- and PA-related 
rsFC differences in the precuneus, (3) rsFC alterations of CU traits 
beyond (para-)limbic regions, and (4) these alterations would be partly 
modulated by ADHD and anxiety symptoms. 

2. Methods and materials 

2.1. Participants 

For the present study, 118 children and adolescents (males, n = 99) 
aged 8–18 years (mean age = 13.23, SD = 2.68) diagnosed with ODD 
and/or CD and/or exhibiting clinically relevant aggression scores along 
with 89 healthy controls were included (Werhahn et al., 2021). Cases 
were recruited from resident hospitals, ambulatories, and eligible 
schools at nine sites in Europe within the framework of the joint EU- 
MATRICS and EU-Aggressotype projects. Clinically relevant aggression 
was defined as aggression scores in the clinical range (T >70) according 
to the Child Behavior Checklist (CBCL), Youth Self Report (YSR), or 
Teacher Report Form (TRF) (Achenbach, 1991). Exclusion criteria for 
cases were a primary DSM-diagnosis of depression, anxiety, psychosis, 
or bipolar disorder for cases and, for the typically developed comparison 
group, a DSM-diagnosis or clinically relevant aggression score in the 
CBCL, TRF, or YSR. Furthermore, participants were excluded in cases of 
contraindications for MRI scanning (i.e., braces, metal implants), 
insufficient language skills, or an IQ below 80 (Wechsler, 2003). Parents 
or legal representatives of all participants gave written informed con-
sent. The participating sites obtained ethical approval separately from 
their local ethics committees. Further information on the study sample is 
provided in Supplementary Material S1. 

2.2. Clinical assessments 

To be included in the study, cases had to meet a DSM -diagnosis of CD 
and/or ODD according to the semi-structured interview Kiddie-Schedule 
for Affective Disorders and Schizophrenia, present and lifetime version 
(K-SADS-PL) (Kaufman et al., 1997) or a clinically relevant score (T 
>70) on the aggression or rule-breaking behavior subscale of the CBCL, 

YSR, or TRF (Achenbach, 1991). The assessment of these clinical ques-
tionnaires and the K-SADS-PL by trained (clinical) psychologists or in-
terns also in the typically developed comparison group ensured the 
absence of a DSM-diagnosis or clinically relevant aggression scores. 
Anxiety symptoms were measured using the YSR, as internalizing 
problems including anxiety have been shown to exhibit higher validity 
(Leung et al., 2006) and reliability (Gomez et al., 2014) compared to the 
CBCL and TRF. The self-report Reactive-Proactive Questionnaire (RPQ) 
was used to measure the frequency of RA and PA symptoms (Raine et al., 
2006). RA and PA symptoms within cases were strongly correlated in 
our sample (r = 0.63, p < 0.001), as previously reported (Cima et al., 
2013; Naaijen et al., 2020). CU traits were assessed by means of the 
parent-reported version of the Inventory of Callous-Unemotional traits 
(ICU) (Essau et al., 2006), as it seems to quantify these traits better than 
the self-reported version (Docherty et al., 2017). To assess comorbid 
ADHD symptoms, parents answered the SNAP-IV (Swanson, 1992), with 
the inattention and hyperactivity/impulsivity subdomains being used in 
the present study. Four subscales of the Wechsler Intelligence Scale for 
Children (Block Design, Similarities, Vocabulary, Picture Completion) 
(Wechsler, 2003) enabled the estimation of an IQ to ensure sufficient 
intellectual and cognitive functioning (For more details about assess-
ment tools and study procedure, see Supplementary Material S2). 

2.3. Image acquisition 

MRI scanning took place at nine sites across Europe, with six sites 
using Siemens 3T scanners, two sites using Philips 3T scanners, and one 
site using a GE 3T scanner. Following a T1-weighted structural scan, a 
T2*-weighted whole-brain echo planar imaging (EPI) resting state 
sequence (TR 2.45 s or less, with at least 32 slices) with an average 
acquisition time of 8 min 25 sec was performed (Supplementary 
Table S2). Participants were instructed to lie still, look at a white 
crosshair presented against a black background, and not think about 
anything in particular (Supplementary Material S2). More information 
on the scanning parameters is provided in the Supplementary Material 
S3 (Table S1 and Table S2). 

2.4. Preprocessing 

Functional magnetic resonance imaging (fMRI) data were pre-
processed using SPM version 12 (https://www.fil.ion.ucl.ac.uk/spm). 
After realignment and unwarping (Andersson et al., 2001) and subse-
quent slice timing correction, multi-echo images were weighted by their 
echo time (TE) using MATLAB (https://www.mathworks.com, Math-
Works, Natick, MA, USA). All rs-fMRI data were normalized to the 
Montreal Neurological Institute template brain to reduce variability 
across subjects (Calhoun et al., 2017) using the SPM-based functional 
connectivity CONN toolbox (Whitfield-Gabrieli and Nieto-Castanon, 
2012) in MATLAB. Functional scans were smoothed with a Gaussian 
6 mm full width at half-maximum kernel. Functional outliers exceeding 
three standard deviations from the mean intensity across blood-oxygen- 
level-dependent (BOLD) time series data and exceeding 0.5 mm com-
posite scan-to-scan motion were identified with the Artifact Detection 
Toolbox (ART, https://www.nitrc.org/projects/artifact_detect) within 
CONN. Ten cases were excluded from further analysis, owing to their 
functional scans exceeding 5 % of the highest mean root mean square 
(RMS) framewise displacement (FD) (cut-off = 0.95 RMS-FD), the 
threshold applied in prior studies of adolescents with ADHD (Von Rhein 
et al., 2016). Moreover, 23 cases and 3 controls were further excluded 
owing to missing scans (n = 2) or insufficient quality of the structural (n 
= 10) or functional (n = 14) scans. In the denoising step, the aCompCor 
strategy (Behzadi et al., 2007) as implemented in CONN, was applied to 
reduce physiological and motion-related noise (Whitfield-Gabrieli and 
Nieto-Castanon, 2012) and to improve interpretability of the resulting 
correlation patterns (Chai et al., 2012; Saad et al., 2013). Following 
linear detrending, BOLD time series data were band-pass filtered 
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between 0.008 and 0.09 Hz (Fox et al., 2005). 

2.5. Functional connectivity analyses 

Voxel-to-voxel covariance matrices for each subject were calculated 
in the first-level analysis, which further served to compute ICC (Martuzzi 
et al., 2011) and ILC (Deshpande et al., 2009) indices. ICC reflects the 
squared sum of mean connections of a given voxel with all the remaining 
voxels in the brain. ILC reflects the average correlation between a given 
voxel and its neighboring voxels. Compared to other local coherence 
approaches, ILC is independent of image resolution and a predefinition 
of the neighborhood is unnecessary. ILC also seems to be tissue-specific 
and largely independent of physiological noise. An 8-mm convolution 
kernel was applied to determine ILC bounds. In the second-level anal-
ysis, random-effects analysis of covariance was employed to conduct 
between-group comparisons. Correlation coefficients were z-trans-
formed. First, case–control group comparisons were conducted using a 
two-sample t-test in CONN for both ICC and ILC measures. Second, linear 
regression analyses were conducted in CONN to test for associations of 
ICC and ILC with RA, PA, and CU scores separately. All regression an-
alyses were performed at the whole-brain level and within the cases 
only. All analyses included study sites (8 dummy-coded variables), 
parent-reported ADHD symptoms (Broulidakis et al., 2016), and self- 
reported anxiety levels (Gomez et al., 2014; Leung et al., 2006; Motz-
kin et al., 2011) as covariates of no interest, given their crucial role in 
behavioral studies on aggression (Dadds et al., 2018; Fanti et al., 2013; 
Frick, 2016; Guelker et al., 2014). Additional sensitivity analyses 
including further covariates are provided in Supplementary Material S4. 
For all results, an uncorrected height threshold of p < 0.001 combined 
with a false-discovery-rate (FDR)-corrected cluster threshold of p < 0.05 
was applied. 

2.6. Exploratory analyses 

In addition to the primary analyses regressing the RA and PA scores, 
we also explored the impact of general aggression (RPQ total score) as 
well as the effects of RA and PA while simultaneously controlling for the 
variance in PA and RA, respectively (as in Naaijen et al., 2020 for 
structural MRI analyses of the current study). This type of analysis re-
lates to potential suppressor effects of other variables described previ-
ously in the literature on child/adolescent aggression (Ibrahim et al., 
2021, 2019; Lozier et al., 2014; Sebastian et al., 2014). 

To address the heterogeneity of CU traits, we conducted exploratory 
analyses for CU subdimensions (callousness, uncaring, and unemo-
tional). Finally, we performed additional analyses to examine the main 
effects of RA, PA, and general aggression on rsFC while controlling for 
CU traits. 

3. Results 

3.1. Behavioral results 

Sample characteristics are summarized in detail in Table 1 (see also 
Werhahn et al., 2021 and Supplementary Material Table S3). Forty-eight 
cases had a diagnosis of ODD, twenty-five cases of CD and ODD, and 
seven cases of CD. Seventy-seven cases presented with scores in the 
clinical range (T > 70) on the aggression or rule-breaking behavior 
subscale of the CBCL, and forty-one cases scored in the clinical range on 
both subscales. Thirty-eight cases had an aggression score in the clinical 
range but no DSM diagnosis. These cases showed comparable RA values 
(M = 12.67, SD = 5.62) and CU traits (M = 33.61, SD = 10.01) and lower 
PA scores (M = 3.91, SD = 4.00) compared to cases with a DSM diag-
nosis (RA, M = 12.50, SD = 4.87; PA, M = 5.27, SD = 5.37; CU traits, M 
= 33.71, SD = 10.25). Most participants presented with comorbid ADHD 
symptoms (n = 103), while 66 cases had anxiety problems. Seventy 
cases were receiving medication. Aggression dimensions (RA, PA, CU 

traits) correlated with comorbidities of interest (ADHD inattention and 
hyperactivity/impulsivity, anxiety) in cases only for RA with anxiety 
symptoms (r = 0.32, p = 0.004), and for CU traits with ADHD inattention 
(r = 0.32, p = 0.001). Further associations among sample characteristics 
are reported in Supplementary Material Table S4. 

3.2. Voxel-to-voxel functional connectivity 

Analyses of group differences yielded significant results only after 
exclusion of ADHD symptoms as a covariate (i.e. controlling only for site 
and anxiety symptoms; Supplementary Table S5). Cases showed lower 
ILC in a cluster including the bilateral frontal pole extending to the 
medial frontal cortex (t(142) = -6.12, p-FDR < 0.05; x  = 4, y = 66, z =
-18). Moreover, cases demonstrated higher ICC in a cluster including the 
right occipital pole (t(142) = 5.19, p-FDR < 0.05; x  = 26, y = -102, z =
2). The ILC effect survived additional controlling for age, sex, IQ, and 
medication, but not handedness (t(131) = -5.67, p-FDR < 0.05; x  = -10, 
y = 56, z = –22). The ICC effect survived additionally controlling for age 
and sex (t(140) = 5.35, p-FDR < 0.05; x  = 26, y = -102, z = 2). 

The analysis with aggression scores showed that with higher levels of 
RA, ICC was decreased in the left superior parietal lobe and lateral oc-
cipital cortex in the left hemisphere, while, with higher levels of PA, ICC 
increased in these regions in the right hemisphere. The RA-related 
cluster extended to the left central gyrus, while the PA-related cluster 
extended to the precuneus (all p-FDR < 0.05; Fig. 1A, Supplementary 
Table S6). Moreover, with increasing levels of both RA and PA symp-
toms, ILC was decreased in left hemispheric clusters, including superior 
portions of the parietal lobe and lateral occipital cortex along with the 
supramarginal gyrus, extending to the angular gyrus. The PA-related 
cluster extended to the left central gyrus (all p-FDR < 0.05; Fig. 1B, 
Supplementary Table S7). Furthermore, with higher levels of CU traits, 
ICC was increased in a left hemispheric cluster including the inferior 
temporal gyrus and the cerebellum. In contrast, ICC was decreased in 

Table 1 
Sample characteristics.   

Cases (n =
118) 

Controls (n =
89) 

Age (Mean ± SD) 13.23±2.68 13.40±2.49 
Sex, m/f (N) a 99/19 51/38 
IQ (Mean ± SD) a 100.78 

±11.00 
106.64±10.42 

Handedness, left/right (N) 16/95 10/77 
CD plus ODD Diagnosis (N) 25  
ODD Diagnosis (N) 48  
CD Diagnosis (N) 7  
ADHD Diagnosis (N) 29  
CBCL – Aggression T-score (Mean ± SD) 74.46±10.10  
CBCL – Rule-breaking T-score (Mean ± SD) 69.00±12.14  
SNAP-IV – Inattention (Mean ± SD) b 15.47±6.06 2.00±4.11 
SNAP-IV – Hyperactivity/Impulsivity (Mean 
± SD) b 

12.00±5.95 1.00±3.17 

YSR – Anxiety Problems (Mean ± SD) a 3.00±2.26 2.00±2.04 
ICU – Total Score (Mean ± SD) b 33.68±10.16 21.00±8.70 
RPQ – Reactive Aggression (Mean ± SD) b 12.55±5.09 5.00±3.48 
RPQ – Proactive Aggression (Mean ± SD) b 3.00±5.01 0.82±1.45 
Medication use (N) 

Stimulants 
Neuroleptics- Antidepressants 

70 
52 
182 

- 
- 
– 

Values are means with standard deviations or counts. Abbreviations: IQ, intel-
ligence quotient; CD, conduct disorder; ODD, oppositional defiant disorder; 
ADHD, attention-deficit hyperactivity disorder; CBCL, Child Behavior Checklist; 
SNAP-IV, Swanson, Nolan and Pelham Teacher and Parent Rating Scale; YSR, 
Youth Self Report; ICU, Inventory of Callous-Unemotional Traits, parent report; 
RPQ, Reactive and Proactive Aggression Questionnaire; RMS-FD, root mean 
square framewise displacement. Diagnoses are derived from the Kiddie-Schedule 
for Affective Disorders and Schizophrenia, present and lifetime version. Medi-
cation use was assessed from parental reports. Significant differences between 
groups are indicated by lowercase letters. a p < 0.01, b p < 0.001. 
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left hemispheric clusters that extended from the inferior temporal gyrus 
and middle temporal gyrus and inferior lateral occipital cortex to frontal 
and central opercular areas, including the insula lobe (all p-FDR < 0.05; 
Fig. 1C, see Supplementary Table S6). 

3.3. Exploratory analyses 

We identified a negative association between general aggression and 
ILC in the superior parietal lobule, supramarginal gyrus, pre-central/ 

post-central gyrus, and superior frontal gyrus (Supplementary 
Table S7). No significant association was identified between general 
aggression and ICC. 

We additionally examined the suppressor effect of aggression di-
mensions on ICC and ILC. Our results revealed a significant negative 
association between RA and ICC in the right pre-central/post-central 
gyrus when controlling for the effect of PA (Supplementary Fig. S2), 
and a significant positive association between PA and ICC in the left 
lateral frontal cortex and supplementary motor area when controlling 

Fig. 1. Whole-brain voxel-to-voxel connectivity correlates of reactive (RA) and proactive (PA) aggression as well as callous-unemotional (CU) traits. A. Higher RA 
and PA scores were associated with decreased versus increased intrinsic correlation contrast (ICC) in the parietal lobe and occipital cortex, colored in green and 
yellow, respectively. Moreover, a cluster in the left central gyrus exhibited RA-specific decreased ICC. B. Higher RA and PA scores were associated with decreased 
integrated local correlation (ILC) in regions colored in light and dark blue, respectively. Additionally, a region in the left central gyrus exhibited a PA-specific 
decrease in ILC. C. Higher CU traits were positively associated with ICC in the left inferior temporal gyrus (yellow), while a negative association was evident for 
the medial and inferior temporal gyrus and frontal and central opercular regions in the left hemisphere (green). ICC and ILC values (y-axis) are plotted against scores 
of RA and PA and CU traits (x-axis). The z-values are Fisher-transformed correlation coefficients, averaged across all observed voxels in cases comprising more than 
one cluster. The statistical threshold is p < 0.001, with a false discovery rate (FDR) cluster-level correction (p < 0.05). (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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for the effect of RA (Supplementary Fig. S2). For ILC analyses, the pre-
viously identified RA and PA main effects became statistically non- 
significant when controlled for PA and RA, respectively (Supplemen-
tary Fig. S3). We found similar results for the main effect of RA and PA 
when controlling for CU traits (Supplementary Tables S8 and S9, Sup-
plementary Figs. S4 and S5). 

Exploratory analyses for CU subdimensions are provided in Supple-
mentary Tables S6 and S7. Among these three subdimensions, only the 
relationship with the uncaring facet showed significant effects. Positive 
associations were found in the pre-/post-central gyrus for ICC, and a 
negative association was found in the cerebellum for ILC. These effects 
did not overlap with those observed for the CU total score. 

4. Discussion 

The present study advances previous research on the neural basis of 
aggression using whole brain rsFC analyses without any particular a 
priori regions in a large sample of children and adolescents. Comorbid 
anxiety and ADHD symptoms were taken into account as possible 
modulators of aggressive dimensions. Between-group differences were 
detectable only after removing the control for ADHD symptoms, 
resulting in voxel-wise rsFC (ICC/ILC) findings in frontal clusters, which 
are typically implicated in cognitive control. Both RA and PA were 
correlated with voxel-wise rsFC alterations in superior parts of the pa-
rietal lobe, which are linked to attentional control. Our analyses also 
yielded disparate patterns for RA and PA in the left central gyrus and/or 
precuneus, which are implicated in aggression and cognitive control. 
Distinct CU trait-specific ICC associations were observed in temporal 
and cerebellar regions, which are known to mediate fear, morality, and 
reward processing. 

Importantly, aggression subtype-specific rsFC findings were evident 
after additionally controlling for both ADHD and anxiety symptoms in 
the dimensional analyses. This suggests that these symptoms may have 
modulatory effects that can obscure aggression subtype-specific pat-
terns. This further underlines the importance of considering both ADHD 
and anxiety in research on aggression. The crucial role of ADHD 
(Broulidakis et al., 2016; Uytun et al., 2017) and anxiety (Motzkin et al., 
2011) in subtyping aggression is also substantiated by previous psy-
chophysiological experiments (Fanti, 2018). Additionally, studies 
focused on aggressive behavior showed a correlation between anxiety 
symptoms and RA and PA (Fite et al., 2014; Fung et al., 2015) or RA 
symptoms alone (Marsee et al., 2008; Vitaro et al., 2002), as in our 
sample. In other studies, RA has been linked to anxiety and ADHD 
problems(Smeets et al., 2017) and internalizing symptoms (Fite et al., 
2014). Multiple therapeutic components may be incorporated to relieve 
RA symptoms, including addressing anxiety, emotional problems, and 
hostile attributional biases, as RA symptoms may be manifestation of 
threat-circuit hypersensitivity (Blair et al., 2014). On the other hand, CU 
traits seem typically associated with reduced anxiety (Eisenbarth et al., 
2016; Frick et al., 2014). Individuals with CU traits and co-occurring 
high levels of anxiety might thus represent a distinct phenotype with 
different clinical outcomes (Fanti et al., 2013) and neural correlates 
(Sethi et al., 2018). Moreover, within cases, we found generally low 
correlations of RA and PA levels and CU traits with ADHD and anxiety 
levels, which might further indicate heterogeneous underlying profiles 
associated with these forms of aggression. Overall, our results emphasize 
the value of differentiating between aggression subtypes and consid-
ering comorbid anxiety and ADHD symptoms. A similar conclusion may 
be reached from the case–control analysis. In our group analysis, cases 
exhibited rsFC differences in the medial frontal cortex compared to 
controls, conforming with our previous seed-based rsFC results (Wer-
hahn et al., 2021), but only without controlling for ADHD symptoms. 
This suggests that ADHD symptoms affected prefrontal connectivity, 
consistent with the important role of the frontal lobe in ADHD and 
cognitive control (Ridderinkhof et al., 2004). The importance of 
considering anxiety levels in this context is in line with task-based fMRI 

studies in antisocial youths (Byrd et al., 2014), although the modulatory 
role of ADHD was not confirmed in previous studies (Broulidakis et al., 
2016; Werhahn et al., 2021). 

Our results suggest overlapping rsFC alteration patterns of RA and 
PA in brain regions involved in attention, decision-making, emotions, 
and CU-related traits. Thus, RA- and PA-related ICC was decreased in 
clusters including superior parts of the parietal lobe and lateral occipital 
cortex, however, in different hemispheres. These brain areas have been 
implicated in previous aggression-related rsFC studies. Decreased ILC 
was observed in the angular gyrus, where altered rsFC was reported also 
with antisocial personality disorder (Tang et al., 2016), and CU-related 
traits (Espinoza et al., 2018). Activity of the angular gyrus as part of the 
DMN has been associated with CU-related traits during emotional pro-
cessing (Anderson et al., 2017) and with moral behaviors (Boccia et al., 
2017; Fumagalli and Priori, 2012; Pujol et al., 2012). The lateral oc-
cipital cortex has been implicated in reduced functional activity during 
rest in adolescents with CD. The superior parietal lobe has been linked to 
attentional control (Bisley and Goldberg, 2010), learning from reward 
and punishment (Finger et al., 2011), and fearful expressions (Marsh 
et al., 2008; Peraza et al., 2015). 

In line with behavioral studies (Fite et al., 2010; Marsee et al., 2011; 
Marsee and Frick, 2007) and our previous imaging study (Werhahn 
et al., 2021), we found distinct rsFC patterns associated with RA and PA 
symptoms. They involved the precuneus and central gyrus, which were 
previously linked to different forms of aggressive behavior and cognitive 
control-related processes known to be impaired in disruptive behavior 
(Blair et al., 2018). For example, adolescents with CD showed decreased 
postcentral gyrus rsFC (Cao et al., 2018; Lu et al., 2021a; Lu et al., 
2021b; Lu et al., 2015). The precuneus, as part of the DMN, has been 
linked to self-reflection (Cavanna, 2007) and moral reasoning (Boccia 
et al., 2017), but also cognitive control and aggressive interactions 
(Fanning et al., 2017). In contrast with the neural findings delineated in 
this study and the correlation between CU traits and both RA and PA 
symptoms (Feilhauer et al., 2012; Pechorro et al., 2017), RA- and PA- 
related rsFC did not overlap with CU trait-related patterns. The 
strength of connectivity between a seed in the salience network pro-
jecting to the precuneus and central gyrus was previously found to be 
associated with CU sub-dimensions (Werhahn et al., 2021). Moreover, 
aberrant rsFC of the precuneus has been linked to impulsivity (Lu et al., 
2017a), ADHD, and severe temper outbursts (Roy et al., 2018), but also 
to CU-related traits (Cao et al., 2019). During rest, the precuneus has 
previously been observed to show altered functional connectivity in 
male adolescents with CD (Zhou et al., 2016) and in male juvenile of-
fenders (Chen et al., 2015) as well as in antisocial (Tang et al., 2016, 
2013) and psychopathic adults (Motzkin et al., 2011; Philippi et al., 
2015). Differences in rsFC of the precentral gyrus have also been re-
ported in psychopathic adults (Espinoza et al., 2018; Tang et al., 2016). 

In this study, CU traits were associated with connectivity measures in 
the left hemispheric inferior temporal gyrus, middle temporal gyrus, 
opercular regions, and the cerebellum. These findings align with pre-
vious studies using other connectivity methods, in which male adoles-
cents also exhibited CU-related differences in the inferior temporal gyrus 
and middle temporal gyrus (Aghajani et al., 2016; Thijssen and Kiehl, 
2017) as well as CD-related diminished activity in the right middle 
temporal gyrus (Wu et al., 2017), suggesting altered neural synchroni-
zation in these regions. The role of the middle temporal gyrus in this 
context has been further substantiated by the fact that this region 
exhibited the highest discriminating power among the DMN nodes to 
distinguish individuals with antisocial personality disorder from con-
trols, while analysis of the cerebellum enabled the best differentiation 
overall (Tang et al., 2013). Additionally, other studies reported 
decreased regional homogeneity (a measure of local brain coherence) in 
the middle temporal gyrus of adults with antisocial personality disorder 
(Tang et al., 2013) and CU-specific rsFC decreases in prison inmates 
(Espinoza et al., 2018). Cerebellar and opercular regions have been 
implicated in rsFC alterations in adults with psychopathy (Philippi et al., 
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2015), and juvenile offenders (Aghajani et al., 2016). There is also ev-
idence for the engagement of the left middle temporal gyrus in the 
theory of mind (Bzdok et al., 2012) and the CU-level-dependent fear 
response (Sebastian et al., 2014). The inferior temporal gyrus and 
middle temporal gyrus are also implicated in moral reasoning (Boccia 
et al., 2017), emotions (Alegria et al., 2016; Anderson et al., 2017), and 
reward processes (Crowley et al., 2010) along with the bilateral cere-
bellum (Veroude et al., 2016). Furthermore, exploratory analyses on the 
CU subdimensions only revealed an association between the uncaring 
facet and rsFC pattern. This effect did not overlap with the effect of CU 
total scores, supporting dimensional heterogeneity of CU traits. How-
ever, our results are exploratory in nature, and future studies can 
examine differential rsFC patterns in relation to CU subgroups, similar to 
prior work focused on brain structure (Ibrahim et al., 2021). This 
approach may help in identifying subtype-specific associations in rsFC. 

Our multi-center study included a large sample of both male and 
female child and adolescent cases and controls. The study was not 
restricted to the inclusion of conduct disorder, given that CU traits are 
present in only a minority of children with CD (Frick, 2016). Moreover, 
we focused on RA and PA aggression symptoms and CU traits, applied 
unrestricted whole-brain analysis of rsFC, and controlled for ADHD and 
anxiety symptoms. Our results might enable conclusions about aggres-
sion subtypes of aggressive youths, with potential implications for 
clinical practice. The study also has limitations. Some results may have 
been influenced by data heterogeneity owing to data collection at 
different sites. Yet, the large sample size and the multi-center design 
increases the generalizability of our findings, and study site was 
accounted for as a covariate in each analysis. However, including site as 
a covariate of no interest in the analysis may have caused some loss of 
power. Furthermore, the 38 cases without a DSM diagnosis exhibited 
lower PA scores, however, the sub-analysis yielded comparable 
aggression subtype-specific associations. Lastly, although we included 
participants from both sexes, our sample predominantly consisted of 
males. This might restrict the generalizability of our results, although we 
found similar effects when controlled for sex (see Supplementary 
Material). 

5. Conclusions 

The current study showed both distinct and partially overlapping 
brain connectivity patterns of aggression subtypes and their modifying 
factors. Considering comorbid symptoms seems crucial for this process. 
The identified brain regions have been implicated in emotion regulation 
and moral-related behaviors. As a future research endeavor, investi-
gating task-based alterations for the aggression subtypes could enhance 
their biological understanding. A transfer of aggression subtype-specific 
knowledge to clinical practice should be encouraged by tailoring exist-
ing therapeutic approaches (Umbach et al., 2015; Wilkinson et al., 
2016). In these applications, neurobiological interventions, such as real- 
time fMRI/arousal-biofeedback training (Aggensteiner et al., 2023) or 
transcranial direct current stimulation (Chan et al., 2022), may become 
promising treatment strategies. 
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