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Mild Traumatic Brain Injury Affects Orexin/Hypocretin
Physiology Differently in Male and Female Mice
Rebecca T. Somach,1-3 Ian D. Jean,1 Anthony M. Farrugia,1,2 and Akiva S. Cohen1-3,*

Abstract
Traumatic brain injury (TBI) is known to affect the physiology of neural circuits in several brain regions,
which can contribute to behavioral changes after injury. Disordered sleep is a behavior that is often
seen after TBI, but there is little research into how injury affects the circuitry that contributes to disrupted
sleep regulation. Orexin/hypocretin neurons (hereafter referred to as orexin neurons) located in the lateral
hypothalamus normally stabilize wakefulness in healthy animals and have been suggested as a source of
dysregulated sleep behavior. Despite this, few studies have examined how TBI affects orexin neuron cir-
cuitry. Further, almost no animal studies of orexin neurons after TBI have included female animals. Here,
we address these gaps by studying changes to orexin physiology using ex vivo acute brain slices and
whole–cell patch clamp recording. We hypothesized that orexin neurons would have reduced afferent ex-
citatory activity after injury. Ultimately, this hypothesis was supported but there were additional physiolog-
ical changes that occurred that we did not originally hypothesize. We studied physiological properties in
orexin neurons approximately 1 week after mild traumatic brain injury (mTBI) in 6–8-week-old male and
female mice. mTBI was performed with a lateral fluid percussion injury between 1.4 and 1.6 atmospheres.
Mild TBI increased the size of action potential afterhyperpolarization in orexin neurons from female mice,
but not male mice and reduced the action potential threshold in male mice, but not in female mice. Mild TBI
reduced afferent excitatory activity and increased afferent inhibitory activity onto orexin neurons. Altera-
tions in afferent excitatory activity occurred in different parameters in male and female animals. The in-
creased afferent inhibitory activity after injury is more pronounced in recordings from female animals.
Our results indicate that mTBI changes the physiology of orexin neuron circuitry and that these changes
are not the same in male and female animals.
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Introduction
Traumatic brain injury (TBI) is very common; in the

United States alone, an estimated 2.5 million emergency

department visits are due to TBIs each year.1 Mild TBI

(mTBI) accounts for 75% of these cases, representing a

significant number of patients.2,3 There are a variety of

negative symptoms associated with TBI and mTBI, in-

cluding cognitive dysfunction, memory impairments,

and mood disorders.4,5 Previous research has shown

that TBI can have a profound effect on the neural cir-

cuitry that underlies these negative symptoms.6–13 How-

ever, there are some behavioral symptoms that have not
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been well studied from a physiological perspective. Sleep

disorders are a common symptom after TBI; approxima-

tely 30-70% of TBI patients will experience sleep disor-

ders after injury.14–18 There are known neural circuits

that regulate sleep19 but relatively little work has investi-

gated how TBI affects those circuits.

The physiology of orexin/hypocretin neurons is at the

heart of sleep/wake regulation. Orexin/hypocretin (here-

after referred to as orexin) is a neuropeptide produced

by neurons in the lateral hypothalamus (LH).20,21

Reduced levels of orexin cause narcolepsy22–25 or hyper-

somnias26 and injecting orexin neuropeptide into the

brain causes wakefulness,27,28 showing it is necessary

and sufficient to promote wake behavior. In normal ani-

mals, orexin neurons stabilize wakefulness by activating

wake-promoting neurons29,30 and it is thought that orexin

neurons regulate an animal’s arousal threshold.31,32

28-50% of TBI patients report disorders of hypersomno-

lence as part of their sleep disruptions after injury16,33–36

and it is believed that orexin dysregulation may be a

source of this excessive sleepiness after TBI.

There is evidence that orexin is disrupted after TBI.

Studies have shown that TBI patients have reduced

orexin neuropeptide in their cerebral spinal fluid

(CSF).37 This reduction can last 6 months after injury17

and correlates with increased excessive daytime sleepi-

ness. In rodents, there is reduced orexin neuropeptide in

the cerebral spinal fluid of the hypothalamus immediately

following TBI.38 Some studies suggest that it is a reduc-

tion of the number of orexin neurons that explains these

decreases in orexin.38–43 However, the study that found

decreased orexin in the CSF of animals after injury did

not observe a decrease in the number of orexin neurons

meaning that these two factors do not necessarily corre-

late with one another.38

Additionally, our lab reported sleep disturbances after

mTBI even when the number of orexin neuron numbers

did not decrease,44 which means that the number of

orexin neurons is not the only consideration after injury.

Our lab used cFos as a marker of neuronal activity to

demonstrate that the activity of orexin neurons is reduced

after mTBI, not the number of cells. This shows that it is

important to consider orexin neuron function after injury

rather than only counting the number of orexin neurons.

Only two previously published studies have examined

of the activity of orexin neurons after TBI. The first was

the previously mentioned study, Lim and colleagues.44

The other reported that TBI reduces presynaptic gluta-

mate in dendritic afferents onto orexin neurons.45 The

current study expands on this work and uses electrophys-

iological techniques together with a transgenic orexin

EGFP mouse to determine the mechanism of altered

orexin neuronal function after mTBI.

Importantly, sleep is different in males and fe-

males.46,47 Female sex is considered a risk factor for

sleep disorders after TBI.48 Previous studies report that

TBI induces changes in sleep in both male38–41,44,49–56

and female animals.55,57,58 Despite this, little research

on orexin after TBI has been done in female animals. Pre-

viously, it has been demonstrated that disruptions in ho-

meostasis, such as stress59 can affect orexin neurons in

a sex dependent manner. Sex-dependent changes in

orexin could occur with TBI as well since injury disrupts

homeostasis. Therefore, this study specifically examines

orexin physiology of males and females after mTBI.

Based on the two previous functional studies of orexin

neurons after injury, we hypothesized that excitatory af-

ferent activity onto orexin neurons would be reduced

after mild traumatic brain injury.

Methods
Animals
All experiments were performed in accordance with pro-

tocols approved by the Children’s Hospital of Philadel-

phia’s Institutional Animal Care and Use Committee

(IACUC; Protocol 0694) and the guidelines established

by the U.S. Public Health Service’s Guide for the Care

and Use of Laboratory Animals. Animals were given ac-

cess to ad libitum food and water. A total of 79 animals

had data analyzed for these experiments. 41 Males, 19

Sham and 22 Injured; 35 Females, 17 Sham and 18

Injured, and 3 Male Naı̈ve animals only used for neuro-

biotin filling and no other data collection. Mice were be-

tween 6-8 weeks old at the time of injury. Animals were

bred in-house to contain EGFP on the prepro-orexin pro-

moter.60 Each mouse was genotyped to check for the

Orexin-EGFP marker prior to injury and recording.

Female animals were checked for estrus cycle stage on

the day of sacrifice. There were not enough animals to ap-

propriately compare between estrus cycle stages (Supple-

mentary Table S1); therefore, the female animals were

analyzed as one group. For all experiments, the experi-

menter was blinded to the injury condition of the animal

until after analysis of the data.

Surgical procedures in preparation for lateral
fluid percussion injury
Animals were anesthetized with a mixture of ketamine

(2.6 mg/kg) and xylazine (0.16 mg/kg) via intraperitoneal

injection. Animals were given meloxicam (2 mg/kg) as

an analgesic prior to surgery. Once fully anesthetized, an-

imals were placed in a stereotaxic frame (Stoelting,

Wood Dale, IL, USA), the scalp was incised and pulled

away to fully expose the right parietal bone. An ultra-

thin Teflon disk, (3-mm diameter) was glued to the

skull with Vetbond (3M, St. Paul, MN, USA) between

lambda and bregma sutures, and between the sagittal su-

ture and the lateral ridge over the right hemisphere.
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Guided by the Teflon disk, a trephine was used to perform

a 3-mm diameter craniectomy over the right parietal area.

Following craniectomy, a Luer-lock needle hub (3-mm

inner diameter) was secured above the skull opening

with superglue (Loctite, Düsseldorf, Germany) and den-

tal acrylic (Stoelting), filled with saline and capped.

Lastly, animals were removed from stereotaxis, placed

on a heating pad until fully recovered from anesthesia

as assessed by the animal’s spontaneous ambulation.

Once the animals can walk on their own, they are then

returned to their respective home cage. Animals were

monitored for 24 h after surgery.

Lateral fluid percussion injury
Twenty-four hours following craniectomy, animals

were placed under isoflurane anesthesia (2% oxygen in

500 mL/min) in a chamber and respiration was visually

monitored until animals reached a surgical plane of anes-

thesia (one respiration per 2 sec). At this point, animals

were removed from isoflurane, the needle hub was

refilled with saline and connected to the fluid percussion

injury device (Department of Biomedical Engineering,

Virginia Commonwealth University, Richmond, VA,

USA, and Custom Design and Fabrication, Sanston,

VA, USA) via high-pressure tubing. The animal was

placed onto a heating pad on its left side and upon re-

sumption of normal breathing pattern but before sensitiv-

ity to stimulation, the injury was induced by a 20-msec

pulse of saline onto the intact dura. The pressure trans-

duced onto the dura was monitored with a pressure trans-

ducer connected to an oscilloscope, with injury severity

ranging between 1.4 and 1.6 atmospheres. This is consid-

ered a mild injury. Immediately after injury, the hub was

removed from the skull and the animal was placed in a

supine position to assess righting reflex. After righting,

the animal was subjected to inhaled isoflurane to suture

the scalp.

Animals were allowed to recover on a heating pad until

mobile, at which point they were returned to their home

cage. Animals were given meloxicam post-surgery

(5 mg/kg) for pain relief. Sham animals underwent all

surgical procedures and anesthesia, including attachment

to the fluid percussion injury device, with exclusion of

the actual fluid pulse. Average righting times and stan-

dard deviations for animals in seconds: Shams:

41.39 – 31.77; Injured: 275.97 – 160.53. Divided by sex,

the righting times were not significantly different: Male

Sham: 30.29 – 10.76; Male Injured: 233.12 – 166.50;

Female Sham: 50.53 – 40.02; Female Injured: 321.5 –
145.3. Injured animals that showed no delay in righting

time were not included in the analysis. The injury used

is classified as mild, so animals with hemorrhaging, or se-

vere motor dysfunction after injury were not included in

the analysis.

Slicing details
All animals used for electrophysiological recordings

were sacrificed 6-10 days after the injury or sham-injury.

Animals were anesthetized with inhaled isoflurane in a

bell jar, decapitated and the brain was removed into an

ice-cold bath of sucrose cutting solution. Animals were

sacrificed between zeitgeber time (ZT) ZT4 - ZT5 after

lights-on in the animal facility, between 10 A.M. and

11 A.M. Concentrations of the components of the sucrose

cutting solution are the following (all in mM): Sucrose

202, NaHCO3 26, KCl 3, MgCl2 1, Glucose 10, NaH2PO4

1.25, CaCl2 2. Slices were cut on a vibratome (Leica

VT1200S, Deer Park, IL, USA) at 350 lm and slices

were cut at a speed of 0.06 mm/sec and an amplitude of

oscillation of 1.0 mm. Slices were then incubated at

35�C in artificial cerebral spinal fluid (aCSF) for at

least 1 h prior to recording. Artificial CSF was comprised

of the following (all in mM): NaCl 130, NaHCO3 26, KCl

3, MgCl2 1, Glucose 10, NaH2PO4 1.25, CaCl2 2. Artifi-

cial CSF and sucrose solutions were prepared with an os-

molality between 290-310 mmol/kg and were constantly

bubbled with a carbogen gas mixture (95% oxygen, 5%

carbon dioxide; AirGas, Radnor Township, PA, USA).

Electrophysiological recording
and recording parameters
After incubation, slices were moved to a slice chamber

(Warner Instruments RC-26, Holliston, MA, USA) super-

fused with aCSF and kept at 29.6�C with an inline heater

(Warner Instruments TC-324B). Patch electrodes with re-

sistances of 2-8 MO were pulled from borosilicate glass

(1B150F-4; World Precision Instruments, Sarasota, FL,

USA). Series resistance was monitored throughout the

experiment and recordings were not used if a cell

exceeded 35 MO in series resistance. Series resistance

was compensated for at 70%. All recordings were made

using a Multiclamp 700B (Molecular Devices, Palo

Alto, CA, USA) sampled at 20 kHz, filtered at 3 kHz.

Orexin neurons were initially identified using 2% neu-

robiotin (Vector Laboratories, Newark, CA, USA) in

K-Gluconate internal solution (n = 9 cells; Fig. 1 as an ex-

ample). After the accuracy of our EGFP label was con-

firmed, neurons were identified using EGFP at the time

of recording. All orexin neurons recorded were selected

from the side ipsilateral to the brain injury.

Passive membrane properties, action potential proper-

ties, and excitatory post-synaptic currents (EPSC) record-

ings were collected with a K-Gluconate based internal

pipette solution. Composition of the K-Gluconate inter-

nal solution was (all in mM): K Gluconate 125, KCl 5,

EGTA 1.1, HEPES 10, MgCl2 1, Mg-ATP 5, Na-GTP

0.5. Inhibitory post-synaptic current (IPSC) recordings

were collected with KCl based internal pipette solution

to achieve isotonic chloride recordings. Composition of
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the KCl internal solution was: KCl 145, EGTA 1.1,

HEPES 10, MgCl2 1 Mg-ATP 2, Na-GTP 0.5. In both in-

ternals, KOH was used to titrate pH between 7.2 and 7.3.

The osmolality of both internals was between 280 and

290 mmol/kg. All measurements described in this study

were compensated for the liquid junction potentials

of the internal solutions estimated at 14 mV for the

K-Gluconate Internal and 3.4 mV for the KCl Internal

(Clampex; Molecular Devices).

To isolate excitatory events, EPSCs were recorded in

the presence of the Gamma-Aminobutyric Acid (GABA)

receptor antagonist (-)- bicuculline methiodide (Abcam,

30 lM, Cambridge, UK). To isolate inhibitory events,

IPSCs were recorded in the presence of the N-methyl-D-

aspartate (NMDA) channel antagonist DL-2-amino-5-

phosphonopentanoic acid sodium salt (DL-AP5, sodium

salt; Abcam, 50 lM, Cambridge, U.K.) and the a-amino-

3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)

channel antagonist (1,2,3,4-Tetrahydro-7-nitro-2,3-

dioxoquinoxaline-6-carbonitrile disodium; DS-CNQX;

Abcam, 20 lM, Cambridge, UK). To isolate miniature

EPSCs and IPSCs, events were recorded in the presence

of the sodium channel antagonist tetrodotoxin citrate

(TTX; Abcam, 0.4 lM, Cambridge, U.K.). To test drug

FIG. 1. Identification of orexin/hypocretin neurons. Post hoc neuronal staining after recording in Orexin-
EGFP mice. EGFP Neuron (A) co-stained with (B) neurobiotin, and (C) orexin-A antibody. (D) Merged
image of endogenous EGFP fluorescence, neurobiotin, and orexin -A antibody. Scale bars at 20 lm.
(E) Electrophysiological properties of recorded orexin neuron. Sag current during hyperpolarization and
non-accommodating action potentials as previously reported for orexin neurons and assist in confirming
the identity of the recorded cell. Sample traces show -200 pA and 100 pA current injection.
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efficacy and determine current identity in orexin neurons,

IPSCs were blocked with bicuculline and EPSCs were

blocked with DS-CNQX and DL-AP5 and no currents

were observed (n = 10 cells, data not shown).

Recording measurements
Intrinsic membrane properties and action potential prop-

erties were recorded in current clamp. Resting membrane

potential was determined by reading the membrane volt-

age in current clamp between 1-5 sec after cell break in.

To measure action potential (AP) firing frequency versus

injected current, cells were injected with current steps

from -200 pA to 200 pA in increments of 25 pA for a

duration of 500 msec. The frequency of AP firing was de-

termined by counting the number of APs in the first

100 msec of the 500 msec pulse during each current

step. Input resistance was determined by using the change

in voltage during the -100 pA step and calculated with

Ohm’s law, R = DV
I . Other AP properties were measured

using an AP during the 0 pA pulse when there was no ex-

ogenous current injection and the cell was allowed to fire

spontaneously. The threshold of AP firing was found by

taking the first derivative (dV/dt) of the AP and measur-

ing where the AP exceeded 10 mV/msec.61 The afterhy-

perpolarization size was determined by the value in mV

between threshold and the minimum value reached dur-

ing the after-hyperpolarization. Sag ratio was determined

by using the -200 pA current pulse. The size of the volt-

age drop from baseline to the peak of the sag was com-

pared with the size of the voltage drop from baseline to

steady state after the sag. The sag ratio was calculated

with the formula:
Vpeak�VSteadyStateð Þ

Vpeak
· 100%.

All voltage clamp recordings were made while holding

cells at -67 mV after adjusting for the internal solution’s

liquid junction potential. Synaptic events were deter-

mined via the Template Search algorithm in Clampfit

11.1 (Molecular Devices). Current events with a 10-

90% rise time greater than 1.5 msec were excluded

from the analysis. MATLAB (2021a, MathWorks,

Natick, MA, USA) code was used to randomly select

75 current events per cell to ensure equal weighting of

cells in the cumulative probability histogram analysis.

All events from all cells in one group (e.g., Sham vs.

Injured) were then pooled to create a cumulative proba-

bility histogram. Statistical analyses were performed in

Prism 9 (GraphPad, San Diego, CA, USA).

Staining to confirm orexin/hypocretin
identity after recording
For cells filled with 2% neurobiotin, post hoc staining

was used to confirm the identity of the EGFP neurons.

Post-recording, slices were fixed in 4% paraformalde-

hyde overnight. Slices were washed four times with

0.01M phosphate-buffered saline (PBS) and then blocked

in blocking solution of 10% bovine serum albumin, NGS,

0.3% Triton-X and PBS for 3 h. All washes were done

with 0.01M PBS. After blocking, slices were washed

and incubated in Mouse-On-Mouse Blocker (1:40 con-

centration; Vector Labs, Newark, CA, USA) for 2 h at

room temperature. Slices were washed and Orexin-A

Antibody (1:1000; KK09, Santa Cruz Laboratories, Dal-

las, TX, USA) was added to incubate overnight at room

temperature. Slices were washed and incubated with

594 goat-anti rabbit (1:200) and 405 Dylight Conjugated

Streptavidin (1:300; Jackson ImmunoResearch, West

Grove, PA, USA) at room temperature for 3 h and then

at 4�C overnight. Slices were washed and mounted in

Fluoromount-G (Southern Biotech, Birmingham, AL,

USA) and imaged with a Leica Sp8 confocal microscope

(Leica, Deer Park, IL, USA).

Statistical analysis
Statistical tests for current clamp recordings including in-

trinsic properties and membrane potential properties in-

cluded unpaired Student’s t-tests comparing means of

these properties, or mixed-effects analysis where appro-

priate. For these tests, values of p < 0.05 were considered

significant (Table 1). For voltage clamp recordings,

Kolmogorov-Smirnov tests were performed on the pooled

cumulative probability histograms and compared be-

tween sham and injured groups. Significant differences

in distributions were set at a threshold p value of

p < 0.001 or less to be considered significant due to the

large number of events (Table 2).

Results
Identification of orexin/hypocretin neurons
for electrophysiological recording
We used transgenic mice with enhanced green

fluorescent protein (EGFP) downstream of the prepro-

orexin promoter to visually identify orexin neurons.60,62

To initially confirm their identity, we performed visual-

ized whole–cell patch clamp on EGFP labeled neurons

(Fig. 1), filled a subset with neurobiotin (n = 9 cells)

and co-stained with orexin-A antibody (Fig. 1D)

post hoc. Recorded EGFP labelled neurons show the

previously established electrical properties of orexin

neurons.63-65 That is, spontaneously firing action poten-

tials, non-accommodating action potentials and a hyper-

polarizing sag in response to injection of negative

current (Fig. 1E).

Increased afterhyperpolarization in female
animals and reduced action potential firing
threshold in male animals after mild traumatic
brain injury
We next examined if mTBI altered the intrinsic membrane

properties or action potential firing of orexin neurons
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(Fig. 2). In current clamp recordings from female animals,

we observed a larger after hyperpolarization after mTBI

(Fig. 2B). This result was not observed in neurons from in-

jured male animals (Fig. 2A). We also observed a reduction

in the action potential firing threshold in orexin neurons

from male animals after mTBI (Fig 2C), but we did not

see this reduction in firing threshold in neurons from female

animals (Fig 2D). No other significant differences between

intrinsic properties in slices from sham and injured animals

were detected (Table 1; Males: Sham = 9 animals, 19 cells;

Injured = 11 animals, 23 cells; Females: Sham = 7 animals,

13 cells; Injured = 8 animals, 14 cells]

Orexin neurons receive local afferents from within

the LH66 as well as from a variety of other brain re-

gions.62,67,68 Due to the extensive afferent connections

onto orexin neurons, we examined whether mTBI alters

afferent synaptic activity onto orexin neurons.

Mild traumatic brain injury reduces afferent
excitatory activity onto orexin/hypocretin
neurons in both male and female mice
Orexin neurons are innervated by both excitatory and

inhibitory afferents.69 Therefore, we recorded EPSCs

Table 1. Current Clamp Values

Male animals Female animals

Test usedProperty Sham Injured Sham Injured

Resting membrane potential -51.03 mV
(1.553)

-53.95 mV
(1.669)

-54.45 mV
(1.718)

-53.44 mV
(2.121)

Unpaired two-tailed
t-test

p = 0.2087 p = 0.7168

Firing threshold -38.22 mV
(1.062)

-41.14 mV
(0.9561)

-40.08 mV
(1.263)

-41.04
(1.196)

Unpaired two-tailed
t-test

p = 0.0473* p = 0.5834

Afterhyperpolarization 23.97 mV
(0.6719)

24.43 mV
(0.7701)

23.12 mV
(0.8982)

25.68 mV
(0.7872)

Unpaired two-tailed
t-test

p = 0.6593 p = 0.0409*

Resistance 606.6 MO
(28.21)

562.8 MO
(36.89)

519.0 MO
(31.16)

532.8 MO
(27.28)

Unpaired two-tailed
t-test

p = 0.3620 p = 0.7422

Rise slope 55.72 mV/msec
(5.878)

55.87 mV/msec
(6.180)

61.33 mV/msec
(10.84)

85.41 mV/msec
(14.04)

Unpaired two-tailed
t-test

p = 0.9867 p = 0.1915

Fall slope -29.35 mV/msec
(2.027)

-28.71 mV/msec
(2.100)

-32.37 mV/msec
(3.544)

-38.35 mV/msec
(4.391)

Unpaired two-tailed
t-test

p = 0.8293 p = 0.3038

Sag ratio 15.95
(1.984)

14.96
(2.122)

15.05
(2.247)

20.66
(2.189)

Unpaired two-tailed
t-test

p = 0.6683 p = 0.0853

Action potentials in 60 sec 4.003 Hz
(0.3505)

4.519 Hz
(0.5086)

5.300 Hz
(0.9256)

4.025 Hz
(0.5979)

Unpaired two-tailed
t-test

p = 0.4055 p = 0.2459

Firing frequency as a function
of current injection. Measured
as # of AP’s in 100 msec. The p value
is comparison between injury groups

p = 0.3214 p = 0.2651 Mixed effects
analysis

Bolded data indicates a significant finding.
All properties and significance values recorded in current clamp of orexin/hypocretin neurons. Values reported as means with standard error of the mean.
AP, Action potential.

Table 2. Voltage Clamp Significance

Males
sEPSC

Males
mEPSC

Females
sEPSC

Females
mEPSC

Males
sIPSC

Males
mIPSC

Females
sIPSC

Females
mIPSC

Amplitude 0.0019 < 0.0001 < 0.0001 0.0023 0.2237 0.7223 0.0008 < 0.0001
Interevent interval < 0.0001 0.2655 0.1349 < 0.0001 0.0001 0.3927 < 0.0001 0.1498

Bolded data indicates a significant finding.
Significance of cumulative probability histograms of orexin/hypocretin neurons recorded in voltage clamp. Values computed with the Kolmogorov-

Smirnov test with a value of p < 0.001 to be considered significant.
sEPSC, spontaneous excitatory post-synaptic current; mEPSC, miniature excitatory post-synaptic current; sIPSC, spontaneous inhibitory post-synaptic

current; mIPSC, miniature inhibitory post-synaptic current.
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in orexin neurons in bicuculline (30 lM) to isolate

excitatory currents. We recorded both spontaneous excit-

atory post-synaptic currents (sEPSCs) as well as minia-

ture excitatory post-synaptic currents (mEPSCs) where

miniature excitatory events were isolated by recording

in bicuculline plus tetrodotoxin (TTX; 0.4 lM).

We examined if injury would affect the properties of

EPSCs onto orexin neurons from male animals (Fig. 3).

For sEPSCs in slices from male animals, mTBI increased

the time between events, or the interevent interval, indi-

cating a decrease in frequency of afferent excitatory

activity (Fig. 3C). For mEPSCs in male animals, the am-

plitude was decreased after mTBI (Fig. 3D). These results

match our expected hypothesis that there would be di-

minished afferent excitatory activity onto orexin neu-

rons after mTBI (sEPSC Sham: n = 7 animals, 16 cells;

Injured: n = 7 animals, 18 cells; mEPSC Sham: n = 5 an-

imals, 18 cells; Injured: n = 5 animals, 17 cells).

We next examined whether this reduced afferent excit-

atory activity after injury would hold true for female

animals (Fig. 4). We observed in slices from female ani-

mals that sEPSCs decreased in amplitude after mTBI

(Fig. 4C). Miniature EPSCs in orexin neurons in slices

from females had an increase in interevent interval

(Fig. 4D), which indicates a decrease in the frequency

of miniature afferent excitatory activity. Similar to the

male animals, these results indicate a reduction of affer-

ent excitatory signaling after injury (sEPSC Sham: n = 8

animals, 29 cells, Injured: n = 5 animals, 18 cells. mEPSC

Sham: n = 8 animals, 32 cells. Injured: n = 4 animals, 17

cells).

Mild traumatic brain injury increases
afferent inhibitory activity
onto orexin/hypocretin neurons
Since changes in inhibitory synaptic transmission could

also affect orexin neuron activity, and because inhibitory

regulation of orexin neurons is crucial for reducing

arousal at appropriate times,70–74 we next investigated

whether there were injury-induced changes in the inhibi-

tory synaptic activity onto orexin neurons. IPSCs in

orexin neurons were recorded in the presence of AP5

(50 lM) and CNQX (20 lM) to eliminate excitatory cur-

rents from NMDA and AMPA receptors respectively. We

recorded both spontaneous (sIPSCs) and miniature cur-

rents (mIPSCs) where miniature events were again iso-

lated by recording in the presence of TTX (0.4 lM).

In slices from male animals, injured animals showed a

decrease of the interevent interval between sIPSCs, (i.e.,

an increased frequency of inhibitory activity onto orexin

neurons; Fig. 5B). There were no significant differences

in mIPSCs in male animals after injury (Table 2; sIPSC

Sham: n = 7 animals, 17 cells; Injured: n = 6 animals, 19

cells).

We then wanted to determine if increased afferent in-

hibitory activity would occur in female animals. In slices

from female animals, we also found a reduction of the

interevent interval in sIPSCs (Fig. 6E), indicating that

injury also increases spontaneous inhibitory activity in

female animals. Interestingly, after injury in female ani-

mals, both sIPSCs and mIPSCs show an increase in am-

plitude (Fig. 6C, 6D) that was not present in male animals

(Table 2). Taken together, this data suggests that in both

males and females there is an increase in afferent inhibi-

tory activity onto orexin neurons after injury. Interest-

ingly, the increase in inhibitory activity is more robust

in slices from females (sIPSC Sham: n = 7 animals, 16

cells; Injured: n = 6 animals, 13 cells; mIPSC Sham:

n = 5 animals, 13 cells; Injured: n = 6 animals, 14 cells).

Discussion
While previous work has shown that mild traumatic

brain injury affects orexin neurons, how injury affects

their activity has not been studied in depth. This work ad-

dresses this gap in knowledge by employing whole–cell

patch clamp recordings from identified orexin neurons

‰

FIG. 2. Afterhyperpolarization is increased after injury in female animals but not in male animals. Action potential
firing threshold is reduced after injury in male animals, but not in female animals. (A, B) Bar graphs of
afterhyperpolarization in males (A) and females (B). Each point represents one orexin neuron. Graphs show means
of individual cells with error bars as standard error of the means (SEMs). Males: Sham = 9 animals, 19 cells,
Injured = 11 animals, 23 cells, p = 0.6593. Females: Sham = 7 animals, 13 cells, Injured = 8 animals, 14 cells,
p = 0.0409* Unpaired Two tailed t-test. (C, D) Bar graphs of action potential threshold in males (C) and females
(D). Each point represents one orexin neuron. Graphs show means of individual cells with error bars as SEMs.
Males: Sham = 9 animals, 19 cells, Injured = 11 animals, 23 cells, p = 0.0473* Unpaired two-tailed t-test. Females:
Sham = 7 animals, 13 cells, Injured = 8 animals, 14 cells, p = 0.5834 Unpaired two-tailed t-test. (E, F) Representative
action potentials recorded in current clamp. Action potentials from orexin neurons from male animals (E) have a
reduced action potential threshold after injury. Action potentials from orexin neurons from female animals
(F) show a larger afterhyperpolarization after injury. (E) Males- Sham: Black, Injured: Green. (F) Females- Sham:
Black, Injured: Purple. *p < 0.05 significance.
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FIG. 3. Males show reduced afferent excitatory activity onto orexin/hypocretin neurons after mild
traumatic brain injury. (A, B) Representative spontaneous and miniature excitatory synaptic currents
recorded in orexin neurons in slices from male mice. Spontaneous excitatory post-synaptic currents (sEPSCs)
(A) and miniature excitatory post-synaptic currents (mEPSCs) (B). Note the increase in sEPSC interevent
interval and the decrease mEPSC amplitude. (C, D) Cumulative probability plots (75 current events per cell)
corroborating the representative cell data above. Significant differences in distributions observed in
interevent interval for sEPSCs (C) and amplitude for mEPSCs (D) in male animals after injury. sEPSCs were
observed to have an increase of interevent interval after injury, representing a decrease in frequency of
afferent excitatory signaling. Cells clamped at -67 mV and recorded in artificial cerebral spinal fluid (aCSF)
containing bicuculline (30 lM) (A) or bicuculline plus TTX (0.4 lM) (B). Significance determined with
Kolmogorov-Smirnov test for distributions with significance set at p < 0.001. sEPSC Sham: n = 7 animals, 16
cells, Injured: n = 7 animals, 18 cells. mEPSC Sham: n = 5 animals, 18 cells, Injured: n = 5 animals, 17 cells.
*p < 0.001 significance (see Table 2).
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FIG. 4. Females show reduced afferent excitatory activity onto orexin/hypocretin neurons after mild traumatic
brain injury. (A, B) Representative excitatory currents recorded in orexin neurons in slices from female mice.
Traces shown from spontaneous excitatory post-synaptic currents (sEPSCs) (A) and miniature excitatory post-
synaptic currents (mEPSCs) (B). Note the decrease in sEPSC amplitude, and the increase in mEPSC interevent
interval. (C, D) Cumulative probability plots (75 current events per cell) corroborating representative cell data
above. In female mice significant differences in distributions included a decrease in sEPSC amplitude after injury
(C). mEPSCs in female animals were observed to have an increase of interevent interval after injury (D),
representing a decrease in the frequency of afferent excitatory signaling. Voltage clamp traces recorded in
orexin neurons recorded at -67 mV in brain slices from female Sham or Injured animals. Afferent excitatory
signals recorded in bicuculline (30 lM) to block inhibitory signals. Afferent excitatory miniature currents
(B) recorded in the presence of bicuculline and TTX (0.4 lM). Significance determined with Kolmogorov-Smirnov
test for distributions with significance set at p < 0.001. sEPSC Sham: N = 8 animals, 29 cells, Injured: n = 5 animals,
18 cells. mEPSC Sham: n = 8 animals, 32 cells. Injured: n = 4 animals, 17 cells. *p < 0.001 significance (see Table 2).
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to study the intrinsic properties and afferent synaptic ac-

tivity onto orexin neurons. We found reduced afferent

excitatory activity and increased inhibitory activity onto

orexin neurons after injury, suggesting reduced orexin

activity. These findings are consistent with others in

the field that have shown that there is reduced orexin

neuropeptide in CSF after injury,37,38 as well as studies

of orexin neurons that showed reduced orexin neuron ac-

tivity after injury.44 We observed an increase of the size

of afterhyperpolarization in neurons from female animals

and a reduction of action potential threshold in male an-

imals. Injury affecting intrinsic neuronal properties is a

known consequence of injury in some brain regions as al-

terations of action potential threshold have also been ob-

served in neurons in layer 2/3 of the prefrontal cortex

after injury.9 The changes presented in this study provide

potential mechanisms for the observations of altered

orexin neuron activity after TBI.

We observed that there were different changes in

spontaneous and miniature synaptic current events after

mTBI. Miniature events are exclusively action-potential

independent, while spontaneous events include currents

that are action potential dependent. It has been demon-

strated that different vesicular pools can contribute to

these currents.75–82 The injury-induced alterations in

current activity may occur in miniature or spontaneous

events, which means that mTBI may affect synaptic

pools differently. In addition, it is thought that changes

in the frequency of currents are related to presynaptic al-

terations and changes in the amplitude of currents are re-

lated to postsynaptic alterations. Together with the model

that spontaneous and miniature events contribute to dif-

ferent vesicular pools, we can conceptualize how injury

may alter synaptic activity in a mechanistic way (see

Fig. 7 for a summary of these ideas).

Overall, the physiological alterations presented here

contribute to a more mechanistic understanding of the

changes to orexin circuitry after mTBI. The data pre-

sented here may also point to other changes in synapses

not summarized in Figure 7, which could include injury

induced changes in the number of synapses, changes in

the proteins involved in vesicle fusion, altered activity

of the receptors or changes in the amount of neurotrans-

mitter within vesicles. Each of these ideas provides inter-

esting and testable avenues for future research.

Based on previous studies, we had originally hypothe-

sized that a majority of observed changes would come

from decreased presynaptic glutamate. We did observe

reduced afferent glutamatergic activity but we also ob-

served significant increases in afferent inhibitory activity,

especially in slices from female animals. The upregula-

tion of GABAergic activity may be a result of compensa-

tory mechanisms after mTBI. After injury, it is known

that there is a transient increase in glutamate release83

and increased inhibition may be an attempt to

FIG. 5. Males show increased frequency of
afferent spontaneous inhibitory activity onto
orexin/hypocretin neurons after mild traumatic
brain injury. (A) Representative voltage clamp
recordings of inhibitory currents from orexin
neurons in brain slices from male mice. (B) sIPSC
interevent interval cumulative probability plot
was constructed from 75 current events per cell.
Significant differences were observed in the
interevent interval distribution for sIPSCs in male
animals. The distribution had a decrease of
interevent interval after injury, representing
increased frequency of afferent inhibitory current.
Voltage clamp traces in orexin neurons clamped
at -67 mV. Afferent spontaneous inhibitory post
synaptic currents (sIPSCs) recorded in AP5 (50 lM)
and CNQX (20 lM) to block excitatory signals.
Significance determined with Kolmogorov-
Smirnov test for distributions with significance set
at p < 0.001. sIPSC Sham: n = 7 animals, 17 cells,
Injured: n = 6 animals, 19 cells. *p < 0.001
significance (see Table 2).
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compensate for this initial transient increase in excitatory

activity to restore overall balance. Unfortunately, any po-

tential compensation now appears maladaptive. The re-

duced afferent excitatory activity and increased

inhibitory afferent activity were both measured approxi-

mately 1 week after injury. It appears that the increased

inhibition is no longer compensating for an initial tran-

sient glutamatergic surge. Instead, increased inhibition

onto orexin neurons may further reduce their activity fol-

lowing injury and potentially impair their ability to prop-

erly integrate signals from across the brain.

An interesting and important outcome of this study is

that there are sex differences in how TBI affects orexin

physiology after injury. While a majority of the injury in-

duced alterations in the circuitry presented in this work

imply reduced orexin neuron activity, the mechanisms

are not the same between sexes. The circuitry may be dif-

ferentially vulnerable to injury in males versus females.

Previously published work regarding the effects of TBI

on orexin neurons has been conducted only in male ani-

mals38–41,44,45,52,84 with just one exception, Saber and

colleagues,55 who reported no change in the number of

orexin neurons after injury. Due to this paucity of evi-

dence, it has been difficult to speculate further regarding

the possibility that injury could affect orexin circuitry dif-

ferently between sexes. The data presented here will be

important for future research and highlights specific alter-

ations in pre- and post-synaptic sites for potential treat-

ment of sleep disorders in men and women after mTBI.

Broadly, the orexin system is not identical between

males and females. There is evidence for more prepro-

orexin in female animals85 and higher levels of orexin

in females.86 Another study has reported more orexin

neurons in males compared with females,87 although

this study was done in older rats as compared with the

work reported from Taheri and colleagues.86 In either

case, males and females measured at similar times and

with similar techniques in the same lab show differences

between sexes in the orexin neurons in the lateral hypo-

thalamus. This is an indication that the system might be

structured differently between sexes at baseline.

The orexin system in males and females also responds

differently to stressors. Females have higher levels of

prepro-orexin after restraint stress,88 males and females

have different changes in orexin neuron synaptic struc-

ture after restraint stress,59 and female animals show a

significantly greater correlation between prepro-orexin

messenger RNA (mRNA) expression and corticotro-

phin releasing hormone, an indicator of stress, compared

with males after unpredictable mild stress.89 Women with

major depressive disorder have fewer orexin neurons.89

Even aging can affect the orexin system differently

with one study showing that older female animals have

fewer orexin neurons than males.87 This note about the

orexin system differing in the sexes during aging may

be particularly important since some research suggests

that TBI ‘‘ages’’ the brain.90 Thus, the stressor of TBI

may emphasize sex differences in the orexin system.

In addition to how the orexin system is different in

males and females in terms of cells, circuitry, and re-

sponse to stress, one can also consider whether circulat-

ing sex hormones may influence orexin responses to

injury since those are also different in males and females.

There is evidence that estrogens can influence the orexin

system91-93; therefore, higher levels of estrogen in fe-

males may cause injury responses in the orexin system

that would be different than males, where estrogen is

lower. There is also interest in the female sex hormone

cycling and whether that could influence outcomes in fe-

male animals. In this current study, there were not enough

animals per estrus stage to appropriately compare them

(Supplementary Table S1), but comparisons of orexin

neurons after injury with a consideration of hormone lev-

els or estrus cycle stage could be a potentially interesting

future direction for this work.

As of now, only two published studies have studied elec-

trophysiology to understand mechanistic changes to physi-

ology in the hypothalamus after TBI.94,95 One of these

‰

FIG. 6. Females show increased afferent inhibitory activity onto orexin/hypocretin neurons after mild traumatic
brain injury. (A, B) Representative inhibitory currents. Traces shown from spontaneous inhibitory post-synaptic
currents (sIPSCs) and miniature inhibitory post-synaptic currents (mIPSCs). sIPSC show both an increase in
amplitude and shorter interevent interval, while for mIPSCs an increase in amplitude is observed. (C, D, E)
Cumulative probability plots corroborating representative plots above, 75 current events per cell. Significant
differences in sIPSC distributions observed as an increase of amplitude (C) and reduced interevent interval
(E). Significant differences in mIPSC distributions observed as an increase in amplitude (D) after injury. Decreases in
interevent interval represent an increase of frequency of inhibitory current onto orexin neurons after injury.
Voltage clamp traces recorded in orexin neurons clamped at -67 mV. Afferent inhibitory signals recorded in AP5
(50 lM) and CNQX (20 lM) to block excitatory signals. Miniature currents (B) recorded in the presence of AP5
(50 lM), CNQX (20 lM) and TTX (0.4 lM). Significance determined with Kolmogorov-Smirnov test for distributions
with significance set at p < 0.001. sIPSC Sham: n = 7 animals, 16 cells, Injured: n = 6 animals, 13 cells. mIPSC Sham:
n = 5 animals, 13 cells, Injured: n = 6 animals, 14 cells. *p < 0.001 significance (see Table 2).
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FIG. 7. Summary of findings. (A) In excitatory afferents in male animals, mild traumatic brain injury (mTBI)
increases interevent interval in spontaneous events, represented by fewer presynaptic vesicles associated with
spontaneous activity. Miniature events show a reduced amplitude, represented by fewer glutamatergic receptors.
(B) In excitatory afferents in female animals, mTBI increases the interevent interval in miniature events, represented
by fewer presynaptic vesicles associated with miniature events. Spontaneous events show reduced amplitude,
represented by fewer glutamatergic receptors. (C) In inhibitory events in male animals, mTBI reduces the interevent
interval in spontaneous events, represented by more spontaneous presynaptic vesicles. (D) In inhibitory events in
females, mTBI reduces the interevent interval in spontaneous events, represented by more presynaptic vesicles.
mTBI also increases the spontaneous and miniature event amplitudes, represented by an increase of post synaptic
GABA receptors. Figure is representative of pre- and post- synaptic changes generally. Changes in the number of
synapses, proteins involved in vesicle fusion, density of neurotransmitter in vesicles or channel function may also be
possible but not represented here for the sake of clarity. EPSC, excitatory post-synaptic current; IPSC, inhibitory post-
synaptic current; sEPSC, spontaneous excitatory post-synaptic current; mEPSC, miniature excitatory post-synaptic
current; sIPSC, spontaneous inhibitory post-synaptic current; mIPSC, miniature inhibitory post-synaptic current.
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studies did not find differences in physiology after injury94

and the other did.95 In other brain regions, there is evidence

that TBI can affect brain regions and cell types differently,

even in the same circuit or cells in close proximity.6–9 The

structure, location, and properties of neurons within a brain

region contribute to how TBI affects its physiology. The

hypothalamus is a highly heterogeneous structure com-

posed of many nuclei that perform a variety of essential ho-

meostatic functions.96,97 TBI may very well affect each

region of the hypothalamus differently. The work presented

in this paper investigating the LH is part of the foundation

of exploring how TBI affects the physiology of neural cir-

cuits throughout the hypothalamus.

The current study does have several limitations. This

study measured the activity of orexin neurons after

mTBI, but the complete circuitry of arousal and sleep is

more complicated than any one cell subtype. Further in-

vestigations of the other connections within the sleep/

wake circuitry could provide valuable insights into how

the system is affected by injury. Additionally, while

whole–cell patch clamp recording can provide detailed

information regarding the summed synaptic input onto

a neuron, there are still other mechanistic questions that

cannot be answered with this technique. One of these

questions includes the source of the afferent inputs onto

orexin neurons, which could not be determined in this

study. An exciting future direction of this work is to de-

termine these potential inputs and isolate which of them

are particularly susceptible to mTBI.

Conclusions
In conclusion, orexin circuitry is a critical part of the net-

work in the brain that regulates wakefulness, but there

has not been much direct study of how TBI affects this

circuitry. As in other brain regions, mTBI does have an

effect on the balance between excitation and inhibition

in orexin circuitry. This study is among a handful that ex-

plore this phenomenon in the hypothalamus. This study is

also one of the few that examines orexin neurons after

TBI and shows that the physiological differences may ap-

pear similar but are not the same between sexes. Future

mechanistic studies of how TBI affects neuronal function

may reveal important changes in the brain after injury

that could be missed with other techniques.

Transparency, Rigor,
and Reproducibility Summary
This study and analysis plan were not formally preregis-

tered. Based on extensive experience with patch clamp

electrophysiology, sample size was set at a minimum of

three animals and 10 cells per group. A total of 186

mice were bred for these experiments, 79 animals were

the right age and genotype and had data collected for

analysis. Technical animal exclusions included: hemor-

rhage, herniation, motor deficits, and no delay in righting

time for injured animals. The experimenter performing

patch clamp experiments was blinded to the animals’ in-

jury condition by the technician who performed the in-

jury. The experimenter was blinded to injury condition

until data analysis was complete. Animals were heterozy-

gotes for Orexin-EGFP. All animals were 6-8 weeks old

at the time of injury, except for one sham female that was

10 weeks old but whose data were not significantly differ-

ent than other sham females. Animals were sacrificed be-

tween 6-10 days after the mild traumatic brain injury.

Animals were brought from the animal facility at 9 A.M.

and sacrificed between 10 and 11 A.M. on the recording

day. Holding cages for the hour had bedding and water

but no food provided. Females had their estrus cycle

checked via vaginal saline swab at the time of sacrifice,

but data from females was not divided by estrus cycle

since there were not enough animals per estrus cycle

stage to make appropriate comparisons (Supplementary

Table S1). Recordings were not used if access resistance

was above 35 MO or if recordings were unstable. For sta-

tistical analysis, all cells were treated as independent.

Action potential frequency was treated as a repeated mea-

sure since it was done with current pulses in the same cell

and a mixed model test was used. Statistical outliers were

determined by the ROUT test Q = 1% and removed be-

fore final analysis. Means were used for current clamp

data with an assumption of normal distribution, while

medians were used for outlier tests for voltage clamp

data with an assumption that the cumulative probability

data is not normally distributed. Current clamp parame-

ters were assumed as significantly different with a

value of p < 0.05. Voltage clamp data was gathered by

selecting 75 random currents per cell, constructing a cu-

mulative probability histogram and comparing the distri-

butions with the Kolmogorov-Smirnov (KS) test. Cells

that did not have a minimum of 75 current events were

excluded from analysis. Since 75 events per cell creates

a high-powered test, the KS was not considered signifi-

cant unless p < 0.001. To ensure that randomness would

not produce artificial significance, code was created to re-

peat the 75 draws per cell and KS comparison 1000 times.

If less than 60% of these draws were not significant by the

KS test, the distributions were not considered signifi-

cantly different. Analytic code and original data are

available from the author upon request.
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