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ABSTRACT: Spectral similarity networks, also known as molecular
networks, are crucial in non-targeted metabolomics to aid
identification of unknowns aiming to establish a potential structural
relation between different metabolite features. However, too extensive
differences in compound structures can lead to separate clusters,
complicating annotation. To address this challenge, we developed an
automated Annotation Propagation through multiple EXperimental
Networks (APEX) workflow, which integrates spectral similarity
networks with mass difference networks and homologous series. The
incorporation of multiple network tools improved annotation quality,
as evidenced by high matching rates of the molecular formula derived
by SIRIUS. The selection of manual annotations as the Seed Nodes
Set (SNS) significantly influenced APEX annotations, with a higher
number of seed nodes enhancing the annotation process. We applied APEX to different Caenorhabditis elegans metabolomics data
sets as a proof-of-principle for the effective and comprehensive annotation of glycerophospho N-acyl ethanolamides (GPNAEs) and
their glyco-variants. Furthermore, we demonstrated the workflow’s applicability to two other, well-described metabolite classes in C.
elegans, specifically ascarosides and modular glycosides (MOGLs), using an additional publicly available data set. In summary, the
APEX workflow presents a powerful approach for metabolite annotation and identification by leveraging multiple experimental
networks. By refining the SNS selection and integrating diverse networks, APEX holds promise for comprehensive annotation in
metabolomics research, enabling a deeper understanding of the metabolome.

■ INTRODUCTION
Networks have emerged as a powerful formalism for modeling
and analyzing complex systems of interacting elements. A
network is a collection of nodes connected by edges that
represent interactions or relationships between them. When a
particular phenomenon (such as metabolism) can be modeled
as a network, the topology of such a network can be used to
study the phenomenon. There are different ways to build
metabolism-related networks, but they can be broadly divided
into knowledge-based and experimental networks.1

Knowledge-based networks, such as the Genome-Scale
Metabolic Network (GSMN), aggregate knowledge about
the metabolism of a specific organism, e.g., human or
Caenorhabditis elegans.2−4 The GSMN is constructed on the
basis of annotated genomes.

In contrast, experimental networks can be generated from
metabolomics data, i.e., holistic measurements that systemati-
cally measure and (semi)quantify all metabolites present in a
given sample, aiming to correlate changes in metabolite
intensities or concentrations with physiological phenotypes.
Known and unknown metabolic reactions and pathways were

reconstructed from metabolomics data. Here, we are focusing
on liquid chromatography−tandem mass spectrometry (LC-
MS/MS)-based nontargeted metabolomics, with which differ-
ent experimental networks can be (re)constructed, such as
mass difference and spectral similarity networks; all of which
can be used to interpret the obtained metabolomics data.

Mass difference networks use exact m/z values and the
corresponding pairwise mass differences (represented as
edges).5−7 These mass differences are compared against a list
of known mass differences corresponding to the biochemical
transformations of interest. For instance, a mass difference of
15.9949 could indicate the gain or loss of an oxygen atom, and
if such a biochemical transformation is of interest, a connection
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between the corresponding nodes is added. However, although
the mass difference between a pair of metabolite features could
be explained by the biochemical transformation link between
them, this is not necessarily the case. Two metabolite features
may have the same mass difference as a biochemical
transformation of interest only by chance or because of
unrelated biochemical transformations. Different techniques
could be used to improve the quality of a mass difference
network (i.e., to reduce the false positive edges), for instance,
homologous series. Homologous series are a group of
compounds that differ from each other by a specific repeating
unit, such as a CH2 group in a homologous series of fatty
acids.8 Retention time is used to identify those homologous
series based on a consistent trend observed in liquid
chromatography (LC) separations, for example, in reversed-
phase separations, wherein the retention time tends to increase
as the number of CH2 units increase. If unknown metabolites
are connected in the mass difference network and are part of a
homologous series, it provides strong evidence for the
identities of the unknown metabolites. It is to note that,
although mass difference networks can be a useful tool for
metabolite annotation and identification, they do not consider
any structural relation between metabolites.

In contrast, spectral similarity networks, also known as
molecular networks, are based on spectral patterns from
fragmentation experiments that can incorporate some aspects
of chemical structural information and can provide more
accurate metabolite annotation. The nodes represent corre-
sponding MS2 spectra of metabolite features, which are
compared by their spectral similarity, with different scoring
metrics available.9,10 An edge between two nodes is drawn if
the spectral similarity between the corresponding fragmenta-
tion spectra is above a specific threshold. It is important to
note that the topology of a spectral similarity network is
dependent on the metric used for comparing the MS2 spectra
and the threshold. Thus, if spectra are too dissimilar, no
connection can be added, even if potential biochemical
connections exist.

Correct annotation and identification of metabolites in
nontargeted metabolomics remains as one of the primary
challenges in the field, and different types of networks,
covering different aspects of the biology, serve as valuable tools
to aid in this task, especially when combined.

In the present work, we introduce an automated Annotation
Propagation through a multiple EXperimental networks
(APEX) workflow. Our workflow combines spectral similarity
networks with mass difference networks and application of
homologous series. The aim of APEX is to bridge between
different types of networks and to allow propagating the
annotations beyond a single network to uncover new potential
biological links useful for metabolite annotation and
identification as well as biological interpretation.

In this study, we utilize the APEX workflow to aid in the
identification of glycerophospho N-acyl ethanolamides
(GPNAEs), a recently discovered compound class in
Caenorhabditis elegans (C. elegans), that has been identified in
starved larvae and peroxisomal α-oxidation mutants.11,12

GPNAEs are intermediates in the synthesis of N-acyl
ethanolamines (NAEs), which are linked to lifespan extension
in the nematode.13 Due to their recent discovery, no deposited
reference spectra and no chemical reference standards for
GPNAEs are yet commercially available. Notably, a character-
istic fragmentation pattern of GPNAEs and its acyl chain

variants connect the corresponding nodes in spectral similarity
networks as performed by Helf et al. However, differences in
their structure upon specific biochemical transformation
(glycosylation) changes abundance of common fragments
and introduces new fragment peaks as well, which results in
separated clusters in molecular networks, limiting the ability to
propagate annotations between them.12 Nevertheless, the
combination of different experimental networks allows one to
bridge between such seemingly unrelated clusters.

Using the APEX workflow, we improved species identi-
fication within the GPNAE compound class in different C.
elegans data sets. We also evaluated its effectiveness for
annotating species from two other C. elegans metabolite classes,
namely, ascarosides and modular glycosides (MOGLs). Our
results highlight the potential of APEX for annotating GPNAEs
and its implications for future metabolomics research.

■ MATERIAL AND METHODS
Chemicals. Methanol (MeOH), isopropanol (iPrOH),

acetonitrile (ACN), and formic acid have been of LC-MS
grade and purchased from Sigma-Aldrich (Sigma-Aldrich,
Taufkirchen, Germany). Water was purified from a Millipore
Integral 3 water purification system with a TOC < 3 ppb and
>18.2 MOhm.

C. elegans Culture. The C. elegans N2 strain was
maintained on nematode growth medium at 20 °C according
to the routine protocol.14 Pseudomonas lurida MYb11,
Pseudomonas f luorescens MYb115, and Escherichia coli OP50
were grown on Tryptic Soy Agar (TSA) at 25 °C. Worms were
grown on 9 cm Peptone Free Nematode Growth Medium
(PFM) plates with a bacterial lawn (OD600 = 10) of either
MYb11, Myb115, or OP50 at 20 °C for at least two
generations. Four biological replicates were used for each
treatment group. Each replicate consisted of 1000 to 1500
synchronized hermaphrodites at the first larval stage (L1)
pipetted onto the bacterial lawns. Two days later, the worms
were transferred to plates containing OP50. Worms were
harvested after 24 h by thoroughly washing each plate with
chilled M9, followed by centrifugation at 3500 rpm for 1 min.
The pellet was collected and washed four more times. Finally,
the pellets were transferred into 1 mL of H2O/MeOH (50/50,
v/v) and flash-frozen in liquid N2.
Metabolite Extraction. After worm samples had been

thawed on ice, they were transferred to bead beating tubes and
homogenized using a Precellys beat beating system with a
Cryolys cooling module (Bertin Technologies). After homog-
enization, samples were centrifuged for 15 min at 15000 rpm at
4 °C. The supernatant was transferred to a fresh reaction tube
and evaporated to dryness using a Speedvac (Thermo Savant).
Samples were stored dry at −80 °C until analysis. From the
residue, protein quantities were determined using a bicincho-
ninic acid (BCA) kit (Sigma). Prior to analysis, samples were
redissolved in 50 μL of 80% H2O/20% ACN. A total of 40 μL
was transferred to an autosampler vial, and 10 μL from each
sample was mixed for a pooled quality control (QC) sample.
UPLC-UHR-TOF-MS Analysis of C. elegans Microbiota

Samples. Metabolite extracts were analyzed on a Waters
Acquity UPLC (Waters, Eschborn, Germany) coupled to a
Bruker maxis UHR-TOF-MS instrument (Bruker Daltonics,
Bremen, Germany). Separation was achieved on a Waters
Acquity BEH C18 column (100 mm × 2.1 mm ID, 1.7 μm
particle size). Eluent A consisted of 100% H2O/0.1% formic
acid and Eluent B of 100% ACN/0.1% formic acid. Gradient
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conditions were as follows: 95/5 at 0.0 min, 95/5 at 1.12 min,
0.5/99.5 at 6.41 min, 0.5/99.5 at 10.01 min, 95/5 at 10.1 min,
and 95/5 at 15.0 min. Detection was carried out in positive
and negative ionization modes using data-dependent acquis-
ition. MS parameters were as follows: End-plate offset = −500
V, Capillary = −4500 V (positive mode)/4000 V (negative
mode), Nebulizer pressure = 2.0 bar, Dry gas = 8.0 mL/min,
Dry temperature = 200 °C. MS2 spectra were acquired with
data-dependent acquisition using Bruker AutoMSn with
default parameters for the isolation window and collision
energy ramping. For individual recalibration of each chromato-
gram, 1:4 diluted low concentration tune mix (Agilent,
Waldbronn, Germany) was injected via a six-port valve before
each run between 0.1 and 0.3 min.
Data Preprocessing. All data sets (C. elegans microbiota,

MSV000087885 and MSV000086293) were processed the
same way using Genedata Expressionist for MSMS 13.5.4
(Genedata AG, Basel, Switzerland). Processing included
chemical noise subtraction, retention time alignment, isotope
clustering, peak detection, and grouping. The resulting feature
table and corresponding MS2 spectra were exported and used
to build the experimental networks and to manually annotate
the metabolite features that were used as seeds for the APEX
workflow (i.e, the GPNAE, the ascaroside, and MOGL
compounds), as described in the following sections.
Construction of Mass Difference Networks, Homolo-

gous Series, And Spectral Similarity Networks. Mass
difference networks were created using theMetNet R package15

and upon mass matching of 10 and 5 ppm tolerance for the
qToF and Orbitrap data, respectively, using a list of 27 mass
difference of biotransformations that might be a relevant
GPNAE metabolism (Table S1) and 21 mass differences
relevant to ascaroside/MOGL metabolism (Table S2).

Homologous series have been calculated using the nontarget
R package (https://github.com/blosloos/nontarget), consid-
ering only C, H, and O for the mass difference. Even more, the
minimum m/z difference was 5 Da, the maximum m/z
difference was 60 Da with a tolerance of 5 Da, the minimum
RT shift was 12 s, the maximum was 60 s with a tolerance of 5
s, and there was a minimum of 4 features per homologous
series cluster.

The spectral similarity networks were generated using
Feature Based Molecular Networking (FBMN) in GNPS.16

The feature table and MS2 spectra were formatted to be
compatible with XCMS input format for FBMN. Settings were
as follows: mass tolerance of 0.02 Da, minimum cosine of 0.8,
maximum 1000 neighbor nodes, minimum 3 matched
fragment ions, and unlimited component size.

The experimental networks spectral similarity G_s = (V_s,
E_s) and mass difference G_m = (V_m, E_m) and
homologous series (G_h = V_h, E_h) are then merged into
a single network G_apex = (V, E), merging the duplicated
vertices (of V_s + V_m + V_h) and corresponding edges E so
that there is a single edge between any pair of nodes and saving
the number and type of experimental networks merged as an
edge attribute.
Overview of the APEX workflow. The automated APEX

workflow is schematically shown in Figure 1 and depicted as a
pseudocode in SI, S1.

Overall, the APEX workflow is designed to propagate
annotations from manually annotated seed nodes to their first
neighbors using a combination of mass difference, spectral
similarity, and homologous series. The resulting annotations

are simplified (maximum of one annotation per node) to
facilitate downstream analysis.

APEX is implemented in R and uses igraph, Spectra,
MsBackendMgf, and MetaboCoreUtils package and is available
on GitHub (https://github.com/michaelwitting/APEX) to-
gether with all relevant data from the example data sets used.

■ RESULTS AND DISCUSSION
Data Sets. To test the effectiveness of the APEX workflow,

we used three C. elegans metabolomics data sets. The first data
set was generated in-house on a UPLC-UHR-ToF-MS using
reversed phase (RPLC) separation (C. elegans microbiota).
The second data set was taken from Helf et al.,12 downloaded
from MassIVE (MSV000087885), and also used to annotate
GPNAEs. The third and last data set was taken from Le et al.,17

downloaded from MassIVE (MSV000086293) and used to

Figure 1. Scheme of the APEX workflow. A pseudocode explaining
the algorithm can be found in the SI, S1. The workflow starts by
iteration through the manually annotated seed nodes S_i to get their
set of neighbors N(S_i). Then the iteration continues through all the
neighbors N_j, where the scheme starts. If a neighbor N_j is
annotated, new attributes are added to N_j containing the networks
connecting N_j and S_i, the seed node S_i, and other available
attributes (i.e., values of spectral similarity, mass difference, and
homologous series).
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annotate ascarosides and modular glycosides (MOGLs) in
order to test the versatility of APEX. For each data set, we
performed data preprocessing, generated mass difference
networks, homologous series, and spectral similarity networks,
as described above. We note that APEX is agnostic of the LC-
MS/MS preprocessing software and only requires a feature
table and related MS2 spectra. Metabolites have been manually
annotated by interpretation of fragmentation spectra and/or
curated from the respective publications.
Manual Annotation of GPNAEs, Ascarosides, and

MOGLs. The first two data sets (C. elegans microbiota and
MSV000087885) were screened for different GPNAE variants
by exact mass matching in negative ionization mode (because
of its characteristic fragmentation in negative mode), using an
in-house MS1 library containing GPNAEs with different acyl
chain lengths. In order to confirm those GPNAE variants, the
corresponding MS2 spectra were inspected to contain several
fragments: m/z 79.9668 (metaphosphoric acid, [H2PO3]−),
m/z 171.0064 (glycerol 3-phosphate, [C3H8O6P]−), m/z
152.9958 (glycerol 3-phosphate minus water, [C3H6O5P]−),
and the neutral loss of 74.0367 (−C3H6O2 resulting in
diagnostic NAE-phosphate fragment).18

In total, we manually annotated 19 and 10 features as
GPNAEs in the C. elegans microbiota and MSV000087885
data set, respectively. In the third data set, ascarosides and
MOGLs have been annotated. We annotated 9 and 16
candidates (ascarosides and MOGLs, respectively) based on
exact mass matching and MS2 fragmentation spectra. Even
more we used retention time (RT) matching, if available from
the respective publication yielding high confidence annota-
tions, which can be used as seeds.17

Development of the APEX Workflow. Each type of
network, mass difference, or spectral similarity covers different
aspects of metabolic transformations. Mass differences often
can be spurious, and spectral similarity can be used to establish
a potential structural similarity. However, certain structural
modifications might change the fragmentation in such a way
that the potential structural similarity can no longer be

established. For example, comparing fragmentation of GPNAE
13:0 and GlycoGPNAE 13:0 (Figure 2), we see that those
glucose variants exhibit changes in the fragmentation behavior.
Even though there are several matching peaks (m/z 410.2313
[C18H37NO7P]−, 336.1940 [C15H31NO5P]−, 171.0064
[C3H8O6P]− , 152.9958 [C3H6O5P]− , and 79.9668
[H2PO3]−), two of which match the neutral loss of hexose
(i.e., 572.2835−162.0528 = 410.2313 and 333.0592−162.0528
= 171.0064), they vary greatly in their intensity. In addition,
glucose variants show additional fragments corresponding to
internal glucose fragments (m/z 101.0244, 119.0708, 89.0239,
and 59.0133).19 The resulting (modified) GNPS cosine
score9,10 comparing the spectra of GPNAE and GlycoGPNAE
is equal to 0.69 (0.64 without considering the precursor m/z),
which results in the generation of separate clusters in the
spectral similarity network (with a threshold for the modified
cosine >0.8). Nevertheless, both features can be associated
with a meaningful mass difference between the precursor m/z
of 162.0528 Da corresponding to the addition of a hexose
moiety.

To establish new connections between features not
connected in the spectral similarity network, we used the
mass difference network. However, some connections in the
mass difference network could lead to incorrect conclusions;
for example, connections to isomeric compounds or matches
to random features that have no biological meaning. In the case
of LC-MS/MS, the retention time can be used as an additional
level of information.

Certain metabolite classes from homologous series, e.g.,
lipid-like molecules, show differences in acyl-chain length. For
example, fatty acids form well-known homologous series,
where each member of the series differs from the previous
member by repeating the methylene (CH2) unit. This can be
used for metabolite identification since a distinct pattern in the
chromatographic separation will be found for the homologous
series. In the case of reversed-phase-based separation, an
increase in chain length leads to an increased retention. By
grouping features that belong to the same homologous series,

Figure 2. Mirror plot of GPNAE 13:0 (top spectrum) and GlycoGPNAE 13:0 (bottom spectrum) and molecular structure of (Glyco)GPNAE.
Exact m/z matches are displayed in pink, and internal glucose fragments of GlycoGPNAE 13:0 are displayed in blue.
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we can increase the reliability of some mass difference
annotations linked to lipid-like compounds. Hence, we used
homologous series as additional information in our APEX
workflow.

In APEX, we take advantage of the different topologies of
the various experimental networks to propagate and hence
predict accurate annotations of specific metabolite classes such
as GPNAE. Starting from a set of seed nodes, the APEX
workflow iteratively annotates the first neighbors of each seed,
varying the annotation based on the types of connections
between the nodes.

If multiple annotations of the same node exist based on
different seed nodes (i.e., manual annotations) and leading to
the same predicted molecular formula, APEX prioritizes the
one that considers the highest number of experimental
network connections, and if equal, the simplest one with the
smallest mass difference is preferred. This approach helps to
reduce the ambiguity in the annotation process and ensures the
selection of the most reliable annotation. However, if
annotations of the same node differ in their predicted
molecular formula, then APEX keeps both annotations.
Although the APEX workflow focuses mainly on the
annotation of first neighbors, it can also annotate those second
neighbors (i.e., the nodes that are at a distance equal to two
from the seed nodes, where the distance is equivalent to the
minimum number of edges in the path between any pair of
nodes) that are connected in all of the experimental networks.
Application and Validation of the APEX Workflow to

Identify GPNAE. We first tested our developed APEX
workflow to annotate GPNAE in our in-house data set. In
total, we manually annotated 19 GPNAE of different chain
lengths and degrees of saturation that are all part of the same
cluster in the spectral similarity network (cluster 1 in Figure
3A). We used all 19 manually annotated nodes as Seed Node

Set (SNS) for the APEX workflow. As a result, we were able to
annotate most nodes from cluster 1, mainly using the spectral
similarity network in combination with the mass difference
network, as shown in Figure 3B. All annotations, manually and
predicted by APEX, reveal that cluster 1 corresponds to
(unmodified) GPNAE varying in their number of alkyl chains
and saturation.

The APEX workflow was able to connect the GPNAEs
(cluster 1) to the separated GlycoGPNAEs (cluster 2) using
the mass difference network; with the mass difference of
162.0528 (blue edges), corresponding to a hexose moiety.
Figure 3 exclusively visualizes the mass differences of hexose
molecules, highlighting the interconnectedness facilitated by
APEX between the clusters and enabling their annotation
(Figure 3B).

Even more, 12 GlycoGPNAE were separated from cluster 2
(in the merged network) and did not even appear in the
spectral similarity network. This is because our in-house data
set showed low MS2 coverage (30% in negative mode). As a
result, most of the features are not present in the spectral
similarity network, but since mass difference networks rely on
MS1 data, those features can be also addressed and annotated
using the APEX workflow.

Table 1 shows most of the APEX-based annotations of our
in-house C. elegans microbiota data set are based on mass
differences (specifically, 142 consider mass difference edges
between nodes that are not connected via spectral similarity).
But as mentioned, mass differences are less reliable than
spectral similarity because connections to random features
without biological meaning might arise. Even more, mass
difference networks do not distinguish different potentially
present isomers with different retention times, and as a result,
they are also connected. GPNAEs are isomeric to Lysophos-
phatidylethanolamines (LPEs). Therefore, using only mass

Figure 3. Spectral similarity network (threshold > 0.8) of data set 1 and APEX results using 10 manual annotations as seed node set (SNS).
Spectral similarity edges are visualized in purple, and hexose mass-difference (162.0528) is in blue. There are different clusters formed in the
network representing GPNAEs (cluster 1), GlycoGPNAEs (cluster 2), and Lysophosphatidylethanolamines (LPEs; cluster 3) (A) node coloring:
purple: manual annotations/SNS; blue: APEX GlycoGPNAE annotations; green: remaining APEX-based annotations; red: manually annotated
LPEs (B) APEX annotation levels, i.e., combination of edges; node coloring: purple: spectral similarity + mass difference + homologous series; red:
mass difference + homologous series; green: spectral similarity + mass difference; light green: spectral similarity; orange: mass difference; yellow:
homologous series.
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differences led to erroneous annotation of 23 LPEs that were
annotated as GPNAEs by the APEX workflow, as shown in
Figure 2. But since they had associated fragmentation spectra
which showed a different fragmentation, corresponding nodes
exist in the spectral similarity network and they are
disconnected, differentiations can be made. Furthermore, in
most cases isomeric GPNAEs and LPEs could be baseline
separated in the chromatographic dimension.

In order to further evaluate the APEX workflow, we
reprocessed the publicly available data set from Helf et al.,12

which also detected GPNAEs alongside their glycovariants,
and similar to the clustering of our in-house C. elegans
microbiota data set, GPNAEs and GlycoGPNAEs were found
in different, isolated clusters in the spectral similarity network.
As we mentioned, this is due to the structural difference caused
by the glucose moiety, leading to different fragmentation (see
above).

We manually annotated 10 GPNAEs (using MS1 and MS2

data) that were used as SNS to annotate their neighbors by
APEX, which resulted in the annotation of 293 nodes (Table
1): The APEX workflow also annotated 26 glycoGPNAEs
using connections in the mass difference network. Even more,
12 out of those 26 glycoGPNAE annotations were made
without the availability of MS2 spectra, which highlights the
strength of our approach in annotating metabolites in cases
where fragmentation data are not available.

The inclusion of homologous series to filter the mass
difference network allows for potentially filtering out isomeric
features with mismatching retention times (Table 1). More-
over, it adds additional confidence for features that have been
annotated only on the MS1 level.

Additionally, for the current implementation of the APEX
workflow, it is crucial that all species of a homologous series
are present in the analysis, which is due to limitations of the
nontarget R package used for generating the homologous series.
This can be an issue for low-abundance species that are not
detected in MS analysis.

The ability to utilize multiple experimental networks is a key
strength of the APEX workflow, which can potentially

overcome the limitations of using a single network and
increase the accuracy and confidence in metabolite annotation.
Comparison of Molecular Formula Predictions: APEX

vs SIRIUS. To benchmark the proposed APEX workflow, we
performed a comparison of the molecular formulas predicted
by our approach with those obtained from SIRIUS, a widely
used software tool for metabolite annotation in LC-MS/MS-
based metabolomics that can be used to predict molecular
formulas using isotopic patterns and fragmentation trees.20

While SIRIUS primarily focuses on calculating the best fitting
formulas, APEX goes beyond that by leveraging additional
biochemical information to refine and enhance formulas
propagation.

To ensure a comprehensive comparison, we considered all
candidate molecular formulas provided by SIRIUS, i.e., those
with multiple candidates ranked based on their similarity to the
observed spectrum. However, because of potentially missing
MS2 data, not all features in the data set have molecular
formulas available in SIRIUS computations. It is important to
note that the APEX workflow provides molecular formulas
only for features that are connected in the mass difference
network, propagating the formula difference. Despite these
limitations, we observed matches at 90.9% (i.e., 76 out of 83)
in all APEX-based annotations for features with available
molecular formulas and SIRIUS formula results (SIRIUS
results available at https://github.com/michaelwitting/APEX).

To further validate the results of the APEX workflow, we
manually annotated 93 different compounds (beyond the 19
GPNAE used as SNS, i.e., organic acids, amino acids, fatty
acids, nucleotides, and glycerophospholipids; ids available at
GitHub) in our in-house C. elegans microbiota data set and
compared the observed molecular features with those obtained
using the APEX workflow. Remarkably, we found no
mismatches between the manually annotated compounds and
the APEX-based annotations, providing compelling evidence
for the accuracy and reliability of the APEX workflow.

Among the APEX-based annotations from the publicly
available data set (MassIVE MSV000087885), 88.1% of the
predicted formulas (i.e., 37 out of 42) matched those from
SIRIUS. Notably, all (i.e., 3 out of 3) of the annotations based
on the combination of spectral similarity, mass difference, and
homologous series have the same molecular formula as those
predicted by SIRIUS, which underscores their high reliability.

Additionally, we assessed the performance of the APEX
workflow using leave-one-out cross-validation on our in-house
C. elegans microbiota data set. This involved utilizing all but
one manual annotation as the SNS and keeping the left out
manual annotation as a Validation Set (VS). This process is
repeated for each of the manual annotations, resulting in n
number of evaluations, where n is the number of manual
annotations. We also validated the APEX workflow using leave-
two-out cross-validation. In both cases (leaving one or two
seeds out at a time), all the VS were correctly annotated (i.e.,
matching molecular formulas).

To further evaluate the influence of the number of seed
nodes on the APEX workflow results, we applied the leave-one-
out cross-validation on three different approaches using all
(i.e., 19), 50% (i.e., 10), and 25% (i.e., 5), of the manual
GPNAE annotations as SNS, respectively. The VS for each
approach was the set of left-out annotation. Remarkably, for all
three approaches, each left-out VS was annotated correctly.
This suggests that the APEX workflow performs well and
generates reliable annotations, even with a small SNS.

Table 1. Overview on the Number of APEX Annotations
through the Different Datasets and Metabolite Classes

data set 1
in-house

data set 2
massive

MSV000087885

data set 3
massive

MSV000086293

class GPNAE GPNAE ascr MOGL
number of seed nodes 19 10 9 16
total annotations 204 293 75 226
mass difference
+ spectral similarity
+ homol. series

14 11 0 0

mass difference
+ spectral similarity

10 11 10 23

mass difference
+ homol. series

23 46 1 0

spectral similarity
+ homol. series

2 0 0 0

spectral similarity 8 22 7 135
mass difference 142 192 57 68
homol. series 5 11 0 0
multiple annotations 114 241 32 155
multiple conflicting
annotations

3 0 0 0
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Influence on Seed Nodes. We evaluated the impact of
the use of different Seed Node Sets (SNS) on the APEX
workflow by randomly selecting three SNS of different sizes (1,
2, and 5 nodes) and assessing their influence on the number of
observed APEX-based annotations. The SNS used determined
the annotation process (Tables S3−S5). Our results showed
that using different SNS resulted in relatively low overlap of
the annotated features, especially when only one seed node was
used (Figure 4A); whereas using more manual annotations as
the SNS (Figure 4C) increased the overlap of APEX-based
annotations between different SNS. We recommend using at
least five manual annotations as the SNS to enhance
annotation coverage of GPNAEs. The selection of seed
nodes can significantly impact the annotation made by the
APEX workflow, so researchers should carefully consider the
number and combination of seed nodes used. To assess the
overlap of true GPNAE annotations between different SNS, we
performed a comparison by only retaining APEX-annotations
that were annotated by the combination of spectral similarity,
mass difference, and homologous series. We found that the
overlap of these annotations increased with the size of the SNS
(however, no trend was shown because the APEX-annotation
strongly depends on the type of SNS). We compared the
molecular formulas predicted by the APEX workflow with
other manually annotated features of the data set and
determined that using a minimum of 5 seed nodes as input
yielded 36 matching formulas, ensuring high-quality annota-
tions. In general, the larger the SNS, the more APEX-based
annotations there will be, but the selection of seed nodes
impacts the results. The use of multiple seed nodes is
recommended to increase the quality and certainty of the
APEX-based annotations.
Validation on an Independent, Publicly Available

Data Set. Finally, we tested the APEX workflow on a different
data set focusing on two other compound classes in C. elegans:
ascarosides and modular glucosides (MOGLs). Ascarosides are
signaling compounds involved in a wide range of biological
processes, including development, reproduction, and behav-
ior.21−24 Similar to GPNAEs, no reference spectra exist in
public MS2 databases and no reference standards are
commercially available. MOGLs have been recently described
in C. elegans and are constructed through various combinations
of diverse metabolic building moieties,25 making them an ideal
model for evaluating APEX.

We used the data set from Le et al. (MSV000086293), in
which we manually annotated 9 ascarosides (also reported in
the respective publication, i.e., 8x ascr# and 1x icas#) and 16
MOGLs (i.e., 4x tyglu#, 11x iglu#, and 2x angl#), that we used
as SNS.17

Starting with the ascarosides as seed nodes, the APEX
workflow annotated 7 species (i.e., nodes) using only spectral
similarity networks, 10 by a combination of spectral similarity
and mass difference and 57 based only on mass difference
(Table 1). The annotations obtained solely from the mass
difference analysis and those obtained through a combination
of mass difference and spectral similarity analysis lead to the
annotation of similar variants, i.e., CH2, C2H4, HPO3, H2,
C2H2, and C9H5NO variants. These annotations arise from
differences in molecular formulas between various compounds
or between an ascr# and its corresponding icas# variant related
to an indole carboxylic acid residue. Therefore, connections in
the mass difference network allow one to annotate similar
variants, even if the corresponding nodes are not connected in
the spectral similarity network. This is different from GPNAEs,
where we noticed that Hexose mass differences only occurred
when there were no spectral similarity edges present. By using
APEX, we were able to annotate additional ascarosides, such as
bhas#9 by the mass difference 44.0262 (C2H4O) to the seed
node ascr#5 that resulted in the chemical formula C11H20O7,
or phascr#71 by connecting ascr#7 with the mass difference of
79.9663 (corresponding to HPO3).

The same data set also included MOGLs that we aimed to
annotate by APEX using a different set of seed nodes and
observed 226 annotations (Table 1; 135 via spectral similarity,
68 via mass difference, and 23 via combination of both).
Interestingly, the main mass differences were C5H6O, C6H10O5
(Hexose), C13H22O5 (corresponding to an ascr#1 block), CH2,
and HPO3. Additionally, it is worth noting that the proportion
of matching molecular formulas, when compared to the
formulas predicted by SIRIUS, is slightly higher for the
combination of mass difference and spectral similarity (82.6%,
i.e., 19 out of 23) than for the mass difference annotations
alone (71.7%, i.e., 30 out of 42).

Using APEX, we found 10 species connected to angl#4 (7
through spectral similarity, 2 through mass difference, and 1
through spectral similarity combined with mass difference). A
particular example was the annotation of angl#4 + C5H6O with
the molecular formula C25H29N2O12P, which potentially

Figure 4. Consistency of annotations made by the APEX workflow using different (random) SNS of different sizes. (A) Overlap of annotations
using three different (individual) nodes as SNS. (B) Overlap of annotations using three different pairs of nodes as SNS. (C) Overlap of annotations
using three different SNS of five nodes each.
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corresponds to angl#26 and was not reported in a previous
publication. Even more, we annotated one feature with the
potential chemical formula C22H30NO10P by the mass
difference of C3H6O to iglu#8, which potentially corresponds
to phicas#11. Another feature was potentially annotated as
anglas#2 by APEX and the mass difference of C13H22O5
(which corresponds to an ascr#1 unit) to angl#2.

In conclusion, the APEX workflow was successfully applied
to annotate additional species of ascarosides and MOGLs in C.
elegans. By using spectral similarity and incorporating mass
difference, a total of 75, and 226 species (ascarosides and
MOGLs, respectively) were annotated. However, since both
ascarosides and MOGLs do only rarely form homologous
series, the filtering step previously applied to GPNAEs which
can be categorized to lipid and lipid-like compounds could not
be used here. Therefore, while the APEX workflow is effective
for identifying ascarosides and MOGLs, it has some limitations
that must be considered when annotating these compounds.

■ CONCLUSION
Here we introduced an APEX workflow and used it for the
annotation of glycerophospho N-acyl ethanolamides
(GPNAEs), a compound class in C. elegans. The combination
of spectral similarity, mass-difference, and homologous series
allowed for accurate and comprehensive annotation of
GPNAEs, including automated annotation of Glyco variants
that are not connected in the spectral similarity network. The
incorporation of different network tools improved the accuracy
and comprehensiveness of the annotation process, while the
quality of annotations was underscored by their high matching
rate with the SIRIUS results. Additionally, the homologous
series was introduced to filter out non-biological features and
improve the identification of compounds with more biological
significance. However, it is still necessary to use spectral
similarity as a more reliable network since mass differences
tend to be noisier and GPNAEs are isomeric to lysophospha-
tidylethanolamines, leading to incorrect annotations using the
APEX workflow.

Moreover, the selection of the manual annotations used as
the Seed Nodes Set (SNS) significantly influences the resulting
APEX annotations, and a higher number of seed nodes
enhances the annotation process. These results demonstrate
the usefulness of the APEX workflow in identifying and
characterizing compounds in complex data sets, particularly for
glycolipid-related compounds.

In the future, different possibilities for the extension of
APEX exist. GSMNs capture knowledge on known metabolic
pathways and transformations and potentially allows to bridge
individual features or cluster using biochemical reactions.26,27

Another possibility is the use of correlation networks.
Especially, Gaussian graph models have been shown to be
able to reconstruct biochemical valid links from metabolomics
data.28 Furthermore, it helped to in identifying novel
metabolites.29 By optimizing the selection of SNS and
incorporating different complementary networks such as
GSMNs, correlation networks, etc., the APEX workflow may
provide even more comprehensive annotation results and
become an invaluable resource for researchers seeking to
decipher the complexities of the metabolome.

■ ASSOCIATED CONTENT
Data Availability Statement
The APEX workflow, networks and ids are available on
GitHub (https://github.com/michaelwitting/APEX).
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.analchem.3c02797.

Pseudocode of the APEX algorithm (PDF)

Transformation file used for GNPAE annotation,
transformation file used for ascaroside and MOGL
annotation, overlap of molecular formulas predicted by
APEX, overlap of molecular formulas predicted by APEX
and manually annotated compounds, number of APEX
annotations depending on number of seed nodes
(XLSX)

■ AUTHOR INFORMATION
Corresponding Author
Michael Witting − Metabolomics and Proteomics Core,
Helmholtz Zentrum München, 85764 Neuherberg, Germany;
Chair of Analytical Food Chemistry, TUM School of Life
Sciences, Technical University of Munich, 85354 Freising-
Weihenstephan, Germany; orcid.org/0000-0002-1462-
4426; Email: michael.witting@helmholtz-munich.de

Authors
Liesa Salzer − Research Unit Analytical BioGeoChemistry,
Helmholtz Zentrum München, 85764 Neuherberg,
Germany; orcid.org/0000-0003-0761-0656

Elva María Novoa-del-Toro − Toxalim (Research Centre in
Food Toxicology), Université de Toulouse, INRAE, ENVT,
INP-Purpan, UPS, 31931 Toulouse Cedex, France

Clément Frainay − Toxalim (Research Centre in Food
Toxicology), Université de Toulouse, INRAE, ENVT, INP-
Purpan, UPS, 31931 Toulouse Cedex, France

Kohar Annie B Kissoyan − Department of Evolutionary
Ecology and Genetics, Zoological Institute, Kiel University,
24118 Kiel, Germany

Fabien Jourdan − Toxalim (Research Centre in Food
Toxicology), Université de Toulouse, INRAE, ENVT, INP-
Purpan, UPS, 31931 Toulouse Cedex, France; MetaToul-
MetaboHUB, National Infrastructure of Metabolomics and
Fluxomics, 31931 Toulouse Cedex, France

Katja Dierking − Department of Evolutionary Ecology and
Genetics, Zoological Institute, Kiel University, 24118 Kiel,
Germany

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.analchem.3c02797

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
Work in the group of K.D. was funded by the German Science
Foundation DFG (Collaborative Research Center CRC 1182
Origin and Function of Metaorganisms, Project A1.2). The C.
elegans N2 strain was initially provided by the CGC, which is
funded by NIH Office of Research Infrastructure Programs
(P40 OD010440).

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.3c02797
Anal. Chem. 2023, 95, 17550−17558

17557

https://github.com/michaelwitting/APEX
https://pubs.acs.org/doi/10.1021/acs.analchem.3c02797?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.3c02797/suppl_file/ac3c02797_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.3c02797/suppl_file/ac3c02797_si_002.xlsx
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Michael+Witting"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-1462-4426
https://orcid.org/0000-0002-1462-4426
mailto:michael.witting@helmholtz-munich.de
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Liesa+Salzer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-0761-0656
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Elva+Mari%CC%81a+Novoa-del-Toro"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Cle%CC%81ment+Frainay"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kohar+Annie+B+Kissoyan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fabien+Jourdan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Katja+Dierking"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.3c02797?ref=pdf
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.3c02797?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


■ REFERENCES
(1) Amara, A.; Frainay, C.; Jourdan, F.; Naake, T.; Neumann, S.;

Novoa-Del-Toro, E. M.; Salek, R. M.; Salzer, L.; Scharfenberg, S.;
Witting, M. Front Mol. Biosci 2022, 9, No. 841373.
(2) Hastings, J.; Mains, A.; Artal-Sanz, M.; Bergmann, S.;

Braeckman, B. P.; Bundy, J.; Cabreiro, F.; Dobson, P.; Ebert, P.;
Hattwell, J.; Hefzi, H.; Houtkooper, R. H.; Jelier, R.; Joshi, C.;
Kothamachu, V. B.; Lewis, N.; Lourenço, A. B.; Nie, Y.; Norvaisas, P.;
Pearce, J.; Riccio, C.; Rodriguez, N.; Santermans, T.; Scarcia, P.;
Schirra, H. J.; Sheng, M.; Smith, R.; Suriyalaksh, M.; Towbin, B.; Tuli,
M. A.; van Weeghel, M.; Weinkove, D.; Zecǐc,́ A.; Zimmermann, J.; le
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