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ABSTRACT: Targeted nucleases are widely used for altering the
specific location of the genome with precision. The endonucleases
facilitate efficient genome editing via designing a guide RNA
(gRNA) consisting of a 20-nucleotide target sequence. gRNA
preferably binds to the target location, but the on- and off-target
activities of gRNAs vary widely. The off-target activity due to
mismatch tolerance in the CRISPR-Cas system is a major factor
inhibiting its clinical applications. Ensuring on-target efficiency and
minimizing off-targets for a target sequence are the major objectives
of this study. A pipeline has been designed to predict potential off-
target sites in the human genome for a target sequence, and a
multilayer perceptron (MLP) has been used to predict the cleavage
efficiency of the potential off-target sites. An MLP-based classifier
was trained with sequence- and base-dependent binding energy-associated features for AsCpf1 and LbCpf1 to predict the target
efficiencies. Positional preferences of nucleotides, distribution of mismatches, and classification-dependent feature importance
between high-activity and low-activity off-targets were also studied. Positional preference of nucleotides revealed that thymine is
highly disfavored at positions adjacent to Protospacer Adjacent Motif (PAM), whereas guanine is favored in high-activity off-targets.
Mismatch distribution analysis revealed that mismatches were more prominent in the trunk region (16, 17, 18 nucleotides from
PAM sequence), and the promiscuous region and transition type mismatch were more preferred at 16, 17, and 18 nucleotides
positions. The distribution of mismatches was a distinctive feature between high-activity and low-activity off-targets.
Thermodynamics-associated features such as low to moderate melting temperature of the nonseed region and base-dependent
PAM binding energy were predicted as best predictors by the multilayer perceptron for high-activity off-targets. GC content, some
types of dinucleotide frequencies, number of bulges, and mismatches in the seed and trunk regions were other characteristic features
between high-activity and low-activity off-targets for both LbCpf1 and AsCpf1.

1. INTRODUCTION
Targeted genome editing is a powerful technology used for gene
modification to assess and alter gene function. Various genome
editing technologies such as zinc finger nucleases, transcription
activator-like effector nucleases, and, more recently, RNA-
guided endonucleases are used to introduce double-stranded
breaks at the location of choice for precise editing or gene
disruption.1,2 Different repair mechanisms of the cell incorpo-
rate either indels without template strands or precise editing
using template strands at that location. Currently, the adaptive
bacterial immune system CRISPR/Cas has taken a lead as an
RNA-guided targetable nuclease for widespread application in
pharmaceutics, agriculture, and genetics. The CRISPR system is
advantageous over ZFNs and TALENs because of its simplicity
in designing a guide, controlled delivery, and cost-effectiveness.
Many studies have successfully employed the CRISPR system
not only in bacteria3 but also in nematodes,4 mice,5 zebrafish,6

and human pluripotent stem cells7 for targeted mutation since
its discovery. However, there are various challenges associated
with the clinical application of the CRISPR-Cas system, and

among them, one of the major challenges is off-target effects.
Cas9 nuclease has been engineered to precisely control the off-
target activity, gene regulation, and transcriptional repression.8

In 2015, a Cas nuclease named Cpf19 was characterized and
reported for lower off-target activity than most Cas-associated
nucleases. Another characteristic feature of Cpf1 that distin-
guishes it from the popular Cas9 is that Cpf1 recognizes a T-rich
PAM which ensures stringency in PAM recognition and
processes the precursor CRISPR RNAs into mature CRISPR
RNAs. Cpf1 also results in staggered ends at cleavage sites which
allow easy designing of a template strand with the identity of
sticky ends of the double-stranded break.
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Single-guide RNA (sgRNA) of CRISPR-Cpf1 consists of
CRISPR RNA (crRNA) and guide RNA (gRNA). This gRNA
consists of the seed region (1−6 nucleotides including the PAM
sequence), the trunk region (7−18 nucleotides), and the
promiscuous region (19−23 nucleotides).10 While searching for
a target sequence, gRNA mostly tolerates mismatches in the
PAM-distal region rather than in the PAM-proximal region.
CRISPR-Cpf1 system is found to be highly specific in
mammals,11−14 human cells,12 and plant cells.15−18 CRISPR-
Cpf1 has also been used to correct genetic mutations in human
cells.19,20 The T-rich PAM sequence that Cpf1 mostly favors is
TTTV where V is A, C, or G in the IUPAC codes.

The major challenge associated with the CRISPR-Cas system
is that the target specificity and efficiency of sgRNAs vary widely
resulting in off-target effects which can be controlled by
designing and selecting an optimal gRNA.10,21 Currently,
there are very limited computational approaches that exist for
sgRNA designing and prediction of off-targets,21−23 and INDEL
frequencies for Cpf1.10 There are many existing tools for
alignment-based guide RNA design24−27 and machine learning-
based off-target prediction for Cas9.28−30 However, there is a
need for a better performing algorithm for the selection of
sgRNAs for Cpf1. Existing studies for Cpf1 have attempted to
correlate gRNA features with the target efficiency of the
CRISPR-Cpf1 system.10,21 We have previously worked on Cas9
for the prediction of off-targets using sequence-based features
and alignment-based approaches.25,28 Further, a machine
learning model has been developed to predict target efficiencies
with sequence features and binding energies.28,30,31 Therefore,
in this study, sequence-associated and base-dependent binding
energy-associated features were used to study its biological
importance in off-target cleavage activity by Cpf1 extracted from
Acidaminococcus species Cpf1 (AsCpf1) and Lachnospiraceae
bacterium Cpf1 (LbCpf1) species. Additionally, a potential off-
target prediction pipeline and a target efficiency prediction
pipeline using sequence- and binding energy-associated features
for AsCpf1 and LbCpf1 have been developed.

2. RESULTS
2.1. Performance of Sequence Search and Alignment

Tools. Blastn,32 bowtie,33 and Fasta3634 were optimized to
predict the maximum number of potential off-target sites in the
human reference genome. FASTA36 mapped a large number of
highly divergent sequences compared to BLASTn. BOWTIE
predicted a maximum number of ungapped off-target sites with
up to 9 mismatches. BLASTn overlooked diverse hits predicted
by using BOWTIE and FASTA36. The number of such sites
predicted using BLASTn, BOWTIE, and FASTA36 for AsCpf1
targets was 124, 483,546, and 58,431. Similarly, the same
methods estimated 141, 1,454,619, and 80,346 potential off-
targets for LbCpf1. The number of potential off-target sites
predicted with the optimized FASTA36, BLASTn, and
BOWTIE are summarized in Table 1. Although BOWTIE

mapped the maximum number of off-target sites because of the
flexibility of the algorithm to map off-target sites, it did not allow
for gaps in the calculation. On the other hand, BLASTn was
found to be stringent in mapping highly divergent sequences to
the human genome and predicted the least number of potential
off-target sites. Considering all of these factors, FASTA36 was
selected for the pipeline to predict potential off-target sites over
BLASTn and BOWTIE since it predicted all of the experimental
off-target sites along with other potential off-target locations.
The FASTA36 algorithm was optimized to predict off-target
sites with 9 mismatches and 3 gaps. Further, the performance of
the developed pipeline was benchmarked with existing tools
using a randomly chosen target sequence, as shown in Table 2.

The pipeline developed in this study performed better compared
to the existing tools in predicting potential off-target sites. Also,
it could identify most off-target sites that have already been
experimentally validated. The list of experimental off-targets
predicted by the optimized pipeline for all of the target
sequences of AsCpf1 and LbCpf1 are mentioned in the
Supporting Information file 2.
2.2. Target Efficiencies of Optimized Models. The

positive and negative off-targets were collected for LbCpf1 and
AsCpf1, respectively. The gRNA off-target pairs for LbCpf1 and
AsCpf1 were used to train LinearSVC, RandomForest,
AdaboostClassifier, MLPClassifier, LogisticRegression, and
DecisionTreeClassifier algorithms. Hyperparameter tuning of
all of the mentioned algorithms was performed. The best set of
parameters was selected for prediction. A similar approach was
repeated for all of the algorithms and both data sets. The list of
hyperparameters for all of the machine learning models are listed
in Supporting Information Table 1.
2.2.1. AsCpf1 Target Efficiency Prediction Model. Five

different machine learning algorithms were optimized on hybrid
feature sets of the AsCpf1 data set, and the best model was
selected based on their performance on an unseen test data set.
The best-performing prediction models with and without
undersampling were also evaluated using bias, variance, and
MSE with 25% split, and it was found that all of the optimized
models with undersampled data were overfitting the train data.
The bias, variance, and MSE of all of the models are given in the
Supporting Information Table 2. Therefore, the different
machine learning algorithms were trained and optimized
without the use of sampling techniques. The performance of
the models was evaluated using the precision, recall, F1 score,
and the Matthews correlation coefficient. The performances of
all of the optimized models on each feature set on the test split
(25%) are summarized in Supporting Information Table 3.

Table 1. Number of Potential Off-targets Predicted in the
Human Genome Using FASTA36, BLASTn, and BOWTIE

predicted number of similar sites

species FASTA36 BLASTn BOWTIE

Lachnospiraceae Bacterium Cas12a
(LbCas12a)

80,346 141 1,454,619

Acidaminococcus sp. Cas12a (AsCas12a) 58,431 124 483,546

Table 2. Performance Comparison of Developed Pipeline
with the Existing Methods

target-TTTCCCTCACTCCTGCTCGGTGAATTT

method/pipeline

potential
off-target

sites
predicted

number of
experimental
off-targets
covered

number of
experimental
off-targets

known

time taken to
predict

off-targets
(minutes)

developed
pipeline

13,399 8 12 15

Casoff-finder 9581 0 12 5
CHOPCHOP 0 0 12 2
CRISPRscan 0 0 12 2−3
CC-TOP 468 5 12 2−5
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Further, precision, recall, and f1 score of the best model on each
feature set are given in Table 3.

Optimized AdaBoostClassifier performed best with sequence-
based features and base-dependent binding energy-based
features, while the optimized MLPClassifer performed best
with a data set consisting of the combined feature set. The
optimized MLPClassifier model performed the best among all of
the algorithms on the unseen test split of the data set as well as
on the 5-fold cross-validation run. The test data set contained
14,739 off-targets after a test split, out of which 134 were positive
off-targets and 14,605 were negative. The average precision of
the optimized MLPClassifier using a test split was 0.90, and the
confusion matrix also suggested that 83% of positive off-targets
were correctly classified and 100% of negative off-targets were
correctly classified. The precision−recall curve and confusion
matrix for the comparison of model performances on three
different feature sets for AsCpf1 are shown in Figure 1. Both
performance metrics indicate that the MLPClassifier model that
is trained on a combined feature set of AsCpf1 data has high
predictive performance in the classification of positive and
negative off-targets. The 5-fold cross-validation was also
performed to evaluate the performance of the MLPClassifier
using precision−recall curves for all folds, as shown in Figure 2a.

The mean area under the curve of all of the folds was 0.82. The
optimized MLP-based classifier trained on the combined feature
set of the AsCpf1 data set was used to develop a pipeline for the
prediction of target efficiency.
2.2.2. LbCpf1 Target Efficiency Prediction Model. Similarly,

five different machine learning algorithms were optimized on
hybrid feature sets of the LbCpf1 data set, and the best model
was selected based on the performance of the unseen test data
set. The best-performing prediction models with and without
undersampling were evaluated using bias, variance, and MSE
with 25% split, and it was found that all of the optimized models
with undersampled data were overfitting the train data. The bias,
variance, and MSE of all of the models are given in Supporting
Information Table 2. Therefore, the different machine learning
algorithms were trained and optimized without employing
sampling techniques. The performances of all of the optimized
models on each feature set using a 25% independent test split are
summarized in Supporting Information Table 4. The precision,
recall, and F1 score of the best model on each feature set are
summarized in Table 3. While optimized MLPClassifier
performed best with sequence-based features, optimized
AdaBoostClassifier performed best with base-dependent bind-
ing energy-based features. Similarly, optimized MLPClassifer

Table 3. Precision−Recall and F1 Score of the Best Models on Test and Train Data of the Hybrid Feature Sets

sequence-based features
base-dependent binding energy-based

features
sequence and base-dependent binding

energy-based features

species performance metrics score on test data overall score score on test data overall score score on test data overall score

AsCpf1 precision 0.92 0.93 0.95 0.94 0.92 0.98
recall 0.90 0.89 0.89 0.88 0.91 0.88
F1 score 0.91 0.91 0.92 0.91 0.92 0.93
MCC 0.82 0.81 0.84 0.82 0.83 0.86

LbCpf1 precision 0.92 0.94 0.94 0.94 0.91 0.91
recall 0.90 0.92 0.90 0.89 0.92 0.93
F1 score 0.91 0.93 0.92 0.91 0.91 0.92
MCC 0.82 0.86 0.83 0.83 0.82 0.84

Figure 1. Comparison of performance of the optimized model on the hybrid feature sets. The performance of best models was evaluated with PR-AUC
trained on (A) AsCpf1 and (E) LbCpf1 data sets. MLP-based classifier improved the performance with a combined feature set in both LbCpf1 and
AsCpf1. Classification performance of the best-performing model using (B) sequence-based feature set, (C) base-dependent binding energy-
associated feature set, and (D) sequence and base-dependent binding energy-associated feature set on AsCpf1 data set using a confusion matrix.
Classification performance of LbCpf1 data set on (F) sequence-based feature set, (G) base-dependent binding energy-associated feature set, and (H)
sequence and mismatch-energy-associated feature set using a confusion matrix.
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performed best with a data set consisting of a combined feature
set on the LbCpf1 data set. These models were then selected for
the development of a pipeline for the prediction of target
efficiency for the LbCpf1 data set. The MLPClassifier model on
the combined feature set performed best among all of the
algorithms on the unseen test split as well as on 5-fold cross-
validation. The test data set contained 20,207 off-targets, of
which 129 were positive and 20,078 were negative. The average
precision of the optimized MLPClassifier using a test split was
observed to be 0.90. On the same lines, the confusion matrix also
depicted that 83% of positive off-targets were correctly classified
and 100% of negative off-targets were correctly classified. The
precision−recall curve and confusion matrix for the comparison
of model performances on three different feature sets for LbCpf1
are shown in Figure 1. Both performance metrics indicated that
the MLPClassifier model trained on a combined feature set of
AsCpf1 data has high predictive performance in the classification
of positive and negative off-targets. The 5-fold cross-validation
was also performed to evaluate the performance of the
MLPClassifier using precision−recall curves for all folds, as
shown in Figure 2b. The mean area under the curve of all of the
folds was 0.81. The target efficiency prediction pipeline for
LbCpf1 was developed by using an optimized MLP-based
classifier on the combined feature set.
2.2.3. Benchmarking Other Existing Models. The perform-

ance of all six optimized algorithms on the AsCpf1 and LbCpf1
data sets was compared with CRISPR-DT,23 DeepCpf1,21 and
CINDEL10 using a 25% test split of training data. All of the best-
performing models on different feature sets for AsCpf1 and
LbCpf1 performed better than the existing models, as shown in
Figure 2c,d. MLPClassifier optimized on combined feature sets
was selected as the best classifier for AsCpf1 and LbCpf1,

respectively, based on different performance measures discussed
above. All of the generated models on different feature sets
showed better performance than DeepCpf1, CRISPR-DT, and
CINDEL in classifying positive from negative off-targets. The
developed models on a combined feature set optimized on
LbCpf1 and AsCpf1 data had high performance in classifying
positive and negative off-targets, which can help control off-
targets and ensure target efficiency compared to the existing
ones. Different performance metrics taken into consideration for
benchmarking the performance of the existing models with the
developed model are summarized in Supporting Information
Table 5.
2.3. Feature Importance Analysis. Feature importance

analysis was performed to study the features that can distinguish
between positive and negative off-targets. Positional preference
of nucleotides, mismatch distribution analysis, and SHAP1 were
employed to understand the biological relevance of position-
specific and other thermodynamics-related features in the
classification of positive and negative off-targets.
2.3.1. Position-Specific Preference of Nucleotides. Position-

specific preference analysis of nucleotides was performed to
understand the preference of nucleotides at a particular position
using the Welch t test between the positive and negative off-
targets of AsCpf1 and LbCpf1. In addition to that, positional
preference of favored and disfavored nucleotides was also
understood using the enrichment score of a nucleotide at all
locations given in eq 1. Enrichment scores greater than 0.75 were
considered favored nucleotides, and those less than 0.75 were
considered disfavored nucleotides. Position-wise enrichment
score and their respective P-values of each nucleotide are given
in Supporting Information Table 6.

Figure 2. Performance validation of the best-performing model on combined feature set. The PR-AUC was evaluated on 5-fold cross-validation of best
models on (A) AsCpf1 data set and (B) LbCpf1 data set. The comparison of ROC−AUC of all of the best models trained on the hybrid feature sets
with DeepCpf1, CRISPR-DT, and CINDEL on a 25% independent test split of the (C) AsCpf1 data set and (D) LbCpf1 data set. The blue bar
represents the best-performing models for both the data sets and the red, green, and yellow bars represent the AUC of DeepCpf1, CRISPR-DT, and
CINDEL, respectively.
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=enrichment score
frequency of nucleotide of positive off targets
frequency of nucleotide of negative off targets

(1)

It was found that thymine in the fourth place of the PAM
sequence was highly disfavored in positive off-targets of both
AsCpf1 and LbCpf1 compared to negative off-targets (P <
0.005). Furthermore, guanine was favored at a position adjacent

Figure 3. Position-specific favored and disfavored nucleotides in positive off-targets. The positive and negative Y-axis denotes the P-values for favored
and disfavored nucleotides in (A) AsCpf1 and (B) LbCpf1 positive off-targets.

Figure 4. Mismatch distributions in the positive and negative off-targets of (A) LbCpf1 and (B) AsCpf1. The white bars and gray bars depict the
distribution of mismatches in negative off-targets and positive off-targets respectively.
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to the PAM sequence, whereas thymine was highly disfavored at
the location. This is further supported by other studies that
arrive at a similar conclusion.12 Both findings in our study were
found to be similar for AsCpf1 and LbCpf1.

Based on the p-value from the Welch t test, it is reported that
guanine is highly favored at the third position from the PAM
sequence (P < 0.005), and thymine is disfavored (P < 0.005).
Further, adenine is highly favored (P < 0.005) at the eleventh
position from the PAM sequence. Similarly, while three
positions adjacent to the eleventh favor the presence of cytosine
(P < 0.005), the sixth position in the seed region disfavors
thymine (P < 0.005). It was also found that thymine is mostly
disfavored in the seed region of both LbCpf1 and AsCpf1
positive off-targets compared to negative off-targets. All of the
findings reported in this study were consistent in both AsCpf1
and LbCpf1, which suggests that both the enzymes have a very
similar sequence preference. The p-values of both position-
specific favored and disfavored nucleotides for both LbCpf1 and
AsCpf1 off-targets are compiled in Figure 3.
2.3.2. Mismatch Distribution Analysis of Off-Targets.

Position-specific nucleotide mismatches between target and
off-target pairs were studied because the nucleotides favored or
disfavored at different positions vary between positive and
negative off-targets. Mismatch distribution analyses were
performed for positive and negative off-targets by using the
Welch t test. This revealed that the positive off-targets of both
LbCpf1 and AsCpf1 had more prominent mismatches in the
trunk region (nucleotides 16, 17, 18) and the promiscuous

region, as shown in Figure 4a,b. The transition type of
mismatches at the trunk region is more preferred at positions
16, 17, and 18 in positive off-targets for AsCpf1 as shown in
Supporting Information Figure 1a−d and for LbCpf1 in
Supporting Information Figure 2a−d. Similar results were
obtained for both AsCpf1 and LbCpf1. It has been reported that
the transition type of mismatches is more compatible in the
trunk region and all types of mismatches are preferred in the
promiscuous region.10 In this study, it was found that the C-G
type of mismatch at position 23 was tolerated more in
comparison to other mismatch types in both AsCpf1 and
LbCpf1 off-targets. As shown in Figure 4a,b, PAM-Distal regions
of both AsCpf1 and LbCpf1 positive off-targets had a high
tolerance for mismatches, whereas negative off-targets of both
Ascpf1 and LbCpf1 had equal frequencies of mismatches at all of
the positions. In previous studies, the PAM-Distal region with a
higher tolerance for mismatches has also been reported.10

2.3.3. Classifier-Associated Feature Importance. A SHAP
(Shapley Additive exPlanations) is used to estimate Shapley
values for individual features to study their importance in model
prediction.35 The main goal of the SHAP approach is to explain
each prediction by computing the contribution of each feature.
The top 20 features were ranked based on the Shapley values for
the best-performing models on three different feature sets of
AsCpf1 and LbCpf1 data sets. The higher the Shapley Values,
the greater the contribution of each feature in model prediction
and classification of off-targets.

Figure 5. Stacked bar plot depicting top 20 features of best models on hybrid feature sets. The mean shap values indicate the magnitude of importance
of each feature in the classification of off-targets. Top 20 features based on mean SHAP values of models trained on AsCpf1 data set using (A)
sequence-based feature set, (B) base-dependent binding energy-associated feature set, and (C) sequence and base-dependent binding energy-
associated feature set. Similarly, the stacked bar plot values for the LbCpf1 data set using (D) sequence-based feature set, (E) base-dependent binding
energy-associated feature set, and (F) sequence and base-dependent binding energy-associated feature set.
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The stacked bar plot was constructed based on mean SHAP
values for each best-performing model trained in different
feature sets, and the top 20 features of each of them are shown in
Figure 5a−f. Common features predicted from both AsCpf1 and
LbCpf1 models trained with a feature set 1 are some bulges, GC
content, a mismatch at position 5 (position adjacent to PAM),
dinucleotide frequencies such as AG, CC, a mismatch at position
8, and melting temperature of a nonseed region of target and off-
target pairs.36 The importance of these features in the
classification of AsCpf1 and LbCpf1 off-targets is shown in
Figure 5a,d. Mean Shapley values of melting temperature of the
nonseed region suggest that the negative off-targets have a high
melting temperature as compared to positive off-targets. It can
also be concluded from the summary plot shown in Supporting
Information Figure 3a,d that the presence of mismatch at a
position adjacent to PAM is favored in positive off-targets. Also,
it can be inferred that thymine is generally substituted by
guanine, which suggests that thymine is disfavored at the
position adjacent to PAM in gRNA. Similar findings are also
reported in previous studies10 and discussed using statistical
analysis. The high frequency of AG in the target location is
indicative of a negative off-target site, whereas the high
frequency of CC in the target location is common in positive
off-target. It has also been predicted from mean SHAP values
that low to moderate GC content is the key feature of positive
off-targets, similar to cas9 as reported in a previous study.37

Mean SHAP values of the best-performing model of AsCpf1 and
LbCpf1 on the feature set 2 suggest that base-dependent PAM
binding energy,38 total energy weights of mismatches in seed,
trunk, and promiscuous regions of gRNA, and base-dependent
binding energy of the fourth nucleotide of the PAM region play
important roles in the classification of off-targets, and they are
highly correlated with a high target efficiency. The importance of
these features in the classification can be visualized in Figure
5b,e. The summary plot shown in the Supporting Information
Figure 3b,e suggests that the PAM binding energy is moderate to
high in negative off-targets. Total energy weights for mismatches
in the seed are predicted to be higher in most of the positive off-
targets, whereas energy weights for mismatches in the trunk and
promiscuous regions are mostly high in the case of negative off-
targets. However, mean SHAP values of the best-performing
models trained on the feature set 3 suggest that the relative PAM
binding energy, PAM binding energy, GC content, number of
bulges, and CC frequency are prominent in the classification of
positive and negative off-targets of both AsCpf1 and LbCpf1.
The importance of these features based on mean SHAP values is
shown in Figure 5c,f. The summary plot shown in the
Supporting Information Figure 3c,f suggests that high relative
PAM binding energy is the feature of negative off-targets,
whereas positive off-targets have medium relative PAM binding
energy. Mean SHAP values also suggest that bulges are less likely
to be tolerated in positive as well as negative off-targets, but
positive off-targets can tolerate a greater number of bulges than
negative off-targets. In addition to the above-discussed features,
high GC content and low to moderate melting temperature of
complete gRNA and nonseed region is also a feature of positive
off-targets, whereas negative off-targets have high melting
temperature and GC content. Various biochemical and
structural studies reveal that gRNA binds to target DNA by
intermittent contact before getting associated with the cleavage
site, suggesting that thermodynamic properties such as melting
temperature are very useful in the classification of experimental
cleavage sites.39,40 A high amount of thymine in off-targets may

also indicate that its probability of being a positive off-target is
more. However, the occurrence of thymine in the seed region of
positive off-targets is highly disfavored, as discussed above. It can
be concluded from stacked bar plots and summary plots of
different feature sets that PAM binding energy, energy weights
of mismatches, melting temperature, GC content, and bulges are
the important features in the activity prediction of gRNAs and
therefore highly correlated in the prediction of target efficiency.

3. DISCUSSION
The CRISPR/Cas technology can precisely manipulate specific
locations of the genome. The clinical application of CRISPR
technology is still a challenge due to numerous concerns
regarding the efficacy and safety of the system. Recently,
CRISPR-Cpf1 system was identified9 and is known to have
comparatively fewer off-targets. Cpf1 recognizes T-rich PAM,
which ensures higher target specificity in human and plant
cells.10,12,15,17,18 There are two important aspects of the
CRISPR-Cas system: target specificity and target efficiency.
To ensure target specificity, we designed a pipeline to predict
potential off-target sites in the human genome for a target
sequence. The pipeline was developed for both AsCpf1 and
LbCpf1 to predict potential off-target sites. It allows the user to
select the desired target sequence. Further, the predicted
potential off-target sites have been classified into positive and
negative off-targets using a machine learning model to predict
the target efficiency of all of the potential off-target sites. ML-
based classifiers were developed for both AsCpf1 and LbCpf1.
Different machine learning models were optimized with and
without undersampling by using various hyperparameters.
Machine learning models with undersampled data were trained,
and their bias, variance, and MSE were compared with the
developed models in pipeline for different feature sets. It was
concluded that the models trained with undersampled data were
overfitting. The conclusion made from the above finding is that
there is a disadvantage of undersampling, as it may discard
potentially relevant data and not represent the variability of
negative off-targets in such a short sample space. Therefore, data
set without undersampling was selected for the development of
pipeline for both the species. The MLPClassifier performed best
on both data sets with a feature set 3. Here, we analyzed the
AsCpf1 and LbCpf1 positive and negative off-targets to
understand the position-specific nucleotide preferences and
mismatch distribution between positive and negative off-targets.
In this study, it was found that thymine is highly disfavored at a
position adjacent to PAM whereas guanine is favored.10 The
distribution of mismatches is a distinctive feature between
positive and negative off-targets. Mismatch distribution analysis
reveals that the positive off-targets have a high tolerance for
mismatches in the PAM-distal region,12,13 whereas negative off-
targets have a uniform distribution of mismatches at all
locations. High tolerance for mismatches is mostly visualized
in the trunk region and promiscuous region. After analyzing the
position-specific mismatch type preference between positive and
negative off-targets, transition type mismatch was found to be
prominent in positive off-targets at 16, 17, and 18 positions of
nucleotides including PAM sequence. On the other hand, at
position 23, the C-G type of mismatch was found to be
preferred. As is known from previous studies, all types of
mismatches are favored in the promiscuous region. A machine
learning model generated on AsCpf1 and LbCpf1 for different
feature sets revealed the importance of features in the
classification of respective off-targets using mean SHAP values

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c05691
ACS Omega 2023, 8, 45578−45588

45584

https://pubs.acs.org/doi/suppl/10.1021/acsomega.3c05691/suppl_file/ao3c05691_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.3c05691/suppl_file/ao3c05691_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.3c05691/suppl_file/ao3c05691_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.3c05691/suppl_file/ao3c05691_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.3c05691/suppl_file/ao3c05691_si_001.pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c05691?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


of individual features. The top 20 features were short-listed
based on mean SHAP values. All of the best models on different
feature sets had different top 20 features for the classification of
off-targets. Interestingly, the melting temperature of a nonseed
region of gRNA, base-dependent PAM binding energy, GC
content, and the number of bulges were the most common
features between the models. It was found that the mismatches
at position 9 were preferred in the seed region of LbCpf1
positive off-targets than other positions of the seed region, and
similar findings were reported in a previous study. It was also
found that in the case of AsCpf1 positive off-targets, T-G type of
mismatches were more preferred at a position adjacent to PAM.
The above predictions suggested that the seed region does not
tolerate thymine in positive off-target sites, especially at
positions 1 and 5 from the PAM sequence, whereas it is
preferred in the trunk and promiscuous regions of positive off-
targets.

4. CONCLUSIONS
In this study, a pipeline was generated to predict possible off-
target sites in a human genome for a target sequence, and these
can be further fed into developed machine learning-based
models for LbCpf1 and AsCpf1 to evaluate target efficiency.
This is important since all probable off-target sites in the host
genome do not undergo cleavage under experimental con-
ditions. Therefore, an MLP-based classifier was developed using
sequence- and base-dependent binding energy-associated
features for AsCpf1 and LbCpf1 to predict the target efficiency
of potential off-target sites. Both of these models were trained on
experimental (positive data set) and predicted target and off-
target pairs (negative data set). An MLP-based classifier model
trained on the LbCpf1 and AsCpf1 data sets using sequence and
base-dependent binding energy-associated features was found to
have higher predictive performance as compared to other ML-
based classifiers and existing tools using a 25% test split and 10-
fold cross-validation evaluation criteria. Mismatch distribution
analysis reveals that mismatches were more prominent in the
trunk region (16, 17, 18 nucleotides from PAM sequence). On
the other hand, promiscuous region and transition type
mismatch were more preferred at 16, 17, and 18 nucleotides

position (including PAM sequence). Other features such as the
low to moderate melting temperature of the nonseed region and
base-dependent PAM binding energy were also predicted as
important features in the classification of off-targets. Some other
features that are characteristic of LbCpf1 and AsCpf1 off-targets
were the GC content, some types of dinucleotide frequencies,
number of bulges, and mismatches in the seed and trunk region.
The study also adds to the information available for rule-based
guide design and target selection for Cpf1-based experiments.
The results from this study can be used to design better Cpf1-
based experiments with fewer off-target effects.

5. METHODOLOGY
5.1. Pipeline to Improve On-Target Specificity. Among

the multiple orthologues of Cpf1, the ones extracted from
Acidaminococcus sp. (AsCpf1), Lachnospiraceae bacterium
(LbCpf1), and Francisella novicida (FnCpf1) are most
commonly exploited to manipulate the human genome. This
study focuses on AsCpf1 and LbCpf1 because of their higher
efficiencies in human cells than other orthologues of Cpf1. The
pipeline was developed by optimizing parameters such as
mismatch penalty, gap penalty, and E-score of BLAST,32

BOWTIE2,33 and FASTA3634 to predict the maximum
potential off-target sites in the human genome for AsCpf1 and
LbCpf1 species. The performances were also benchmarked
based on the correlation between the number of predicted off-
target sites and experimentally known off-target sites. The
optimized FASTA36 predicted a large number of potential off-
target sites with 9 mismatches and 3 gaps compared to BOWTIE
and BLAST. Therefore, an optimized FASTA36 algorithm was
used to design a pipeline for the prediction of potential Cpf1 off-
target sites in the human genome. The developed pipeline to
predict potential off-target sites in the human genome involved
two steps: (1) target sequences were mapped to the Human
reference genome (hg37) using FASTA3634 to search for
possible off-target locations with a default value of eight
mismatches and three gaps that Cpf1 is known to tolerate
when searching for a target, and (2) the SeqIO module of the Bio
package41 was utilized to filter the alignments. The number of
mismatches for the prediction of off-target sites in this pipeline

Figure 6. Workflow employed to predict potential off-target sites and classify positive and negative off-targets.
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was set to 9 mismatches and 3 gaps. Custom python scripts were
used in this pipeline to filter output based on various parameters.
A schematic of the workflow to predict the CRISPR target sites
and their efficiencies implemented in this study is summarized in
Figure 6.
5.2. Off-Target Prediction Model. 5.2.1. Data Retrieval

and Visualization. Training data for the prediction of target
efficiencies consisted of positive and negative off-targets. The
target and experimentally detected off-targets pairs collected
from Guide-seq,13,42 targeted deep sequencing,13,43 digenome
seq,12 and DNA-Seq44 studies were labeled as positive off-
targets. Other potential off-target sites present in the human
genome but not reported to be cleaved under the experimental
conditions were predicted using the pipeline mentioned above
and are labeled as negative off-targets. The training data for
LbCpf1 consisted of 540 positive and 80,844 negative off-targets
associated with 42 target sites. Similarly, training data for AsCpf1
had 491 positive and 58,907 negative off-targets associated with
41 targets. The test data sets include the known and predicted
off-targets of 7 genomic targets of each of the data sets. The data
imbalance in the case of positive and negative off-targets of the
CRISPR-Cas system could be attributed to the fact that off-
targets recognized in experimental conditions are much smaller
as compared to the possibility of similar sites in the human
genome.45 Therefore, negative off-targets were undersampled,
and each set of negative off-targets is trained with all positive off-
targets to balance the data set. The best-performing models were
optimized by tuning the hyperparameters, and bias, variance,
and mean-squared error (MSE) were estimated to understand
the prediction errors in the models. In addition to that,
precision, recall, F1 score, and the Matthews correlation
coefficient were used as evaluation metrics to understand the
classification accuracy of developed models.
5.2.2. Feature Extraction. Various studies on other Cpf1

nucleases utilized sequence-based features, and the performance
of the existing models indicated a need to incorporate more
diverse features for the classification of off-targets. Therefore, in
this study, a total of 713 features were calculated for positive and
negative off-targets of both AsCpf1 and LbCpf1 falling under the
following categories: (1) position-specific nucleotide composi-
tion, (2) position nonspecific nucleotide composition, (3)
mismatches and bulge-associated features, (4) melting temper-
ature, (5) minimum free energy, (6) occurrence of repetitive
sequences, and (7) base-dependent binding energy.38 Position-
specific mononucleotides were encoded for the target and off-
target sequences. The detailed structure of all of the
aforementioned categories is given in Supporting Information
Table 7. In this study, three feature sets were constructed: (i)
sequence-associated feature set (feature set 1), (ii) base-
dependent binding energy-associated feature set (feature set
2), and (iii) combined feature set (feature set 3). All three types
of feature sets were obtained for both the AsCpf1 and LbCpf1
target and off-target pairs. The minimum free energy of all of the
off-targets was calculated using the RNAfold module of the
ViennaRNA package,46 and melting temperature was calculated
using Tm_NN function of the BioSeqUtils module with
thermodynamic values from the DNA_NN2 table.41,47,48

5.2.3. Optimization of Machine Learning Algorithm.
Multiple classification algorithms were employed to classify
positive and negative off-targets present in LbCpf1 and AsCpf1
data sets on three different feature sets. These algorithms were
optimized on both data sets to improve the performances of the
models. A 25% test split of the data set and 5-fold cross-

validation were employed to optimize the various machine
learning algorithms on both data sets. The optimization process
involved the tuning of hyperparameters of each of the algorithms
using a 25% test split and 10-fold cross-validation. The
partitioning of training data into 5-fold was performed by
using a stratified sampling method with a 25% split of data in
each iteration. Hyperparameter tuning was performed to select
the optimal parameters to classify the data sets accurately by
calculating the performance at each iteration of different sets of
values for each algorithm. The set of values that best classified
the data set were considered optimal parameters and were used
to generate a model for all of the feature sets. A similar approach
was used for both data sets. Precision, recall, F1 score, and the
Matthews correlation coefficient were used to evaluate the
performance of the models. Of all of the generated models on
different feature sets, the optimized MLP-based classifier
resulted in maximum classification accuracy on the combined
feature set on both data sets.
5.2.4. Feature Importance and Statistical Analysis. The

statistical significance of position-specific features such as the
presence of a nucleotide at a specific position, position of
mismatch, and frequency of mismatch type at a specific location
was evaluated using Welch’s t test using Python.49

The contribution of features in the classification of positive
and negative off-targets was analyzed by using mean SHAP
values. The SHAP approach allows all possible permutations of
the features to compute mean values of individual features to
indicate their contribution to prediction.35 The top 20 features
were short-listed based on mean SHAP values to study the
biological importance of these features in the off-target cleavage
activity of Cpf1. SHAP values were calculated from the best-
performing models trained on the AsCpf1 and LbCpf1 data sets.
SHAP value gives detailed insights into the contribution of an
individual feature that models used for the classification.

6. IMPLEMENTATION
All of the models were developed using the Scikit-learn package.
The model hyperparameters were optimized using extensive
grid search, and all of the best models, analysis, and prediction
results are available at the GitHub repository (https://github.
com/TeamSundar/CRISPR-Cpf1_study).
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