Table 1.
The main stimuli-response mechanisms of nanocarriers for controlled release of nutrients and pesticide AIs.
| Response type | Main response mechanisms | Examples of nanocarriers |
|---|---|---|
| pH | (1) Structural change of polymers containing carboxyl or amino groups due to (de)protonation of the groups at different pH values, which influences the hydrogen bonding and electrostatic interaction within the nanocarriers | Alginate-grafted anisotropic silica [45], alginate-g-poly(N-isopropyl acrylamide-co-N,N-diethylacrylamide)/semi-coke [46], alginate-chitosan [47], alginate hydrogel-dopamine-modified attapulgite [48], alginate-g-poly(acrylic acid-co-acrylamide)-clinoptilolite [49], alginate-g-poly(acrylic acid-co-acrylamide)-montmorillonite [50], aminated-cellulose nanofiber/poly(acrylamide-co-2-aminoethyl methacrylate) [51], banana peel cellulose-g-poly(acrylic acid)-polyvinyl alcohol-Mg–Al LDH [52], phosphorylated zein-carboxymethyl cellulose-g-poly(diallyldimethylammonium chloride) [53], carboxymethyl cellulose/3,3′-dithiobis(propionohydrazide) [54], carboxymethyl chitosan@carbon nanoparticle [55], carboxylated porous carbon nanoparticle@chitosan [56], carboxymethyl chitosan-amino-functionalized MSN [57], chitosan [58], chitosan-tripolyphosphate [59], chitosan-lignosulfonate [60], chitosan-diatomite/Fe3O4 [61], chitosan/carboxymethyl chitosan [62], chitosan-SS-zein [63], chitosan-sodium lignosulfonate@alkaline lignin-based Pickering emulsion [64], cotton stalk-g-poly(acrylic acid)-polyvinylpyrrolidone-bentonite [65], 3,4-dihydroxyhydrocinnamic acid, N-hydroxysuccinimide ester modified chitosan [66], GO-carboxymethyl chitosan [67], GO@polydopamine [68], HMS-SS-chitosan oligosaccharide [69], HMS@1-tetradecanol@polydopamine [70], isolated soy protein/carboxymethyl chitosan [71], lignosulfonate-chitosan-polydopamine [72], lignosulfonate/dodecyl dimethyl benzyl ammonium chloride/Fe(III) [73], maize bran-g-poly(acrylic acid-co-acrylamide)-montmorillonite [74], mesoporous nano-selenium@polyacrylic acid [75], MoS2@MSN@cyclodextrin polymer [76], O-carboxymethyl chitosan [77], polydopamine-poly(N,N-dimethylaminoethyl methacrylate) [78], porous porphyrinic MOFs@pectin@chitosan [79], poly(acrylic acid)-b-poly(N-isopropyl acrylamide) [80], poly[2-(2-bromoisobutyryloxy)-ethyl methacrylate-g-poly(acrylic acid)-b-poly(N-isopropyl acrylamide)] [81], poly(β-cyclodextrin)-adamantane-grafted poly(acrylic acid) [82], poly(glycidyl methacrylate-co-acrylic acid)-HMS [83], polyethyleneimine-grafted lignin [84], polyacrylamide/methylcellulose/calcic montmorillonite [85], polyethylenimine modified hollow/mesoporous carbon nanoparticle [86], polydopamine-attapulgite-calcium alginate [87], rGO-Cu2–xSe@chitosan [88], sulfonated-carboxymethyl cellulose-g-poly(acrylic acid)-polyvinylpyrrolidone-silica nanoparticle [89], salep-g-poly(acrylic acid)/montmorillonite [90], subabul stem lignin [91], UiO-66-NH2-carboxymethyl cellulose [92] |
| (2) Degradation of the nanocarriers due to acid- or base-mediated decomposition of their components | Alginate-Mg–Al LDH [93], bovine serum albumin nanoparticle [94], carboxymethyl chitosan-allyl glycidyl ether-trisiloxane surfactant [95], α-cyclodextrin-HMS [96], α-cyclodextrin/ZIF-8 [97], 2,4-dinitrobenzaldehyde@ZIF-8 [98], Fe-doped MSN/tannic acid [99], γ-FeOOH@biochar [100], glycine methyl ester-conjugated polysuccinimide nanoparticle [101], halloysite nanotube/Ca2+/EDTA2−/calcium alginate [102], 3-mercaptopropyl trimethoxysilane and poly(ethylene glycol) diacrylate functionalized boron nitride nanoplatelet [103], methoxypolyethylene glycol-o-nitrobenzyl [104], Mg–Al LDH [105], MSN-polydopamine-Cu2+ [106], MSN/β-glucan [107], MIL-101(Fe)@silica [108], MIL-101(Fe)-carboxymethyl starch [109], MIL-101(Fe)-polydopamine [110], MIL-101(Fe)-tannic acid [111], MIL-101@carboxymethyl chitosan [112], polydopamine@NH2-MIL-101(Fe) [113], soybean protein isolate-carboxymethyl cellulose [114], trimethylammoniumpillar[5],arene-methyl orange-functionalized mesoporous selenium [115], UiO-66@hydroxypropyl cellulose [116], ZIF-8 [[117], [118], [119]], ZnO@ZIF-8 [120] | |
| (3) pH-induced cleavage of the chemical or hydrogen bonds linking the nutrients or pesticide AIs and the nanocarriers | Aldehyde-functionalized ZnO quantum dot [121], carboxyl cellulose-attapulgite [122], polydopamine-isocyanatopropyltriethoxysilane-polyethyleneimine [123], sulfonate-functionalized MSN [124], trimethylammonium-functionalized MSN [125] | |
| Temperature | (1) Structural change of nanocarriers composed of temperature-sensitive polymers with an LCST or of liposomes with a suitable phase transition temperature | Alginate-g-poly(N-isopropyl acrylamide-co-N,N-diethylacrylamide)/semi-coke [46], ASO-ethylene oxide/propylene oxide block copolymer-ferroferric oxide-palygorskite [126], carboxymethyl cellulose/poly(N-vinylcaprolactam-co-acrylamide) [127], isopropyl myristate@poly(N-isopropylacrylamide-co-butyl methylacrylate) [128], MSN@poly(N-isopropyl acrylamide) [129] poly(acrylic acid)-b-poly(N-isopropyl acrylamide) [80], poly[2-(2-bromoisobutyryloxy)-ethyl methacrylate-g-poly(acrylic acid)-b-poly(N-isopropyl acrylamide)] [81], poly(β-cyclodextrin)-adamantane-grafted poly(acrylic acid) [82], polydopamine-poly(N-isopropyl acrylamide) [10], polydopamine-poly(N,N-dimethylaminoethyl methacrylate) [78], polyether polyol/polycaprolactone [130], poly(N-isopropyl acrylamide-co-methacrylic acid)-HMS [131], poly(N-isopropyl acrylamide)-GO [132], poly(propylene oxide-co-carbon dioxide-co-allyl glycidyl ether)-poly(N-isopropylacrylamide)-polyethylene glycol monomethyl ether [133], yolk lecithin-cholesterol [134] |
| (2) Accelerated diffusion of nutrients or pesticide AIs within the nanocarrier at higher temperatures | Calcium alginate [135], chitosan [58,75], chitosan-gum Arabic [136], n-hexadecane/nanofibrillated cellulose [137], poly(vinyl alcohol)-ASO-attapulgite [138], trimethylammonium-functionalized MSN [125] | |
| (3) Bond breaking between a pesticide AI and the nanocarrier at higher temperatures | Aldehyde-functionalized ZnO quantum dot [121], carboxylated porous carbon nanoparticle@chitosan [56] | |
| Light | (1) Near-infrared-induced temperature increase of a photothermal material and subsequent temperature response | Alginate-g-poly(N-isopropyl acrylamide-co-N,N-diethylacrylamide)/semi-coke [46], biochar@soybean oil-polysulfide [139], Cu2-xSe-rGO [140], GO@polydopamine [68], HMS@1-tetradecanol@polydopamine [70], hollow carbon microsphere@polyethylene glycol/α-cyclodextrin [141], MIL-101(Fe)-tannic acid [111], MoS2@MSN@cyclodextrin polymer [76], polydopamine-poly(N-isopropyl acrylamide) [10], polydopamine-Ti3C2Tx [142] |
| (2) Structural change of polymers containing photolabile moieties under UV irradiation | Biochar-azobenzene-ASO-attapulgite [143], cucurbit[8]uril/azobenzene derivative [144], 2,4-dinitrobenzaldehyde@ZIF-8 [98], methoxypolyethylene glycol-o-nitrobenzyl [104], 2-nitrobenzyl succinate-carboxymethyl chitosan [145] | |
| (3) Light-induced bond breaking between a pesticide AI and the nanocarrier | Poly(ethylene glycol)-ο-nitrobenzyl [146], thioacetal o-nitrobenzaldehyde [147] | |
| Redox | Structural change of nanocarriers containing redox moieties [e.g., disulfide bonds, Fe(III)] | Carboxymethyl cellulose/3,3′-dithiobis(propionohydrazide) [54], chitosan-SS-zein [63], disulfide bond-linked and starch-coated MSN [148], HMS-didecyl disulfide [149], HMS-SS-chitosan oligosaccharide [69], iron(III)-based MOFs-pectin [150], MIL-101(Fe)-carboxymethyl starch [109], MIL-101(Fe)-tannic acid [111] |
| Enzyme | Enzyme-catalyzed degradation of nanocarriers containing enzyme substrates | Cellulose acetate/chitosan/zein/starch/polycaprolactone [151], chitosan-lignosulfonate [60], chitosan-sodium lignosulfonate@alkaline lignin-based Pickering emulsion [64], α-cyclodextrin-HMS [96], α-cyclodextrin/ZIF-8 [97], α-cyclodextrin-phenylamine-functionalized HMS [152], disulfide bond-linked and starch-coated MSN [148], HMS-hydroxypropyl cellulose [153], iron(III)-based MOFs-pectin [150], lignin [154], lignin/polysaccharide/Fe(III) [155], lignosulfonate/dodecyl dimethyl benzyl ammonium chloride/Fe(III) [73], MIL-101(Fe)-carboxymethyl starch [109], MoS2@MSN@cyclodextrin polymer [76], MSN-chitosan [156], MSN/β-glucan [107], MSN-pectin [157], N-succinyl chitosan [158], poly(β-cyclodextrin)-adamantane-grafted poly(acrylic acid) [82], polydopamine-isocyanatopropyl triethoxysilane-polyethyleneimine [123], porous porphyrinic MOFs@pectin@chitosan [79], UiO-66@hydroxypropyl cellulose [116], zein nanocapsule [159], zein nanoparticle [160] |
AI, active ingredient; ASO, amino silicon oil; HMS, hollow mesoporous silica; LCST, lower critical solution temperature; LDH, layered double hydroxides; MIL-101, Materials Institute Lavoisier-101; MOFs, metal-organic frameworks; MSN, mesoporous silica nanoparticle; (r)GO, (reduced) graphene oxide; UiO-66, University of Oslo-66; UV, ultraviolet; ZIF-8, zeolitic imidazolate framework-8.