Table 4. Performance comparison of different methods on the SGCC dataset ( FPR = 0.5%).
Dataset | Model | Precision | Recall | F1-score | Accuracy |
---|---|---|---|---|---|
SGCC | SVM (Depuru, Wang & Devabhaktuni, 2011) | 0.907 | 0.613 | 0.731 | 0.800 |
Wide & Deep CNN (Zheng et al., 2017) | 0.929 | 0.812 | 0.867 | 0.889 | |
LSTM (Munawar et al., 2021) | 0.932 | 0.863 | 0.896 | 0.911 | |
CNN-LSTM (Almazroi & Ayub, 2021) | 0.934 | 0.887 | 0.910 | 0.922 | |
Autoencoder (Takiddin et al., 2022) | 0.937 | 0.925 | 0.931 | 0.939 | |
Transformer (Ours) | 0.939 | 0.963 | 0.951 | 0.956 |