Table 5. Performance comparison of different methods on the LEAD1.0 dataset (FPR = 0.5%).
Dataset | Model | Precision | Recall | F1-score | Accuracy |
---|---|---|---|---|---|
LEAD1.0 | SVM (Depuru, Wang & Devabhaktuni, 2011) | 0.900 | 0.562 | 0.692 | 0.778 |
Wide & Deep CNN (Zheng et al., 2017) | 0.928 | 0.800 | 0.859 | 0.883 | |
LSTM (Munawar et al., 2021) | 0.930 | 0.825 | 0.874 | 0.894 | |
CNN-LSTM (Almazroi & Ayub, 2021) | 0.933 | 0.875 | 0.903 | 0.917 | |
Autoencoder (Takiddin et al., 2022) | 0.935 | 0.900 | 0.917 | 0.928 | |
Transformer (Ours) | 0.938 | 0.950 | 0.944 | 0.950 |