Skip to main content
. 2023 Nov 8;9:e1661. doi: 10.7717/peerj-cs.1661

Table 6. Performance metrics of the algorithms.

Accuracy Precision Sensitivity F-Measure MCC
Bagging 0.8976 0.8920 0.8980 0.8900 0.6210
Naive Bayes 0.7561 0.8550 0.7560 0.7820 0.4560
Support Vector Machine 0.8268 0.8570 0.8270 0.7550 0.1840
Boosting (Decision Stump) 0.8511 0.8740 0.8510 0.8050 0.3850
Random Forest 0.8912 0.9000 0.8910 0.8720 0.5900
Nearest Neighbour Classifier 0.8479 0.8320 0.8480 0.8360 0.4220
DO 0.9588 0.9291 0.8187 0.8704 0.8485
ABC 0.9599 0.9178 0.8375 0.8758 0.8532
HHO 0.9599 0.9122 0.8438 0.8766 0.8536
SCA 0.9578 0.8409 0.9250 0.8810 0.8568
FA 0.9588 0.8954 0.8562 0.8754 0.8511
BA 0.9599 0.8315 0.9563 0.8895 0.8683
NI-GWO 0.9926 0.9940 0.9938 0.9742 0.9740
CNI-GWO1 with circle map 0.9989 0.9938 1 0.9962 0.9962
CNI-GWO1 with logistic map 1 1 1 1 1
CNI-GWO1 with iterative map 1 1 1 1 1
CNI-GWO2 with circle map 1 1 1 1 1
CNI-GWO2 with logistic map 1 1 1 1 1
CNI-GWO2 with iterative map 1 1 1 1 1
CNI-GWO3 with circle map 0.9989 0.9938 1 0.9962 0.9962
CNI-GWO3 with logistic map 1 1 1 1 1
CNI-GWO3 with iterative map 1 1 1 1 1
CNI-GWO4 with circle map 1 1 1 1 1
CNI-GWO4 with logistic map 1 1 1 1 1
CNI-GWO4 with iterative map 1 1 1 1 1