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ABSTRACT
Deep learning (DL) has revolutionized the field of artificial intelligence by providing
sophisticated models across a diverse range of applications, from image and speech
recognition to natural language processing and autonomous driving. However, deep
learning models are typically black-box models where the reason for predictions
is unknown. Consequently, the reliability of the model becomes questionable in
many circumstances. Explainable AI (XAI) plays an important role in improving the
transparency and interpretability of the model thereby making it more reliable for
real-time deployment. To investigate the reliability and truthfulness of DL models,
this research develops image classification models using transfer learning mechanism
and validates the results using XAI technique. Thus, the contribution of this research
is twofold, we employ three pre-trained models VGG16, MobileNetV2 and ResNet50
usingmultiple transfer learning techniques for a fruit classification task consisting of 131
classes. Next, we inspect the reliability of models, based on these pre-trained networks,
by utilizing Local Interpretable Model-Agnostic Explanations, the LIME, a popular
XAI technique that generates explanations for the predictions. Experimental results
reveal that transfer learning provides optimized results of around 98% accuracy. The
classification of the models is validated on different instances using LIME and it was
observed that each model predictions are interpretable and understandable as they are
based on pertinent image features that are relevant to particular classes. We believe that
this research gives an insight for determining how an interpretation can be drawn from
a complex AI model such that its accountability and trustworthiness can be increased.

Subjects Artificial Intelligence, Computer Vision
Keywords Deep learning, Explainable AI, Transfer learning, Pre-trained models

INTRODUCTION
Artificial intelligence (AI) in the form of deep learning (DL) models has gained significant
advancement in recent years (Yi et al., 2016). We are increasingly dependent on artificial
intelligence, more specifically on the deep learning for almost everything we do. From
recommendations for shopping to self-driving cars, from loan approval to face detection,
our lives are affected by these AI based systems. Deep learning involves deep neural
networks (DNNs) that learn in layers and resemble the human brain. They become
the central technology and have been extensively utilized across various domains such as
finance, medicine, natural language processing, cyber security, bioinformatics, robotics, etc.
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Unlike traditionalmachine learningmodels, DLmodels have the capability to automatically
engineer features; therefore, there is no need for explicit feature extraction with human
supervision. DL enables learning and classification in a single shot as they implicitly examine
data and look for features that correlate and save days or even months of work of data
scientists’ and researchers’ by identifying new, more complicated features that they would
overlook (Lecun, Bengio & Hinton, 2015). Additionally, DLmodels are able to be trained on
unstructured, unlabeled data and produce ample accuracy. On the other hand, DL models
at the core are black-boxes i.e., their decisions are hidden in the thousands of simulated
neurons, grouped into dozens or hundreds of highly interconnected layers. Further, the
back-propagation method updates the computations made by individual neurons so
that the network may minimize the loss function thereby improving the performance
of the model. Consequently, the DL models become more complicated resulting in
the high performing black-box models (Minaee et al., 2021; Hohman et al., 2019). Deep
learning models are undergoing continuous development and recently surpassed human
performance on tasks such as image classification (Alzubaidi et al., 2021).

Image classification is one of the challenging and critical tasks in today’s AI systems,
implemented by utilizing convolutional neural network (CNN), the most popular
DL model. CNN identifies visual patterns from raw pixels. A CNN is often trained
using methods like back propagation and gradient descent and has many layers of
activations and convolutions dispersed among pooling layers (Rawat & Wang, 2017).
Training a CNN model requires huge amount of data, computation time and processing
power (Miikkulainen et al., 2019). Moreover, they are designed for solving a single specific
task and have to rebuild from scratch once the feature space distribution changes. To
overcome this isolated learning paradigm and utilizing the knowledge acquired from
training for a single task, CNNs have advanced the idea of transfer learning: an optimization
technique employing pre-trained models. A pre-trained model is a saved network that
has previously undergone extensive training on a large dataset, typically for a large image
classification task. They usuallymake use of ImageNet (Deng et al., 2009) and can be utilized
directly in making predictions on new tasks or integrated into the process of training a new
model. By using pre-trained models, both, the training time and generalization error are
reduced.

Despite the remarkable success of deep learning, the lack of transparency and
interpretability in their models has become a major concern among stakeholders. The
deep learning models achieve a high level of accuracy, but being a black-box model it is
almost impossible to identify the key features that led to the decision. In order to build
trust and ensure accountability of the DL based systems, that are widely being deployed,
there is a need for justification of decisions taken by models (Samek, Wiegand & Müller,
2017). Thus, there is a growing demand for understanding and interpreting the decisions
undertaken by these black-box models. The need to verify the reliability of these networks
is more emphasized recently after several cases were reported, where decisions taken by
AI systems led to controversial consequences. A fatal accident by an Uber self-driving
car (Kohli & Chadha, 2019), facial recognition systems evasion with a 3D printed mask
(Holmes, 2020), gender biasing in the Amazon Recruitment tool (Dastin, 2022), and
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bigotry in Correctional Offender Management Profiling for Alternative Sanctions
(COMPAS) (Wadsworth, Vera & Piech, 2018) are some of the distressing automated
decisions that accentuate the need for explanations of AI system.

Thus, the motivation of this study comes from the fact that deep learning models
created from complex pre-trained models must be interpretable. Therefore, to evaluate
the efficacy of these models in terms of interpretability, there is a need to apply XAI tools
to verify the underlying reasoning of the model. Consequently, the hypothesis formulated
for the research is ‘‘Complex deep learning models can be interpreted using Explainable
AI techniques’’. In order to validate this hypothesis, we developed deep learning models
for fruit classification task followed by the evaluation of interpretability of these models
using the XAI technique. Fruit classification is a critical task in many industries such
as agriculture, food processing and retail. Accurate fruit classification can help improve
the efficiency of processes such as sorting, grading, and packaging, ultimately reducing
waste and increasing profitability. Numerous studies have proposed deep learning-based
model for fruit classification (Hameed, Chai & Rassau, 2018; Khatun et al., 2020; Prakash
& Prakasam, 2023) but many of these models lack explainability, making it difficult
to understand how the models arrived at their classification decisions. This can be a
significant barrier to the adoption of such models in practical applications, particularly in
industries such as agriculture or food processing. However, elucidating the inner workings
of the models used in automated fruit classification systems will improve transparency,
identify biases, and meet regulatory requirements that will eventually help users in trusting
the model’s output and increase their confidence in the system (Rai, 2020).

For the stated problem, we used a popular dataset Fruits 360 (Oltean, 2021) that
comprises 90K images of fruits and vegetables with 131 different classes that makes it an
ideal use case for our study. We utilized three pre-trained models VGG16, MobileNetV2,
and ResNet50 as base network for three different classificationmodels to classify specifically
the type of fruit or vegetable. We fine-tuned and trained these models with Fruits 360
datasets to get an accuracy of around 98%. To ensure the transparency and reliability of
our models we interpret these models by applying the widely used explainable AI tool,
LIME.

The major contributions of this research are summarized below:

• We use transfer learning with three pre-trained models, VGG16, MobileNetV2,
ResNet50 for classifying fruits and vegetables using complete Fruits 360 dataset
comprising 131 classes.
• Weemploy two transfer learning techniques and evaluate the performance of pre-trained
models.
• We compare the effectiveness of our models derived from pre-trained models using
various evaluation metrics.
• We present a detailed explanation of our models using popular explainable AI tool
LIME.

The remaining sections of the article are structured as follows: the Background and
Related Work section presents the background and literature review. The Methodology
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section explains the methodology adopted; the Experiments section presents the details of
experiments performed. The Results and Discussion section discusses the results while the
Conclusions section concludes the research with future directions.

BACKGROUND AND RELATED WORK
Image classification has been around for decades. The conventional image classification
models need large, labeled dataset, hand-crafted features, huge computation resources, and
enormous time for training (Desai, 2021). This high cost of developing image classification
models compromises their robustness. In contrast, deep learning models exploit multiple
non-linear layers for feature extraction and classification, improve the efficiency of image
classification task and have achieved astonishing results (Vermeire et al., 2022). Among
several deep learning models, convolutional neural network (CNN) (O’Shea & Nash, 2015)
has become the leading architecture for image classification and detection tasks such as
facial recognition (Khan et al., 2019;Mane & Shah, 2019), medical image computing (Gao,
Lim & Jia, 2018; Zhang et al., 2019), plant disease classification (Lu, Tan & Jiang, 2021),
remote sensed image analysis (Ma et al., 2019).

Though CNN is the most popular deep learning model, its performance is largely
dependent upon the volume of data. CNN requires a sizeable amount of data that
needs plentiful computation power and time for training. Moreover, designing the CNN
architecture from scratch is exhausting as it needs a lot of time and effort in finding
suitable combination of layers and adjusted hyper-parameters. Further, the model learns
for one specific task on a very specific dataset and has to rebuilt if the features-space
changes (Desai, 2021; Zhuang et al., 2020). To overcome these challenges, researchers
discovered the concept of transfer learning that allows transferring of knowledge gained
by one task to solve similar another task (Torrey & Shavlik, 2010). It reduces the cost of
training as the model is readily trained for identifying low level features and the last layer
classifies the set of classes that were used during training. The following section discusses
the use of transfer learning in various domains and the popular CNN architectures used in
this study.

Transfer learning
Deep learning approaches are typically dependent on the dataset used to train the
network. A large volume of labeled data is needed to train a network to achieve desirable
performance. Gathering a massive amount of labeled data for a particular domain is not
only exhausting but also quite challenging in most real-world applications such as medical
imaging (Muhammad Dawud, Yurtkan & Oztoprak, 2019). As a result, the idea of transfer
learning has been introduced. Transfer learning allows utilizing the knowledge applied for
solving one problem to resolve other relevant problems. The base network (commonly
referred to as pre-trained network) is initially trained on a large dataset and transfers
its learning parameters and weights to the target network. The last fully connected layer
of the target network is then trained on its respective dataset. The pre-trained network
can also be fine-tuned by retraining some of its layers to further increase performance.
Transfer learning has been used widely in all machine learning applications, such as
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computer vision (Li et al., 2020), natural language processing (Ruder et al., 2019), and
speech recognition (Qin, Qu & Zhang, 2018), and it has demonstrated excellent results in
terms of accuracy, training duration, and error rates.

In image classification, fine tuning a pre-trained model entails bootstrapping the top
portion of the model, freezing the pre-trained convolutional layers and un-freezing the
last few pre-trained layers. The frozen layers convolve visual features as usual while the
un-frozen layers get trained on the custom dataset and updated according to the fully
connected layer’s predictions. ImageNet dataset is used for training for these pre-trained
models as it encompasses around onemillion images belonging to 1,000 categories. Various
CNNarchitectures have been developed as pre-trainedmodels for image classification tasks;
however, this research employs variants of three most popular architectures (VGGNet,
MobileNet, and ResNet). The following sub-sections briefly introduces these CNN
architectures.

VGGNet
VGGNet (Simonyan & Zisserman, 2014) is a convolutional neural network with two
variants i.e., VGG16 and VGG19. VGG16 has 16 layers including 13 convolution and three
fully connected layers, while VGG19 has 16 convolution layers and three fully connected
layers supported by MaxPool layers. It is one of the prominent architectures in image
classification. Rezende et al. (2018) used VGG16 to classify malware family by converting
malware executable to a byteplot grayscale image and achieved 92.97% accuracy without
any explicit feature engineering. Kaur & Gandhi (2019) applies similar methodology and
classify MRI images as normal or abnormal with different neurological diseases by using
VGG16 acquiring 100% accuracy. Comparison of different pre-trained models (VGG,
ResNet, DenseNet, MobileNet, Inception, Xception) was presented by Himabindu &
Praveen Kumar (2020). They evaluated each model on accuracy, precision, F1-score, recall
and reported that VGG outperforms all other models with 97% accuracy.

MobileNets
MobileNets (Sandler et al., 2018) are convolutional neural networks designed by Google
researchers. This CNN architecture is popular for its adoptability on mobile phones
as it has a low resource requirement. The MobileNet architecture is developed using
depthwise separable convolutions, which are lightweight deep neural networks that
can have minimal latency for embedded and mobile devices. Rabano et al. (2018) uses
MobileNet for classifying trash in an android application. Shahi et al. (2022) presented an
attention-based MobileNetV2 architecture for fruit classification and evaluate it against
accuracy, f1score, Kappa-score, WAFI, MAFI, recall and precision. The authors compared
their architecture with other pre-trained models on three different datasets and their
proposed framework surpassed all with achieving more than 95% accuracy on all three
datasets.

ResNet
ResNet (He et al., 2016) is a very deep residual network built by Microsoft and has a
depth of 50 layers. ResNet combined multiple sized convolution filters which manage the
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degradation problem and reduces the training time that occurs due to its deep structures.
Sarwinda et al. (2021) proposed an image classification model for detection of colorectal
cancer in colon glands images using different variants of ResNet and found that ResNet50
provides the most reliable performance for accuracy, sensitivity, and specificity. Precision
classification for breast cancer histopathological image was investigated by Jiang et al.
(2019) in which they proposed a customized version of ResNet. An accuracy of 99% was
reported by the authors after the network was fined tuned.

The CNN architectures trained on large datasets have addressed the two major issues
regarding the training of deep learning networks. These pre-trained models have reduced
the requirement of voluminous data and the need for extensive computing environment
to some extent. However, another critical concern with developing real-life deep learning
systems is the need for an explainable, interpretable, and transparent solutions. Deep
learning models remain black-box models and there is a growing demand for the
explanation of their learning and prediction process. The following section discusses
the new research paradigm known as Explainable AI (XAI) that is came into being to
provide explanations of black-box models predictions.

Explainable AI
Deep neural networks are regarded as black-box models by both developers and users since
they are comparatively weaker in explaining their inference process and final decisions (Xu
et al., 2019). Explainable AI is a collection of methods and techniques that allows end users
to understand and trust the decisions AI systemsmake (Holzinger et al., 2022). It has gained
significant attention recently among both industry and research community due to the
fact that AI is now involved in such real-world applications that demands explainability
and transparency, for example, medical diagnosis, investment recommendation, loan
approvals, surveillance, autonomous vehicles, predictions for process optimization etc.
Evaluation metrics such as high accuracy may not be sufficient to ensure that the decisions
taken by these models are always correct, justified and without any bias. For example,
COMPAS; an assistive tool used in multiple states of the US to assess the likelihood that
a criminal offender would reoffend has been proven to be discriminatory, with results
heavily biased towards white defendants (Wadsworth, Vera & Piech, 2018). Understanding
the reasons behind the decisions taken by autonomous models leads to more reliable
and trustworthy systems. Therefore, the goal of XAI is to make the reasoning behind the
decision taken by AI systems that is understandable by humans (Pearl, 2019). A variety of
XAI tools have been introduced to explain the predictions made by AI systems. Notably,
LIME has emerged as a widely preferred choice.

LIME
LIME (Ribeiro, Singh & Guestrin, 2016) is an acronym of Local Interpretable Model-
Agnostic Explanations. It helps users understand why a machine learning model made a
certain prediction by providing an explanation in terms of the most relevant features that
influenced the prediction. To create an explanation, LIME generates a local, interpretable
model around the instance being explained and weighs the contribution of each feature
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Figure 1 DL architecture used in this study utilizing VGG16 pre-trained model.
Full-size DOI: 10.7717/peerjcs.1629/fig-1

to the model’s output. These features are then presented as an explanation to the user, in
order to help them understand how the complex machine learning model arrived at the
prediction. The explanations generated by LIME are intended to provide insights into the
decision-making process of the black-box machine learning model, and to enable users to
validate and understand the model’s predictions. Many studies have been carried out that
have used LIME for explaining the results irrespective of the nature of data (Bhattacharjee
et al., 2022; Zhu et al., 2022; Hamilton et al., 2022). Consequently, we have used LIME for
evaluating the interpretability of our fruit classification models in this research.

METHODOLOGY
The methodology applied in this research encompasses two phases, that is; development of
three classification models using transfer learning and explanation of these models using
LIME.

In the first phase, three classification models are created using pre-trained models
(VGG16, MobileNetV2 and ResNet50) as the base model. The features extracted from the
base model are used by the new layers introduced in each model. However, the softmax
layer is used as the last layer by initializing the number of neurons to total number of classes
in Fruits 360 dataset i.e., 131. Figs. 1, 2 and 3 depict the architecture of the classification
models used in this study. The classification is performed by applying two transfer learning
techniques, (a) using pre-trained models with frozen layers and (b) using pre-trained
models with fine-tuned layers. Each classification model is evaluated through accuracy,
precision, recall and F1-score.

In the second phase, the classification models are evaluated for their truthfulness. To
accomplish this, five specific examples or instances are studied using LIME. The purpose
of using LIME is to understand the underlying features that contribute to each decision
made by the classification models. This helps in identifying what aspects of the data are
driving the models’ predictions thereby making it easier to understand the decisions taken
by DL models.

EXPERIMENTS
We analyzed the interpretability and understandability of three pre-trained deep learning
models (VGG16, MobileNetV2 and ResNet50) by conducting experiments on fruit
classification problem. We first developed fruit classification models using the pre-
trained models and then employed explainable AI tool on classification models. For
fruit classification problem, the Fruits 360 dataset has become a benchmark and has been
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Figure 2 DL architecture used in this study utilizingMobileNetV2 pre-trained model.
Full-size DOI: 10.7717/peerjcs.1629/fig-2

Figure 3 DL architecture used in this study utilizing ResNet50 pre-trained model.
Full-size DOI: 10.7717/peerjcs.1629/fig-3

utilized in various research studies. Ghosh et al. (2020) used its 41 classes for detecting and
classifying fruits using ShuffleNetV2. Similarly, Siddiqi (2019) has used 101 classes of Fruits
360 dataset and presented a comparative analysis on the performance of various deep
learning models. Furthermore, Sakib et al., (2019) proposed a fruit recognition classifier
by utilizing 17,823 images belonging to 25 categories. Rathnayake et al. (2022) have used
the complete Fruits 360 dataset for image identification and recognition but similar to
aforementioned studies they also have not taken the interpretability or explainability factor
for their proposed models.

In this study, we have used a complete Fruits 360 dataset having 131 classes of fruits and
vegetables images that is publicly available on Kaggle and developed classification models
followed by their explanation. The dataset holds 90,483 images in total and each image
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Figure 4 Sample images from the Fruits 360 dataset.
Full-size DOI: 10.7717/peerjcs.1629/fig-4

has one fruit or vegetable. The size of each image is 100x100 and is captured with white
background. Figure 4 shows some of the images from the Fruits 360 dataset.

The experiments were performed on the dataset usingKeras API of tensorflow employing
three pre-trained architectures, VGG16, MobileNetV2 and ResNet50. Two techniques of
transfer learning, frozen and fine-tuned, were applied during the course of experiments to
achieve the best possible results. In the frozen case, the pre-trained models convolve the
data according to the ImageNet weights leaving their top portion, that is fully connected
layer of themodel, and transfer fixed features to the customized fully connected layer.While
in fine tuning, the pre-trained models bootstrap the top portion, freeze the pre-trained
convolutional layers and un-freeze the last few pre-trained layers. The frozen layers convolve
visual features as usual while the un-frozen layers get trained on the custom dataset and
updated according to the last fully connected layer. We used complete Fruits 360 dataset
with 131 classes containing around 90K images; divided into training, validation, and
test sets with a ratio of 65:10:25 respectively. Thus, the training set comprises 57,612
images; validation set contains 10,080 images while 22,688 images are part of the test set.
Naranjo-Torres et al. (2020) andAzarmdel et al. (2020) have utilized the similar distribution
of dataset for fruit image processing. All images in each set are pre-processed using the
pre-processing function defined in the Keras Library for the respective pre-trained model.
All experiments were carried out on a machine having an Intel Core i5-1135G7 @ 2.40 GHz
processor with 32GB RAM and 2 GB NVIDIA GeForce MX350 GPU. The experiments
performed in this study are presented in Table 1.

For frozen layer case, the training and validation batch size used is 64. The models are
evaluated by training them iteratively with varying epochs that is 10 and 20 with training
step size of 900 and validation step size of 157. The Adam optimizer is used from the Keras
Optimizers and the initial learning rate was set to 10−3. Early stopping is applied in the
validation loss with the patience value of 10 that is the model stops training if the validation

Qamar and Bawany (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1629 9/21

https://peerj.com
https://doi.org/10.7717/peerjcs.1629/fig-4
http://dx.doi.org/10.7717/peerj-cs.1629


Table 1 Experiments performed in the study.

Experiments Results

Phase I–Generation of ClassificationModels
Classification models development using pre-trained
models with Frozen Layers

Table 3

Classification models development by fine tuning the pre-
trained models

Table 4

Phase II–Interpretation of ClassificationModels
Instances evaluated for LIME interpretations and their top 5
predictions

Table 5

Top features selected by classification models for the chosen
instances

Table 6

Table 2 Hyperparameters used for development of ClassificationModels.

Hyperparameter Value

Epochs 10, 20
Batch size (Training and validation) 64
Training step size 900
Validation step size 157
Learning rate 10−2, 10−3

Optimizer Adam
Regularization Early stopping

loss keeps increasing till 10 successive epochs. For fine-tune case, the last two layers of
each mode left un-freeze and the models are trained for 10 epochs with initial learning
rate of 10−2. The hyperparameters used for the development of classification models are
summarized in Table 2.

RESULTS AND DISCUSSION
This section describes the results in terms of phases as mentioned in the methodology
section. In the first phase, we generate classification models by utilizing three pre-trained
models (VGG16, MobileNetV2, ResNet50) using two transfer learning techniques. While
in the second phase, LIME interpretations are generated that highlight the key features
used in the respective prediction. Table 3 reflects how our research objectives have been
achieved with our corresponding research contribution.

Phase I-development of classification models
The two techniques of transfer learning are frozen layers and fine-tuned layers as explained
in the background and related work section. We have developed classification models by
incorporating three pre-trained models VGG16, MobileNetV2 and ResNet50 whose results
are described in successive sections.

Qamar and Bawany (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1629 10/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1629


Table 3 Research objectives to research contributionmapping.

Research objectives Contributions

To develop fruit classification models using pre-trained
models

Three pre-trained models namely VGG16,
ResNet50 and MobileNetV2 are utilized for
the development of fruit classification models.
See Figs. 5 and 6

To explore transfer learning mechanism in the development
of fruit classification models

Two transfer learning mechanisms (1) frozen
layers and (2) fine-tuned layers are employed
in the development of classification models.
Refer to Section Phase I - Development of Classification
Models for further details

To compare performance of fruit classification models
using different metrics

The classification models employing pre-trained models
are evaluated using accuracy, precision, recall and f1 score.
See Tables 4 and 5

To interpret fruit classification models using explainable AI
tool

Explainable AI tool LIME is used to interpret the results
of pre-trained models based classification models.
See Table 7 and Fig. 8

Figure 5 Results of frozen layers technique of transfer learning.
Full-size DOI: 10.7717/peerjcs.1629/fig-5

Frozen layers
In frozen layers technique, where each pre-trained model served as a feature extractor with
all layers freeze, ResNet50 outperformed VGG16 and MobileNetV2 models by achieving
97.3% test accuracy in 10 epochs as shown in Fig. 5.

The ResNet50 also outclasses the two models in terms of execution time as it takes
comparatively less time to achieve highest accuracy. It is observed that VGG16 and
ResNet50 start overfitting when set to train for 20 epochs while MobileNetV2 shows
improvement by acquiring 100% training accuracy and 93.62% test accuracy. The results
of experiments achieved by each model are presented in Table 4.
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Table 4 Classification models with frozen layers.

Parameters VGG16 MobileNetV2 ResNet50

Epochs 10 20 10 20 10 20
Execution time (seconds) 4,517 5,251 1,438 3,203 3,101 4,133
Early stopped? No Yes, at Epoch 13 No No No Yes, at Epoch 14
Training accuracy (%) 99.8 99.9 98.2 99.99 99.8 99.9
Validation accuracy (%) 97.4 97.6 87.6 98.98 99 99.2
Testing accuracy (%) 94.03 94.1 80.84 95.20 97.3 96.43
Precision 0.95 0.96 0.83 0.95 0.97 0.97
Recall 0.94 0.94 0.8 0.95 0.97 0.96
F1-Score 0.94 0.94 0.8 0.95 0.97 0.96

Table 5 Classification models with Fine-tuned Layers.

Parameters 1-layer unfreeze 2-layers unfreeze

VGG16 MobileNetV2 ResNet50 VGG16 MobileNetV2 ResNet50

Execution time (Seconds) 3,742 1,337 3,012 4,020 1,398 3,128
Training accuracy (%) 99.8 99.6 100 100 99.8 100
Validation accuracy (%) 97.9 96.6 99.9 99.1 96.1 99.8
Testing accuracy (%) 96.12 91.49 98.08 97.09 92.25 97.56
Precision 0.97 0.92 0.98 0.97 0.93 0.98
Recall 0.96 0.92 0.98 0.97 0.93 0.98
F1-Score 0.96 0.91 0.98 0.97 0.92 0.98

Fine-tuned layers
In fine-tuned technique, all models were trained for 10 epochs on two variations of unfreeze
layers. First, all models are trained by tuning just one layer. Then, the models were trained
by tuning their two layers in which all models got 100% training accuracy. The overall
experiment results are presented in Table 5.

VGG16 and MobileNetV2 show relatively improved performance by achieving 97.09%
and 92.25% test accuracy, respectively after unfreezing their last two layers. However,
ResNet50 dominance is witnessed again on VGG16 and MobileNetV2 as it attains test
accuracy of 98.08% by unfreezing one last layer only as depicted in Fig. 6.

It is evident from analyzing the experimental results that pre-trainedmodels offer greater
accuracy in comparatively smaller training time. ResNet50 exhibits highest accuracy in
both cases while VGG16 and MobileNetV2 have also shown greater than 90% accuracy
which is acceptable in classification problems. The highest accuracy produced version of
each pre-trained model is used for the investigation of their interpretation capability using
LIME.

Phase II-Interpretation using LIME
LIME produces instance level explanations, therefore five correctly predicted instances
were selected for interpretations’ study. Table 6 presents the instances and their top five
predictions made by each model.
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Figure 6 Results of fine-tuned layers technique of transfer learning.
Full-size DOI: 10.7717/peerjcs.1629/fig-6

Figure 7 Perturbed images.
Full-size DOI: 10.7717/peerjcs.1629/fig-7

LIME works by creating perturbed images of the instance being predicted; therefore,
150 perturbed images were generated by turning on and off the super pixels of the instance
as depicted in Fig. 7. Super pixels are used in LIME to help generate explanations for image
classification models by simplifying the image and reducing the number of features used to
explain the model’s prediction. Instead of considering every individual pixel in an image,
LIME groups pixels into super pixels and treats each super pixel as a feature. The left of the
figure shows the image with all super pixels on while the right of the image shows some
of the perturbations generated by the ResNet50 model. Similar perturbed images were
generated by MobileNetV2 and VGG16.

Each perturbed image is then predicted and the distance between the perturbed image
and the original image is calculated. Cosine metric was used to find the distance with kernel
size of 0.25. Finally, the linear regression model is fitted to find out the top feature in the
model prediction. Figure 8 shows the top feature selected in green color by the models to
make prediction of the instance chosen by each model. It is clearly evidenced that VGG16
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Table 6 Instances evaluated for LIME interpretations.

Instance chosen Top 5 predictions

VGG16 MobileNetV2 ResNet50

Banana
Peach 2
Physalis
Banana Red
Tomato Maroon

Banana
Kaki
Banana Red
Carambula
Banana Lady Finger

Banana
Banana Lady Finger
Carambula
Lemon
Cucumber Ripe 2

Pineapple Mini
Tomato Yellow
Tomato Maroon
Apple Red Yellow 1
Huckleberry

Pineapple Mini
Physalis with Husk
Mulberry
Rambutan
Pitahaya Red

Pineapple Mini
Pineapple
Mangostan
Mulberry
Rambutan

Apple Braeburn
Apple Red 2
Apple Red 3
Tomato Yellow
Apricot

Apple Braeburn
Nectarine
Apple Red 2
Apple Pink Lady
Tamarillo

Apple Braeburn
Apricot
Potato Red Washed
Nut Forest
Cherry Wax Yellow

Pepper Green
Tomato not Ripened
Watermelon
Eggplant
Grape Pink

Pepper Green
Apple Red Yellow 2
Tomato not Ripened
Tomato Heart
Pepper Orange

Pepper Green
Pepper Red
Eggplant
Dates
Tomato Heart

Strawberry
Cucumber Ripe
Grape Pink
Raspberry
Dates

Strawberry
Mandarine
Nectarine
Lemon
Strawberry Wedge

Strawberry
Cucumber Ripe
Avocado ripe
Strawberry Wedge
Carambula

and ResNet50 select the most suitable position of the image to be predicted as banana.
Whereas MobileNetV2′s feature selection is abstruse.

Table 7 shows the top feature selected for the rest of the instances presented in Table 6
by each model. Nevertheless, it is apparent that the predictions of the pre-trained model
are explainable, interpretable and can be trusted as the top feature chosen by each model is
suitable for the respective data instance. Hence, our hypothesis that complex deep learning
models can be interpreted using explainable AI techniques has been successfully validated
by these findings.
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Figure 8 Top feature selected by each classification model for the chosen instance.
Full-size DOI: 10.7717/peerjcs.1629/fig-8

Table 7 Top feature selection for the prediction for each instance.

Original image VGG16 MobileNetV2 ResNet50

CONCLUSIONS
In this study, our objective was to investigate the interpretability of deep learning models
due to their black-box nature that leads to a lack of transparency and interpretability in
their decision-making process. Although these models have shown exceptional accuracy,
the absence of justification raises concerns related to trust, accountability, biases, and
transparency. Therefore, we aim to address this issue by exploring the interpretability of
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deep learning models using explainable AI techniques. We assessed the truthfulness of the
deep learning models specifically pre-trained models by generating interpretations of their
predictions. To do this, we performed experiments in two settings. First, we utilized three
pre-trained models (VGG16, MobileNetV2 and ResNet50) with two techniques of transfer
learning. Second, we produced interpretations of these models using LIME. Extensive
experiments have been carried out to obtain the classification model with highest accuracy.
ResNet50 has outperformed VGG16 and MobileNetV2 by attaining 98.08% accuracy
with one last layer unfreeze. While VGG16 and MobileNetV2 have shown significant
performances with 97.09% and 93.62% accuracy, respectively. Few instances that are
correctly predicted by the models are selected to evaluate the interpretability of each
pre-trained model. LIME explanations are generated that mark the top feature selection
in the underlying prediction and it is observed that all pre-trained models used in this
research are interpretable.

As future perspective, we intent to extend our research on the interpretability of deep
learningmodels intomore critical and sensitive applications such as healthcare and finance.
The interpretation of these models is essential to ensure transparency and enhance trust in
these domains. Additionally, we aim to investigate the root cause of any misclassifications
made by the models using various explainable AI techniques. This will allow us to identify
the areas that need improvement and develop strategies to reduce misclassifications in
classification models. By doing so, we can improve the performance and accuracy of deep
learning models, making them more reliable and trustworthy in critical applications.
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