Skip to main content
. 2023 Oct 31;9:e1655. doi: 10.7717/peerj-cs.1655

Table 3. Algorithms and metrics used in predicting student performance.

# Type of algorithm Algorithms Metric Reference
1 Classification Naive Bayes (NB), Support Vector Machine (SVM), Support Vector Classification (SVC), Decision Trees (DT), K Neighbors Classifier (KNN), Multilayer Perceptron (MLP), and Random Forest (RF) Area under the curve (AUC), validation cross, Spearman correlation, Pearson correlation, accuracy, precision, recall, and F1 score Abdulwahhab & Abdulwahab (2017), Buenaño-Fernández, Gil & Luján-Mora (2019), Costa et al. (2017), Moreno-Marcos et al. (2020), Pereira et al. (2021), Pereira et al. (2019), Sivasakthi (2017), Sunday et al. (2020), Villagrá-Arnedo et al. (2017), Yoshino et al. (2020)
2 Regression Linear regression (LR), and logistic regression Mean square error (RMSE), absolute error medium (MAE), R square (R2) de la Peña et al. (2017), Moreno-Marcos et al. (2020), Munson & Zitovsky (2018), Pereira et al. (2019), Yoshino et al. (2020)