Skip to main content
. 2023 Oct 24;9:e1612. doi: 10.7717/peerj-cs.1612

Table 1. Comparison of previous work and the features used for fake news classification.

No. Paper Features Models Performance
1 Amjad et al. (2020b) TF-IDF, log-entropy, character n-grams, word n-grams AdaBoost 84% F1 Fake, 94% ROC-AUC scores, lower ROC-AUC of 93%.
2 Amjad, Sidorov & Zhila (2020) Word n-gram, char n-grams, and functional n-grams AdaBoost Classifier’s Accuracy 87%, F1 Fake 91%
3 Monti et al. (2019) User profile, User activity, Network and spreading, Content Convolutional Neural Network (CNN) 92.7% ROC AUC
4 Humayoun (2022) Word n-gram, character n-gram Support Vector Machine, CNN Embeddings F1 macro 66%, Accuracy 72%
5 Rafique et al. (2022) TF-IDF, BoW, Character N-gram, word N-gram NF, LR, SVC, GB, PA, Multinomial NB Accuracy 95%
6 Amjad et al. (2020a) Character bi-gram, MUCS, BoW, Random BERT 4EVER, Logistic Regression Accuracy 90%
7 Amjad et al. (2022) TF-IDF, count-based BoW, word vector embeddings SVM, BERT, RoBERta F1-macro 67%, Accuracy 75%
8 Kalra et al. (2022) N/A Ensemble Learning, ROBERTA, ALBERT, Multilingual Bert, xlm-RoBERTa Accuracy 59%
9 Salahuddin & Wasim (2022) TF-IDF Logistic Regression F1 Score 72%
10 Akhter et al. (2021) BoW, IG SVM, Decision Tree, Naive Bayes BA 81.6%, AUC 81.5%, MAE 23.5%