Table 2. Forecasting performance of different models on the training and test set.
The methods with best evaluation metric are in bold.
Models | MSE | MAE | MAPE | MSE | MAE | MAPE |
---|---|---|---|---|---|---|
Training set (1980–2013) | Test set (2014–2018) | |||||
ARIMA (2,2,4) | 83.10 | 5.70 | 15.73 | 1267.95 | 32.10 | 19.31 |
GM (1,1) | 115.55 | 7.80 | 25.57 | 711.69 | 20.39 | 12.40 |
One-step-ahead prediction | Test set (2014–2018) | |||||
Rolling GM | 219.36 | 10.20 | 16.77 | 453.34 | 18.08 | 11.88 |
LSTM | 120.99 | 8.11 | 12.99 | 2786.00 | 35.88 | 22.33 |
GM-LSTM | 123.23 | 6.69 | 12.43 | 290.65 | 14.17 | 10.24 |