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ABSTRACT

In August 2022, the Cancer Informatics for Cancer Centers brought together cancer informatics
leaders for its biannual symposium, Precision Medicine Applications in Radiation Oncology, co-
chaired by Quynh-Thu Le, MD (Stanford University), and Walter J. Curran, MD (GenesisCare).
Over the course of 3 days, presenters discussed a range of topics relevant to radiation oncology
and the cancer informatics community more broadly, including biomarker development, de-
cision support algorithms, novel imaging tools, theranostics, and artificial intelligence (AI) for
the radiotherapy workflow. Since the symposium, there has been an impressive shift in the
promise and potential for integration of AI in clinical care, accelerated in large part by major
advances in generative AI. AI is nowpoisedmore thanever to revolutionize cancer care. Radiation
oncology is afield that uses and generates a large amount of digital data and is therefore likely to
be one of the first fields to be transformed by AI. As experts in the collection, management, and
analysis of these data, the informatics community will take a leading role in ensuring that
radiation oncology is prepared to take full advantage of these technological advances. In this
report,weprovidehighlights fromthe symposium,which tookplace inSantaBarbara, California,
fromAugust 29 to 31, 2022.We discuss lessons learned from the symposium for data acquisition,
management, representation, and sharing, and put these themes into context to prepare ra-
diation oncology for the successful and safe integration of AI and informatics technologies.

INTRODUCTION

The Cancer Informatics for Cancer Centers (Ci4CC) is the
premier professional society for cancer precisionmedicine and
informatics and provides a focused forum for professionals
from National Cancer Institute (NCI)–Designated and Com-
munity Cancer Centers emphasizing precision medicine, data
science, health care informatics, translational research, and
digital platforms. The summer 2022 Ci4CC Symposium, titled
Precision Medicine Applications in Radiation Oncology, was
developed as a collaboration of investigators from NRG On-
cology, American Society for Radiation Oncology (ASTRO),
NCI, cancer centers, andCi4CC to focuson innovativeprecision
medicine and informatics in the field of radiation oncology. Dr
Quynh-Thu Le from Stanford University and Dr Walter
J. Curran from GenesisCare chaired the symposium, which
covered four themes: (1) biomarker development for precision
radiation oncology; (2) decision support algorithms in radi-
ation oncology and their impact on clinical practice and trials;
(3) the role ofmachine learning and AI in the radiation therapy

workflow; and (4) the use of new imaging tools and advanced
analytics in radiotheranostics. In addition, current efforts for
establishing data standards and informatics infrastructure
from academic, industry, and government stakeholders at
local and national levels were discussed. The goal of this
meetingwas tohighlight opportunities and challenges in these
areas, and to connect academic and industry researchers who
work in thesefieldswithin andoutside of radiationoncology to
develop new collaborations to improve the care and outcome
of patients treated with radiotherapy (RT).

Table 1 highlights some of the emerging AI opportunities for
radiation oncology discussed during this symposium, along
with unmet informatics needs for their promise to be realized.

BIOMARKER DEVELOPMENT

Recent years have seen the development of multiple bio-
markers to guide precision radiation oncology, developed
from the many clinical and biological data types collected on
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patients during their care. Dr Felix Feng from University of
California San Francisco discussed how AI-based analysis of
pathologic images can improve upon traditional pathology
review to guide treatment recommendations that are per-
sonalized to each patient’s disease. Dr Max Diehn from
Stanford University presented on genomic-based biomarkers
of RT resistance, including tumor mutations that can predict
recurrence after RT1,2 and circulating tumor DNA dynamics
that can measure minimal residual disease after definitive
therapy3 in lung cancer. Dr Joanne Weidhaas of University of
California Los Angeles discussed microRNA-based bio-
markers for RT patient selection. MicroRNA mutations can
predict cancer treatment toxicity4 as well as RT response.5

These biomarkers from diverse data types may improve the
overall risk-to-benefit ratio of cancer treatment.

Dr Joseph Deasy fromMemorial Sloan Kettering Cancer Center
described how the search for quantitative biomarkers is often
confounded by the large-scale nature of the underlying ge-
nomics. Network data representations, where each node of the
network represents adifferent featureof the system, combined

with Wasserstein/earth-mover distance measurements be-
tween samples, have emerged as a powerful tool to charac-
terize cancer variability.6 These methods seek to incorporate
information sharing between network components without
detailed molecular modeling. In particular, these methods can
be used to model large-scale genomics (mRNA, copy-number
variation, and methylomics),7,8 as well as radiomics,9 and can
be combined with other approaches to better understand
subtypes,10,11 prognosis,12 and treatment response.13

DECISION SUPPORT ALGORITHMS

The ASTRO recognizes the potential of advancing computa-
tion and AI for precision radiation oncology, as highlighted
in a joint collaborative panel between the ASTRO, the NCI,
and the Department of Energy (DOE). Speakers included
Dr Caroline Chung and Dr Clifton (Dave) Fuller, both from the
MDAndersonCancer Center,Dr Christine Chalk from theDOE,
Dr Emily Greenspan from the NCI, and Dr H. Timothy Hsiao
(Moderator) from the ASTRO. ASTRO officially included Big
Data Analytics and Artificial Intelligence as a strategic area

TABLE 1. Emerging Informatics Opportunities and Needs for an AI-Ready Radiation Oncology Clinic

Opportunitya Needs

NLP methods, including large language models, to mine clinical text and
support EHR documentation

Better methods for safely sharing clinical text data sets and language models
trained on PHI

Standardization of text-extracted information and mapping to community
standards, such as NCIt

Access to open-source models for use-case refinement and thorough evaluation
Clinically relevant, task-specific benchmarks to adequately assess NLP for clinical

care
Careful expert evaluation of generated EHR text output

Real-world evidence to provide new cancer insights Widespread uptake of community data standards, such as mCODE
FAIR data collection

Improved data interoperability, eg, using HL7 FHIR models
Improved data availability and accessibility

Continued refinement and updates to cancer-specific ontologies and knowledge
graphs

Institutional infrastructure for standardized, interoperable data and meta-data
collection

Clinical decision support to improve patient-facing care Prioritized development of AI methods that address clinician-informed unmet
needs or questions

Appropriate selection of performance metrics for a given data set and intended
use

Research into meaningful AI end points for clinicians and patients
Inclusion of stakeholders and end users at each stage of AI development/

implementation
Clinical evaluation of impact on patient-centered outcomes to establish the benefit

of new AI technologies
Institutional infrastructure for ongoing monitoring of AI system performance
Regulatory guidance to establish performance thresholds and evaluation

requirements

Human-machine collaboration to augment overall performance and
efficiency

Evaluation of clinician and patient acceptance and perspectives of AI use in care
Predeployment pilot testing of end-user interaction with AI technology in a real

clinical system
Ongoing assessment of new risks arising from human factors, such as over-

reliance on AI
Improved trust and safety via end user education, safety-by-design systems, and

risk-guided disclosure of AI use

Abbreviations: AI, artificial intelligence; EHR, electronic health records; FAIR, findability, accessibility, interoperability, and reusability; FHIR, Fast
Healthcare Interoperability Resource; HL7, Health Level 7; mCODE, minimum Common Oncology Data Element; NCIt, National Cancer Center
Thesaurus; NLP, natural language processing; PHI, protected health information.
aThis table lists select informatics opportunities discussed in the symposium and is not meant to be a comprehensive review.
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in the ASTRO Research Agenda starting in 2020.14 The ASTRO
Science Council has also been collaborating with the NCI and
DOE and produced a collaborative workshop in 2021 and a
publication Predictive Radiation Oncology—A New NCI-DOE
Scientific Space and Community in 2022.15 To achieve the
goals of precision medicine and learning health systems,
ASTRO places emphasis on collecting, processing, and cu-
rating patient-level radiation oncology data. In addition,
ASTRO recognizes the potential of AI to help realize the
promise of precision medicine and modernize healthcare in
three major areas: (1) disease prevention, (2) personalized
diagnosis, and (3) personalized treatment. AI tools must re-
main a priority in radiation oncology research and for future
integration into clinical workflows.

In addition to the high-level strategic vision of ASTRO for
advancing AI, examples of ongoing efforts developing de-
cision support algorithms for radiation oncology and how
they may affect practices along the cancer care and research
continuum were provided throughout the symposium and
serve as early examples of the many ways AI may transform
RT. Dr Michael Gensheimer from Stanford University dis-
cussed machine learning to improve advance care planning
(ACP) conversations for patients with cancer. Machine
learning is increasingly being used to optimize care delivery
for patients with cancer. One area of recent focus is ACP.16

Radiation oncologists frequently see patients with poor
prognosis and are involved in end-of-life care, and hence
have the opportunity to improve rates of ACP in radiation
oncology. Studies have explored training nonphysicians,
such as lay health workers, care coaches, and nurse navi-
gators, to assist with ACP, but it can be hard for these staff to
identify which patients to approach for conversations. At
Stanford, an automated survival prediction model was de-
veloped to help providers identify high-risk patients and
prioritize care. This model was trained on data from ap-
proximately 15,000 Stanford patients withmetastatic cancer
and outperformed both physicians and traditional models in
predicting 1-year survival.17 A pilot quality improvement
study implemented care coaches and weekly automated
emails showed a sustained increase in ACP and prognosis
documentation, as well as high provider engagement.18 To
learn about physician and patient perspectives, Dr Gen-
sheimer’s team conducted a qualitative study of physicians
and patients in which they were shown a model report for a
real anonymized patient.19 Physician interviews revealed
that a lack of patient-specific data hinders prognosis con-
versations and that concerns over validation and explain-
ability are barriers to use. Patient interviews indicated that
prognosis conversations can be empowering, and patients
trust computer models that use a wide range of predictors.
However, fear of giving up or denial of a finite lifespan can
hinder these conversations.

Dr Danielle Bitterman from Brigham and Women’s Hospital/
Dana-Farber Cancer Institute spoke about how natural lan-
guage processingmethodsmay improve outcome assessment
in radiation oncology. Outcomes such as cancer-specific

survival, patterns of disease failure, and short- and long-
term adverse events are critical for clinical trials and health
outcomes research and remain very difficult and resource-
intensive to collect reliably over long periods of time. Although
there has been widespread uptake of electronic health records
(EHRs), our ability to generate real-world evidence has thus
far been limited, in part because many cancer outcomes are
documented only in clinical text and cannot be automatically
abstracted for downstream analysis. Recent advances in nat-
ural language processing, especially neural-based pretrained
languagemodels, offer an avenue to automate this process.20,21

Dr Bitterman presented emerging efforts to automatically
extract cancer outcomes using these AI methods.22,23 Natural
language processing has also been shown to extract acute
RT toxicities24,25 and may provide new data on nonmedical
outcomes after RT.26

In addition, Dr Olivier Morin from the University of Cal-
ifornia San Francisco discussed the potential and challenges
of predictive modeling using real-world data from EHRs.
EHR data suffer from:

1. Poor standardization: hospitals store their data differently.
2. Siloed structured and unstructured data: medical infor-

mation in an EHR, radiation information in an Oncology
Information System, images in a picture archiving and
communication system, and molecular testing in its own
system.

3. Incomplete patient treatment outcomes: no improvement
can be made if important data are not recorded.

Additionally, EHRs presently have no feedback mechanisms
to assess/ensure data quality, learn from past experience,
and update for real-time changes in cancer management.
Better utilization of digital health data will enable us to
expand the learning pool while simultaneously reducing
confounding factors such as selection bias. With the emer-
gence of statistical learning and large language models, AI
tasks in oncology such as workflow optimization, feature
extraction, detection of clinical trial eligibility, and risk
stratification can be developed to provide decision support
using historical data. Dr Morin’s group is developing a
framework and methods to understand and predict the dy-
namic changes in survivinggroups. Their frameworkcurrently
consists of thousands of individuals with cancer and millions
of data points over a decade of data recording. They reported a
proof-of-concept analysis using this infrastructure, which
identified the Framingham risk score to be robustly associated
with mortality among individuals with early-stage and
advanced-stage cancer, a potentially actionablefinding froma
real-world cohort of individuals with cancer. Finally, they
showed how natural language processing of medical notes
could be used to continuously update estimates of prognosis
as a given individual’s disease course unfolds.

AI FOR THE RADIOTHERAPY WORKFLOW

An overview of practical applications of AI in radiation on-
cology, especially AI-based segmentation tools, was provided
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by Dr John Buatti from the University of Iowa. One known
weakness of manual tumor and normal structure contouring
is creating consistent contours, even among human experts.
Inconsistency among physicians and even for the same
physician contouring structures on identical images at dif-
ferent times creates errors and limits the ability to consider
true tumor control probabilities ornormal tissue complication
probabilities.27 In addition, this inconsistency limits our
ability to interpret RT clinical trials, especially when central
plan review is lacking.28 Furthermore, contouring is extremely
time-consuming and hence expensive. AI has been shown to
efficiently and consistently identify both tumors29 and normal
structures30-34 using a variety of different algorithms and
approaches, offering a potential mitigation to the challenges
ofmanual contouring. Daily workflow application in radiation
oncology remains at extremely early phases but promise to
revolutionize our approach to planning. AI-based segmen-
tation is currently facilitating the deployment of real-time
adaptive RT, illustrated in magnetic resonance imaging
(MRI)-Linac systems that obtain daily MR images to create a
daily plan optimized for the location and size of the tumor
and surrounding critical structures. Full deployment of these
AI-based technologies is only just beginning but holds
promise to improve RT quality in the long term.

Other emerging workflow applications were discussed
throughout the symposium. For example, AI-based tech-
nologies could enable image reconstruction to improve
tumor delineation and response assessment over time,35

automate RT planning from computed tomography and
MRI simulation scans,36,37 and improve image-guided RT
by facilitating tracking from onboard imaging.38 Deep
learning–based analyses of imaging over time may also
support monitoring strategies for more quantitative as-
sessments of tumor progression.39

Importantly, while the past years have seen a proliferation of
research intomethods to automate the RT workflow, clinical
translation and research into its clinical effectiveness has
lagged.27 Dr Steve Jiang of University of Texas Southwestern
Medical Center discussed how variations in physician
practice pose a crucial challenge to AI implementation. These
variations can be classified into two types—type A and type
B. Type A variations stem from a lack of experience or in-
formation, often representing data noise that, if reduced, can
facilitate standardization of care. One of the ways AI can
address this issue is through decision support tools, pre-
senting relevant information and suggesting optimal
treatment options. However, type B variations, which are
variations arising from the personalization and art of clinical
medicine, need to be acknowledged and incorporated when
developing and deploying AI tools. AI tools should be flexible
and adjustable, giving physicians the space to use their
clinical judgment and expertise. It is through this recogni-
tion of type B variations that trust can be fostered between
physicians and AI tools, encouraging a collaborative rela-
tionship that promotes shared decision making. Creating AI
tools that do not attempt to replace human expertise but

work alongside it will ensure patient-centered care that
respects the individuality of physician practices.

Additional challenges to achieving the promises of AI for the
RTworkflowwere discussed byDr Ceferino Obcemea from the
NCI, including the acceptability of performance failures in
critical safety domains, data leakage and reproducibility,40

and a need for more explainable methods and uncertainty
quantification. In addition, individual performance metrics
such as area under the curve41 and accuracy42 are not sufficient
to comprehensively evaluate a clinical AI application. The best
statistical analysis depends on the data, its distribution, and
model end use. Multiple complementary statistical analyses
are needed to understand model uncertainty and perfor-
mance.43 Multidisciplinary collaboration between clinicians,
computer scientists, experts in human-computer interaction,
and statisticians will be needed for the effective, safe, and
trustworthy integration of AI into RT workflows.

RADIOTHERANOSTICS

Radiotheranostics, the use of a cancer-seeking ligand that
can incorporate radionuclides suitable for imaging or
therapy, is an expanding branch of cancer medicine. Because
therapeutic radiopharmaceuticals (and/or their companion
diagnostics) have imageable radioactive emissions, it is
possible to track uptake and clearance kinetics in tumor sites
and organs at risk in individual patients. Although person-
alized dosimetry, with prescribed radiation dose deposition
in tumor planned within normal organ constraints, is the
norm with brachytherapy and external-beam RT, Dr Daniel
Pryma from the University of Pennsylvania explained that it
is unclear whether that approach is optimal with therapeutic
radiopharmaceuticals. Accurate dosimetry aswell as a dearth
of data to support a benefit of personalized dose selection
remains a challenge. The benefits of population-based dose
selection were reviewed.

Conversely, Dr Katherine Vallis from Oxford University
discussed that reports indicate a clear link between tumor
radiation absorbed dose and likelihood of response,
strengthening the drive toward individualized dosing.44

Personalized dosimetry, however, requires serial scan ac-
quisitions to allow tumor and normal organ cumulative dose
calculations, a process that is resource-intensive and costly.
Recent AI innovations have the potential to accelerate the
dosimetry workflow, making it less onerous and reducing
the need for user intervention.45 Current efforts are aimed at
developing models that use pretreatment images to predict
therapy dosimetry, which would eliminate the need for
multiple post-treatment imaging sessions. Because the
number of patients currently treated with this radio-
theranostics is relatively small, intercenter cooperation and
harmonization of clinical protocols will be necessary to
enable sufficiently large data sets formodel training. Finally,
a call to arms was issued to the informatics community to
help reduce the technical burdens of dose personalization
and improve the accuracy and reproducibility with the hope
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that in the future, trials could rigorously test the effects of
dose personalization on patient outcomes.

DATA STANDARDS

Data standards for oncology are key to achieving the full
promise of AI and were a running theme throughout the
symposium. Interoperability and creating representative data
sets present considerable challenges that must be addressed
before AI can be implemented into routine cancer care. May
Terry from the MITRE Corporation led a workshop on the
minimum Common Data Elements (mCODE),61 which is a
consensus-driven standard on the basis of the Health Level 7
(HL7) Fast Healthcare Interoperability Resources (FHIR)
specification.46 mCODE comprises a core set of data elements
needed to care for every patient with cancer. Through the HL7
CodeX FHIR Accelerator, a member-driven and collaborative
community, mCODE is tested and piloted in real-world use
cases such as clinical trial matching, radiation oncology,
previous authorization, cancer registry reporting, and geno-
mics data exchange. This community-driven standardization
of oncology data facilitates the capture and exchange of
high-quality and interoperable oncology data that are es-
sential for deriving insights and improving clinical outcomes.

The ASTRO Clinical Affairs and Quality Council has been
actively supporting cross-sector initiatives such as mCODE
andCodeX.47 CodeXuse cases are currently basic, day-to-day
focused, but the standards that result from these initiatives
will lay critical foundations for an AI-ready informatics
radiation oncology ecosystem.

Of note, since the symposium, the American Association of
Physicists in Medicine developed the Operation Ontology for
Oncology (O3), which is a standardized ontology for clinical
data, social determinants ofhealth, andotherRTconcepts and
relations.48 O3 extends and is interoperable with existing data
standards, and was developed to address quality, safety, ac-
creditation, billing, and research needs in radiation oncology.
Taken together, these efforts will facilitate the collection and
sharing of findability, accessibility, interoperability, and re-
usability (FAIR) data to enable research.

Dr Jill Barnholtz-Sloan and Dr Umit Topaloglu of the NCI
discussed national efforts in data standards. To minimize
bias and improve fairness at the data level, NCI is focusing
on data availability, quality, and conformance as well as
multisite data harmonization by investing heavily on se-
mantic infrastructure. Existing ontologies and terminologies
define cancer-related concepts and their relationships,
which help with reasoning and semantic query. The NCI
semantics team is currently focused on establishing a
graph representation of the cancer-specific ontologies to
form knowledge graphs that can be consumed by many AI
methods and other informatics approaches. Similarly,more
than 70,000 Common Data Elements (CDEs) with Clinical
Data Interchange Standards Consortium49 terminology an-
notations are being used by NCI-sponsored studies and

clinical trials. CDEs improve data quality and completeness as
well as enable data interoperability. Additionally, in coordi-
nation with National Center for Advancing Translational
Sciences, US Food and Drug Administration (FDA), and Office
of the National Coordinator (ONC), NCI facilitates common
datamodelmapping and harmonization efforts that use FHIR
and Biomedical Research Integrated Domain Group50,51

models for harmonization and registers models with the
cancer Data Standards Repository as a service. Such services
enable interoperability across four common data models and
provide a single querying platform for cancer research.

INFORMATICS INFRASTRUCTURES

A learning health system will require enhanced and new data
science infrastructures at the local and national levels. For
example, Drs David Jaffray and Caroline Chung from M.C.
Anderson Cancer Center discussed challenges to successful
implementation of AI methods, including nongeneralizability
of models outside of populations they were trained on, poor
reproducibility because of a lack of standardized data ac-
quisition, and performance drift where models degrade over
time. Because data collection and health care practices are
constantly evolving in real-world clinical environments, there
is a need to monitor algorithms in an ongoing fashion. In
addition, the community would benefit from demonstrating
the impact of AI methods on survival and other patient-
centered outcomes. New organizational frameworks for co-
ordinated and standardized data andmeta-data collection, as
well as lifecycle algorithm management that adhere to reg-
ulatory guidelines, will hasten the clinical translation of safe,
effective, and impactful AI decision support algorithms.

Drs Barnholtz-Sloan and Umit Topaloglu presented on in-
frastructure efforts at the national level. With the Cancer
Moonshot Blue Ribbon Panel,52 Health and Human Services
(HHS) Priorities,53 and the new National Cancer Plan54 all
recommending that a National Cancer Data Ecosystem be
built and sustained, the Center for Biomedical Informatics
and Information Technology at the NCI has built a foun-
dation for this Ecosystem with the Cancer Research Data
Commons (CRDC).55 The vision for the National Cancer Data
Ecosystem includes increased collection and use of data
by implementing plans for access, search, and retrieval of
multimodal data sets to break down silos and expand data
sharing for maximal impact on cancer care and prevention.
The CRDC provides the cancer research community with
state-of-the-art analysis and interoperability tools in a
flexible cloud-based computational environment. The
CRDC currently offers genomic, proteomic, imaging, and
canine/human comparison data as well as many specialized
data sets via the Cancer Data Service.56 Coming soon to the
CRDC will be data from NCI-sponsored clinical trials and
population science study data. In addition, the NCI is working
on plans for a new Cancer Data Science Hub, which will allow
for ease of data submission, will increase the variety of data
within the CRDC, and create intuitive, easy-to-use search and
analysis tools.
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Next, informatics leaders presented on a range of infor-
matics and data shared resources at NCI Cancer Center
Support Grant (CCSG) Comprehensive Cancer Centers. Isaac
Hands from the University of Kentucky, Markey Cancer
Center, described how the Markey Cancer Research Infor-
matics Shared Resource Facility (CRI) is building a cancer
research data commons to address the cancer burden in
central Appalachia on the basis of a Local Data Commons
architecture.57 The central region of Appalachia, made up
primarily of counties in Kentucky and West Virginia, has
some of the highest cancer incidence and mortality in the
United States.58 Some studies have suggested differences in
the genetics of patients with cancer in Appalachia versus the
rest of the United States,59 but have been limited to relatively
small samples of patients and require an analysis of larger
populations in Appalachia. The Markey Cancer Center in-
formatics effort hopes to help answer questions about why
the Appalachian population bears a higher burden of cancer
than other parts of the United States—the first focused on
Appalachian patients with cancer. The central Appalachian
data commons currently hosts population-based registry
data on more than 739,000 patients with cancer from the
SEER Kentucky Cancer Registry, pathology reports frommore
than 50 regional laboratories, and more than 7,000 genomic
sequencing results linked to the patients in the registry. The
central Appalachian data commons uses a custom instance of
the cBioportal60 genomics discovery platform to provide a
user-friendly cohort discovery and data exploration tool for
researchers to identify cohorts of interest. Once a cohort has
been identified, CRI will review requests for enhanced data
sets as part of a data governance process that protects patient
privacy while allowing access to critical raw data elements.
Researchers can find more information on the CRI website.62

Other topics discussed included clinical pathways in precision
medicine and applied AI and data science at City of Hope
Comprehensive Cancer Center (Dr Deron Johnson and Nasim
Eftekhari from City of Hope) and Cancer Center CCSG IT
support (Dr Michael Townsend from The James Compre-
hensive Cancer Center at Ohio State).

In addition to these efforts at health care institutions and
government, industry partnerships may also support the
expanding informatics needs in clinical medicine. An in-
dustry keynote fromDNAnexus by Drs Kristy Cloyd-Warwick
and Sam Westreich, presenting on work performed with
City of Hope’s Samir Courdy, described how POSEIDON,
which is an enterprise-wide data and analytics platform
ready to power the AI precision medicine revolution, has
been established at City of Hope to support AI exploration
and utilization. Built on DNAnexus with custom features
and functionality created by City of Hope Research Infor-
matics, POSEIDON unifies imaging, imaging metadata, and

comprehensive germline and somatic genomic profiling for
nearly 700,000 patients. POSEIDON addresses traditional
real-world data challenges upstream.With DNAnexus as its
foundation, POSEIDON has industry-leading security, ac-
cess control, and governance features at its core; a flexible,
scalable infrastructure that can speed through complex
workflows; and an intuitive interface that is accessible to all
user types. On top of this foundation, City of Hope has built
powerful data harmonization and interoperability features
that allow researchers and clinicians to extract tremendous
value from the intersection of multimodal real-world data,
enabling AI exploration and utilization. POSEIDON was built
with radiation oncology use cases in mind, acknowledging
the high volume of data associated with this highly tech-
nical field.

Ian Maurer from GenomOncology presented an industry
keynote on GenomOncology’s Precision Oncology Platform,
which is an expert-curated, ontology- and rules-based
knowledge base that can complement and expand the
abilities of generative large languagemodels. In the context of
medical question answering, GenomOncology’s ChatGPT
plugin enables the language model to support biomarker
annotation, interpretation, and clinical trial or therapy
matching. The plugin also ensures the accuracy and relevance
of answers by validating URLs, PubMed IDs, and monitoring
new developments such as FDA Fast Track status and clinical
trial recruiting statuses. For data extraction, GenomOncology’s
optical character recognition solution supports various for-
mats, including scans and faxes, enabling the extraction of data
from complex documents such as next-generation sequencing
and pathology reports, and semantically linking the data to
standard ontologies to ensure interoperability.

In conclusion, radiation oncology uses diverse data types,
including but not limited to clinical EHR data, radiologic
images, pathology, genomics, RT tumor and normal tissue
structures, and dosemaps—all of which are often dynamic
over time. These data must be collected and curated
thoughtfully and equitably for AI-based analyses to offer
meaningful and reproducible insights into cancer care.
The cancer informatics community has a wealth of ex-
pertise in managing such data and will take a leading role
in ensuring the effective and safe transition into a new era
of data-driven health care. As highlighted throughout this
symposium, our community has created, and continues to
build, shared resources and data standards toward this
goal. Institutions should adopt these as soon as possible so
that clinical data can be reliably used for advanced AI
analysis, and informaticians should partner with clinical
researchers, cancer clinicians, and patients to codevelop
AI technologies that usher in a new era in cancer care.
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