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Abstract

The transmembrane glycoprotein adhesion molecule CD146 is overexpressed in a wide variety of 

cancers. Through molecular imaging, a specific biomarker’s expression and distribution can be 

viewed in vivo non-invasively. Radionuclide-labeled monoclonal antibodies or relevant fragments 

that target CD146 may find potential applications in cancer imaging, thereby offering tremendous 

value in cancer diagnosis, staging, prognosis evaluation, and prediction of drug resistance. This 

review discusses the recent developments of CD146-targeted molecular imaging via nuclear 

medicine, especially in malignant melanoma, brain tumor, lung cancer, liver cancer, breast cancer, 

and pancreatic cancer. Many studies have proved that CD146 targeting may present a promising 

strategy for cancer theranostics.

Graphical Abstract

Radionuclide-labeled monoclonal antibodies or relevant fragments that target CD146 may find 

potential applications in cancer imaging, thereby offering tremendous value in cancer diagnosis, 

staging, prognosis evaluation, and prediction of drug resistance. This review discusses the 

recent developments of CD146-targeted molecular imaging via nuclear medicine, especially in 

malignant melanoma, brain tumor, lung cancer, liver cancer, breast cancer, and pancreatic cancer. 

Many studies have proved that CD146 targeting may present a promising strategy for cancer 

theranostics.

The transmembrane glycoprotein adhesion molecule CD146 is overexpressed in a wide variety 

of cancers. CD146 expression constitutes a marker of poor prognosis and correlates with cancer 

progression. Through molecular imaging, a specific biomarker's expression and distribution can be 
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viewed in vivo non-invasively. Radionuclide-labeled monoclonal antibodies or relevant fragments 

that target CD146 may find potential applications in cancer imaging, thereby offering tremendous 

value in cancer diagnosis, staging, prognosis evaluation, and prediction of drug resistance. This 

review discusses the recent developments of CD146-targeted molecular imaging via nuclear 

medicine, especially in malignant melanoma, brain tumor, lung cancer, liver cancer, breast cancer, 

and pancreatic cancer. Many studies have proved that CD146 targeting may present a promising 

strategy for cancer theranostics.
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A cluster of differentiation 146 (CD146), also known as MUC18 or melanoma adhesion 

molecule (MCAM), was first identified in melanoma in 1987[1]. CD146-coded gene resides 

in subband 3 of long-arm region 2 of human chromosome 11 (11q23.3)[2]. The CD146 

glycoprotein adhesion molecule has a molecular weight of 113 kDa and is transmembrane in 

nature[3]. There is an important role for CD146 protein in regulating vascular permeability, 

cell adhesion, leukocyte migration, angiogenesis, and epithelial-mesenchymal transition 

(EMT)[4]. EMT cells undergo significant morphological changes as epithelial cell adhesion 

molecules are reduced in expression. As a result, when these cells infiltrate blood vessels, 

they develop into circulating tumor cells with invasion and migration abilities[5]. CD146 

can also up-regulate the expression levels of CD31 and vascular endothelial growth factor 

(VEGF), thus promoting tumor angiogenesis and metastasis[6]. A high CD146 expression 

level in different types of cancer is associated with poor prognosis and progression of 

cancer[5a, 7]. In recent years, a number of studies have found that CD146 is overexpressed 

in many types of cancer, including melanoma, breast cancer, liver cancer, lung cancer, 

pancreatic cancer, prostate cancer, ovarian cancer, and kidney cancer among others. This 

finding highlights the crucial role of CD146 in cancer development and metastasis.

Molecular imaging technology combines molecular biology with in vivo imaging to reflect 

the changes in physiological and pathological functions, as well as the expression and 

distribution of a specific molecule at the molecular, cellular, and organ levels. Molecular 

imaging based on nuclear medicine is a reproducible, safe, and non-invasive in vivo 
evaluation technique, which has been widely used for diagnosing, staging, predicting 

prognosis, and evaluating the efficacy of various cancer treatments [8]. In nuclear medicine, 

radiotracers are combinations of radioactive atoms and chemicals that target metabolic 

processes. These radionuclide images are created using positron emission tomography (PET) 

or single photon emission computed tomography (SPECT), usually in conjunction with a CT 

scan. ImmunoPET imaging takes advantages of PET’s high sensitivity and antibody’s high 

affinity and specificity to achieve non-invasive evaluation of targeted antigens in vivo[9]. 

In the following sections, we will review the applications of CD146-targeted molecular 

imaging and nuclide therapy using nuclear medicine in common cancers, to find more 

evidence to confirm the application prospect and value of radionuclide-labeled monoclonal 

antibodies targeting CD146 or its fragments in tumor imaging.
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1. Molecular mechanism of CD146 in cancer

CD146 is necessary for VEGF-induced VEGFR-2 phosphorylation and AKT/p38 mitogen-

activated protein kinases (MAPKs) activation, in order to promote endothelial cell migration 

and the formation of microvessels (Figure 1)[10]. CD146 proteins regulate pro-angiogenic 

genes like interleukin-8 (IL-8), intercellular cell adhesion molecule-1 (ICAM-1), and 

matrix metallopeptidase 9 (MMP9) when activated by tumor secretions[11]. CD146 binds 

to Wnt5a activating the c-Jun N-terminal kinase-planar cell polarity (JNK-PCP) pathway 

and downregulating the expression of β-catenin [12]. In addition, by binding directly to 

Wnt1, CD146 activates fibroblasts via the canonical Wnt/β-catenin pathway. Proliferation 

of fibroblasts and production of extracellular matrix are inextricably linked to this 

interaction[13]. By silencing or deleting CD146, HUVEC proliferation, migration, and 

tube formation is inhibited, as is VEGFR2, p38, and extracellular regulated extracellular 

regulated protein kinases 1/2 (ERK 1/2)[14]. Synergistic effect of fibroblast growth 

factors (FGF) signaling-dependent ERK activation and CD146-dependent JNK and nuclear 

factor of activated T cells (NFAT) activation ensure that CD146+ cells simultaneously 

upregulate AP-1 and NFAT transcription during organ morphogenesis[15]. CD146 protein 

is essential for E-cadherin-to-N-cadherin switch during transforming growth factor-β (TGF-

β) signaling-induced EMT[16]. A heterophilic ligand interacts with CD146 to mediate 

homotypic cell adhesion[17].

CD146 is overexpressed in many types of cancer, including melanoma, brain tumor, lung 

cancer, hepatocellular carcinoma, breast cancer, renal cell carcinoma, pancreatic cancer, 

prostate cancer, gastrointestinal cancer, uterine and adnexal tumors, and other cancer types. 

Many studies on the mechanism of CD146 in cancer have been carried out.

1.1 Melanoma

CD146 is frequently found to overexpress on the surface of metastatic and advanced 

human melanoma cells[18]. In response to VEGF, CD146 deficiency alters the activation 

of focal adhesion kinase (FAK) and decreases the expression of VEGFR-2/Ve-cadherin[19]. 

The VEGF-induced pathway and tumor angiogenesis are both impaired in CD146 

knockout mice, resulting in the inhibition of VEGF-induced VEGFR-2 phosphorylation 

and AKT/p38 MAPKs/nuclear factor kappa-B (NF-κB) activation[20]. Malignant melanoma 

is promoted by CD146, a novel receptor for S100A8/A9, by activating NF-κB and 

forming ROS[18]. Since CD146 is involved in the regulation of inhibitor of DNA 

binding-1 (Id-1) and activating transcription factor-3 (ATF-3) expressions, it therefore 

contributes to the development of melanoma metastases[21]. Invasion and metastasis 

are putatively mediated by laminin-421, which is a primary ligand for CD146[22]. By 

activating the platelet-activating factor receptor (PAFR), protease-activated receptor 1 

(PAR1) mediates the expression of CD146. In addition to mediating the adhesion of 

melanoma cells to microvascular endothelial cells, the PAR1-PAFR-MUC18 pathway also 

modulates transendothelial migration and metastatic retention of melanoma cells[23]. β−1,3-

Galactosyl- O-Glycosyl-Glycoprotein β−1,6- N-Acetylglucosaminyltransferase 3 (GCNT3) 

is an upstream regulator of CD146 protein. A novel S100A8/A9 receptor, GCNT3, favorably 

glycosylates the MCAM receptor and extends its half-life in melanoma cells, further 
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increasing S100A8/A9-mediated cellular motility[24]. Endothelins upregulate CD146 in 

an AKT and ERK/MEK-dependent, but CREB-independent manner, thus promoting the 

invasion and metastasis of melanoma[25].

1.2 Brain tumor

There is a high expression of CD146 in glioma stem cells by regulating the cell 

cycle. Most differentiated cells in the G0/G1 phase are arrested in the cell cycle 

when CD146 is expressed ectopically in parental glioma cells[26]. CD146 expression is 

statistically significant correlated with lower disease-free survival and overall survival in 

glioblastomas[27].

1.3 Lung cancer

Poor prognosis is associated with CD146 expression in surgically treated non-small-cell 

lung cancer (NSCLC)[28]. The expression of EMT markers (i.e., epithelial cadherin, 

vimentin, and snail) is influenced by CD146, as well as the phosphorylation of AKT. 

Thus, the migration and proliferation of pulmonary large cell neuroendocrine carcinoma 

cells may be regulated by CD146[29]. Stemness and migration of epidermal growth factor 

receptor-tyrosine kinase inhibitors-resistant (EGFR-TKI-resistant) cells are influenced by 

CD146. Therefore, CD146 can be a potential target for treating and preventing lung 

cancers which are resistant to EGFR-TKIs and their subsequent metastases[30]. As a result 

of CD146-mediated chemosensitivity, mitochondrial 37S ribosomal protein 1/ATP-binding 

cassette subfamily C member 1 (MRP1/ABCC1) and the PI3K pathway are upregulated 

through SOX2-dependent signaling[31].

1.4 Hepatocellular carcinoma (HCC)

CD146 is highly elevated in HCC cells as a result of positive regulation by Yes-associated 

protein. The transcriptional and translational activities of c-Jun/c-Fos are initiated by 

CD146. In addition, eukaryotic initiation factor 4E is bound to c-Jun/c-Fos mRNA through 

AKT activation, which is promoted by CD146[32]. HCC patients with CD146 are at a 

high risk of metastasis and a poor prognosis. It is possible that CD146-induced EMT, IL-8 

upregulation, and STAT1 downregulation contribute to EMT, but further investigation is 

required to determine the exact mechanism[33]. Cluster of differentiation 166 (CD166) and 

CD146 are both important to maintain the transformative phenotype of HCC cells. CD166 

positively regulates CD146 by inhibiting ubiquitin E3 ligases Smurf1 and β-transducin 

repeats-containing proteins through PI3K/AKT and c-Raf/MEK/ERK signaling in HCC 

cells[34].

1.5 Breast cancer

EMT in breast cancer is associated with CD146. In breast cancer, CD146 has also 

been linked to poor prognosis and tumor aggressiveness. Moreover, in receptor-specific 

negative breast cancer subtypes, such as triple-negative breast cancer (TNBC), CD146 

is associated with tumors of higher grade and poorer prognosis. On the other hand, 

CD146 downregulation is associated with less aggressive phenotypes[35]. During breast 

cancer progression, aberrant promoter methylation may control CD146 gene expression[36]. 
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S100A8/A9 binds to CD146 and accelerates breast cancer growth and metastasis. A novel 

transcription factor regulated by S100A8/A9-CD146 has been identified as ETV4. Breast 

cancer metastases are facilitated by CD146-mediated ETV4 activation through upregulation 

of ZEB1[37]. Through phospholipase D1, GTPases of the Ral family regulate multi-vesicular 

body homeostasis while tuning the biogenesis and secretion of pro-metastatic cancer 

extracellular vehicles (EVs). CD146 levels in EVs are reduced by RalA and RalB, enabling 

EVs to target the lungs and develop metastatic lesions there. RalA, RalB, and CD146 are 

indicators of poor prognosis in breast cancer patients[38]. Notch1 positively associates with 

CD146. Patients with basal-like/TNBC and high levels of Notch1 as well as CD146 have 

poor survival, particularly if they have received chemotherapy[39].

Interestingly, CD146 also acts as a tumor suppressor in breast carcinoma. Breast carcinomas 

rarely express CD146, but overexpression results in more cohesive cell growth and smaller 

tumors in nude mice[40]. CD146 suppresses breast cancer progression by targeting the 

CD44-downstream signaling pathway that regulates neovascularization and cancer cell 

motility[41]. SM3A regulates neuronilin-1-mediated PTEN-dependent FOXO 3a activation, 

which stimulates CD146 expression and suppresses breast cancer growth[42]. CD146 

promotes tamoxifen resistance in breast cancer cells by causing EMT, reducing ER 

expression, and triggering AKT[43].

1.6 Renal cell carcinoma (RCC)

Clear cell RCC (ccRCC) patients exhibiting CD146 overexpression have poor prognoses. 

CD146 can be an independent prognostic factor. Among the co-expressed genes of CD146 

are those related to differentiation of Th1 and Th2 cells, differentiation of Th17 cells, and 

migration of leukocytes across endothelium. Immune infiltration, immunomodulators, and 

chemokines are strongly correlated with the expression and methylation status of CD146. 

Furthermore, CD146 expression is linked to the sensitivity and resistance of renal cancer 

cell lines to certain drugs[44]. The expression level of CD146 gene can serve as an indicator 

for disease recurrence in cystic RCC (cRCC)[45]. Compared with other cancers and healthy 

tissues, the increased expression of CD146 in ccRCC vessels may be related to the induction 

of VEGF[46]. Wnt/β-catenin signaling is activated by insulin-like growth factor binding 

protein 4 (IGFBP-4), which induces CD146 expression in human RCC cells[47].

1.7 Pancreatic cancer

Pancreatic cancer progression is facilitated by a decrease in CD146 expression in cancer-

associated fibroblasts (CAFs)[48]. Pancreatic cancer cells migrate in vitro more readily when 

they interact with the enhancer-DNA of CD146 and the myeloid ecotropic viral integration 

site (MEIS)[49]. There is a subset of CD34+ cells that express endothelial cell markers, 

such as CD146, when they differentiate. Angiogenesis-mediated tumor metastasis is further 

enhanced by the presence of the latter cell type in newly formed vessels[50].

1.8 Prostate cancer

Hypermethylation of the CD146 gene is often found in advanced prostate cancer[51]. 

Prostate cancer malignancy is associated with a lack of predominant cytoplasmic membrane 

expression of CD146[52]. A human prostate cancer cell with ectopic expression of CD146 
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is more likely to metastasize[53]. In vivo, increased expression of CD146 stimulates 

prostate tumorigenesis by promoting proliferation, activating the AKT survival pathway, 

and increasing prostate cancer’s angiogenic ability[6].

1.9 Gastrointestinal cancer

Activation of CD146 results in loss of E-cadherin and the increase in nuclear β-catenin and 

vimentin expression in mesenchymal cells. A poor prognosis may be associated with CD146 

in gastric cancer because it may promote EMT and progression[54]. SRY-box transcription 

factor 18 (SOX18) triggers gastric cancer metastasis through the activation of CD146 and 

CCL7[55].

CD146 expression is correlated with histological grade, Duke’s stage, and liver metastasis. It 

is possible that CD146 is a biomarker for the postoperative liver metastases[56]. CAFs play 

an important role in colorectal cancer (CRC) progression, and their presence indicates poor 

prognosis in CRC patients. Pericryptal Lepr-lineage cells proliferate to generate CD146+ 

CAFs, which act as tumor-promoting immune cells in colorectal cancer. Mechanistically, 

CD146 enhances NF-κB-IL34/CCL8 signaling to promote macrophage chemotaxis when 

it interacts with interleukin-1 receptor 1[57]. A study has found that cancer stemness and 

tumorigenesis are promoted by the reduction of CD146 expression in colorectal cancer[58]. 

By regulating SPDL1 and CD146, myocardin-related transcription factor B (MRTFB) 

suppresses colorectal cancer development[59].

1.10 Uterine and adnexal tumors

CD146 is overexpressed in ovarian cancer[60]. The presence of CD146 may indicate 

ovarian carcinomas’ malignant potential. Increased signaling in anti-apoptosis, proliferation, 

survival pathways, and angiogenesis may be associated with ovarian cancer progression[61]. 

In serious ovarian carcinomas and epithelial ovarian cancers, CD146 expression is an 

independent prognostic factor for survival[62]. In ovarian cancer cells, CD146 protects 

them from apoptosis and promotes their invasion and metastasis by regulating the Rho 

signaling pathway[63]. Through a reduction in proliferation, aerobic glycolysis (metabolism) 

and angiogenesis, CD146 may suppress in vivo tumorigenesis and malignant progression 

of ovarian carcinoma cells, likely through the suppression of the PI3K-AKT signaling 

pathway[64]. A positive and significant correlation exists between CD146 expression and 

the pathological subtype of cervical cancer, as well as the degree of myometrial invasion 

in endometrial cancer. Cervical and endometrial cancers contain CD146 in the majority of 

blood vessels, suggesting that CD146 facilitates the metastasis of these cancers through the 

blood vessels[65].

1.11 Other cancer types

As nasopharyngeal carcinoma (NPC) develops, CD146 expression is reduced, but increased 

expression is necessary for metastatic growth This suggests that CD146 can act as both a 

tumor suppressor like TGF-β as well as a metastasis promoter for NPC[66]. A knockdown 

of CD146 with short hairpin RNA or treatment with an anti-CD146 polyclonal antibody 

can effectively inhibit neuroblastoma cell growth. They are halted by increased apoptosis 
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via focal adhesion kinase and/or nuclear factor-kappa B signaling[67]. CD146 promotes 

osteosarcoma (OS) progression by mediating pro-tumoral and angiogenic effects[68].

The expression of CD146 is related to many transcription factors. Most mechanism of 

CD146 in tumor depends on AKT and ERK pathways, which mediate the adhesion of 

tumor cells to microvascular endothelial cells and promote metastasis. In addition, CD146 

is associated with the cell cycle of tumor cells and drug resistance, even the mechanism is 

not particularly clear. Interestingly, a dual role of CD146 has been found in some tumors, 

for example, CD146 acts as both tumor suppressor like TGF-β and a metastasis promoter in 

breast cancer and nasopharyngeal carcinoma[66]. In short, the mechanism of CD146 needs 

more investigation.

2. CD146-targeted nuclear medicine imaging

At present, CD146 targeted imaging is based on immunoPET by using radiolabeled CD146-

targeted antibodies, including anti-CD146 monoclonal antibody (mAb), F(ab’)2 fragment, 

and scFv. Following standard procedures, antibodies are conjugated with appropriate 

chelating agents and radiolabeled with radionuclides. Serial PET/CT or SPECT/CT imaging 

is then performed in tumor models[35]. CD146 expression has been assessed via imaging in 

malignant melanoma, brain tumor, lung cancer, hepatocellular carcinoma, and breast cancer 

among other cancer types (Figure 2).

2.1 Breast cancer

Breast cancer accounts for the highest morbidity and the second highest cancer mortality 

in women[72]. Breast cancer patients with CD146 positive disease have a poor prognosis, 

especially if they have high-grade, estrogen receptor (ER) negative, progesterone receptor 

(PR) negative, and/or TNBC[73]. Moreover, CD146 is overexpressed in about 63.9% 

of TNBC patients [74]. Patients with primary breast cancer that overexpresses CD146 

have significantly reduced overall survival, relapse-free survival, and distant metastasis-

free survival[75]. Therefore, by evaluating the difference in expression of CD146, breast 

cancer can be diagnosed, staged, prognosticated, efficaciously evaluated, and drug-resistant 

evaluated.

Ferreira et al.[76] labeled YY146 with manganese-52 (52Mn) radionuclide to construct a 

radiotracer 52Mn-DOTA-YY146 (Figure 3A). In MDA-MB-435 tumor model, the uptake 

of 52Mn-DOTA-YY146 increased gradually over time. On the other hand, the uptake 

was low in MCF-7 tumor due to the low expression of CD146. Li et al.[77] performed 

immunoPET imaging after administering 64Cu-NOTA-YY146 in an orthotopic breast cancer 

model. A maximum uptake of 14.7 ± 1.75 %ID/g was observed in MDA-MB-435 tumor 

model. This value was comparable to the MCF-7 group but was statistically significantly 

different from the non-specific 64Cu-NOTA-IgG control groups (P < 0.001). Furthermore, 

the uptake of 64Cu-NOTA-YY146 in the MDA-MB-435 lung metastatic tumor group was 

significantly higher than the MCF-7 tumor group (P < 0.001, Figure 3A). This indicates 

that the tumor uptake of YY146 is closely related to the expression level of CD146 in 

orthotopic, subcutaneous, and metastatic breast cancer models. YY146 can also be used as 

an immunoPET probe to non-invasively assess the distribution and expression of CD146. 
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Thus, CD146-targeted imaging may provide benefits in clinical diagnosis, staging, prognosis 

prediction, and drug resistance assessment of breast cancer. It may also advance the clinical 

development of individualized treatment plans.

2.2 Malignant melanoma

Malignant melanoma (MM) is a tumor produced by melanocytes and occurs mostly 

on the skin. CD146 was first found in melanoma cells. While CD146 is considered a 

marker of MM, it is generally not expressed in benign moles [79]. Therapeutic or imaging 

agents targeting CD146 may have higher specificity, lower toxicity, and better therapeutic 

efficacy than current conventional treatment modalities. Nollet et al.[1] developed antibodies 

that recognize the extracellular domain of CD146 and evaluated their ability to identify 

CD146 expressing cancer cells. These antibodies are known as TsCD146 mAbs (antiCD146 

monoclonal antibodies) and Fab’2 fragments from TsCD146 mAb coupled with gallium-68 

(68Ga). From the study, PET imaging of nude mice injected with 68Ga Fab’2-TsCD146 

showed that the tumor could be visualized with radiolabeled Fab’2 fragments (Figure 3B). 

As compared with the IgG control group, the size of the tumor in the treatment group was 

significantly reduced by 50% after 46 days post injection. This finding suggests that the 

antibody fragments not only facilitate immunoPET imaging, but also exert some therapeutic 

effects. It is possible for cancer cells to release microparticles into the bloodstream of 

patients, and these microparticles contain many proteins from the mother cells. The authors 

found that this probe could detect CD146-positive tumor particles in the plasma of MM 

patients. The number of CD146-positive particles was also significantly higher in MM 

patients, and thus the new antibody could be used to detect CD146-positive tumors through 

liquid biopsies, a minimally invasive procedure that has gained a lot of attention in 

the clinical field. Wei et al.[69] generated a radiotracer (89Zr-DFO-YY146) by coupling 

anti-CD146 mAb (YY146) with zirconium-89 (89Zr) radionuclide using the deferoxamine 

(DFO) chelator. ImmunoPET imaging was performed on MM, and after 72 h, radiotracer 

uptake was obvious in CD146 overexpressing MM lesions with a statistically significant 

difference compared to the non-specific imaging agent 89Zr-DFO-IgG (P < 0.01). This 

finding demonstrates that PET imaging of 89Zr-DFO-YY146 can be used to assess the 

CD146 status in MM. All of the above studies indicate that CD146, as a targeting marker, 

can greatly improve the clinical management of MM.

2.3 Brain Tumor

According to the World Health Organization (WHO), glioblastoma (GBM) is the most 

common primary malignancy of the central nervous system (CNS) and has a median 

survival time of only 8 months [80]. Researchers have recently discovered that CD146 is 

overexpressed in high-grade gliomas and thus may serve as a viable therapeutic target.

Hernandez et al.[81] evaluated CD146 targeting in vivo using immunoPET imaging agent 
89Zr-DFO-YY146 in athymic nude mice bearing subcutaneous U87MG or U251 tumors. 

In CD146-overexpressing U87MG mice, 89Zr-DFO-YY146 showed persistent tumor uptake 

with high specificity. A peak tumor uptake was achieved at 48 h after imaging agent 

injection. This result was statistically significantly different from the U251 mouse tumor 

model that has low CD146 expression (P < 0.05). In CD146 blocking experiments with 
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U87MG-bearing mice, the authors corroborated that 89Zr-DFO-YY146 is highly specific 

toward CD146 expressing cells. Their results also validated the accuracy of PET imaging 

data. The tumor uptake values declined significantly in U87MG-bearing mice given YY146 

at 50 mg/kg (P < 0.05). Since macromolecules cannot cross an intact blood-brain barrier 

(BBB), the effectiveness of antibody-based imaging and treatment in some brain diseases is 

greatly reduced. However, due to a disrupted BBB in GBM, copper-64 (64Cu) radionuclides 

coupled with 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA)-labeled YY146 (64Cu-

NOTA-YY146) could pass through and accumulate persistently in U87MG tumors. A peak 

tumor uptake was reached at 48 h after injection of the imaging agent. Comparing with 

U87MG tumors, CD146-negative U251 tumors showed significantly lower tumor uptake (P 
< 0.001), while U87MG tumor uptake value was 37.3 times higher than surrounding normal 

brain tissue[27]. This demonstrates that radiotracer accumulation is highly associated with 

CD146 expression. Therefore, the expression level of CD146 in GBM can be evaluated 

noninvasively through immunoPET imaging.

2.4 Lung Cancer

Lung cancer has the second highest disease incidence (about 12.42%) and the highest 

mortality rate (about 21.67%) among all cancers [72]. More than 78% of patients have local 

or diffuse metastases at the time of initial diagnosis and most of them have a poor prognosis 
[28a]. To increase lung cancer survival rates, it is necessary to diagnose the disease early 

and treat it promptly. There is an urgent requirement for new approaches for early detection, 

staging, efficacy monitoring, and prognosis prediction of lung cancer. Several studies have 

reported that CD146 is closely related to the progression, metastasis, and prognosis of 

lung cancer[28, 31, 82]. Sun et al.[70] coupled YY146 with NOTA and radiolabeled with 
64Cu. ImmunoPET imaging of 64Cu-NOTA-YY146 was performed in six subcutaneous 

xenograft tumor models of lung cancer with differing CD146 expression levels (A549, 

NCI-H522, NCI-H358, HCC4006, H23, and NCI-H460). The results showed that 64Cu-

NOTA-YY146 has excellent targeting abilities and accumulates rapidly and persistently with 

high specificity toward CD146-expressing tumors. There was a positive correlation between 
64Cu-NOTA-YY146 tumor uptake and CD146 expression levels (r2 = 0.98, P < 0.01), with 

the highest uptake value of 20.1±2.86 %ID/g in the H460 model that has an overexpression 

of CD146 proteins. On the other hand, only 4.10±0.98 %ID/g was found in the H522 model, 

which has a low CD146 expression. Further development of 64Cu-NOTA-YY146 may allow 

for improved stratification of lung cancer patients and enhanced monitoring of therapeutic 

response. Malignant cells are known to acquire metastatic potential and apoptotic resistance 

through EMT. Upon overexpression of CD146, epithelial markers are downregulated and 

mesenchymal markers are upregulated. CD146 has also been recognized as an ideal 

biomarker for lung cancer. By first performing in vitro assays, YY146 was determined to 

be well suited for CD146 immunoPET imaging in two models of intrapulmonary metastasis 

(H460 and H358) of non-small-cell lung cancer. Intrapulmonary metastases in the H460 

model showed rapid, sustained, and specific radiotracer uptake, while reaching a peak 

uptake value at 48 hours after agent injection. The uptake was approximately 13.85 ± 1.07 

%ID/g (n = 4), which was statistically significantly different from the control H358 model 

that exhibits a low CD146 expression (6.08 ± 0.73 %ID/g, P < 0.05)[83]. The above studies 

suggest that CD146-targeted immunoPET imaging not only non-invasively evaluates the 
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differential expression of CD146 in primary lung cancer, but also enables the early detection 

of intrapulmonary metastases.

2.5 Hepatocellular carcinoma

The most common primary malignant tumor of the liver in adults is hepatocellular 

carcinoma (HCC). HCC ranks as the fifth leading cause of cancer death among men (about 

6.34%) and seventh among women (about 3.52%)[84]. Metastasis and recurrence of HCC are 

the main causes of reduced patient survival, and around half of the patients diagnosed with 

advanced HCC cannot be resected or transplanted[85]. Previous research has shown that the 

expression of CD146 is significantly increased in liver cancer tissues and is an indicator of 

disease development, metastasis, and poor prognosis[86]. CD146 is a novel tumor marker for 

HCC and acts as a potential target for the diagnosis and treatment of HCC[32].

Hernandez et al.[71] constructed a radiotracer (89Zr-DFO-YY146) by conjugating 89Zr 

radionuclide to YY146 via the chelating agent DFO. After the administration of 89Zr-DFO-

YY146, a statistically significant difference was found among the CD146-overexpressing 

HepG2 subcutaneous graft tumor model, Huh7 tumor group, and HepG2 blocking or low 

CD146 expression group (P < 0.001). Therefore, CD146 is a suitable target for noninvasive 

diagnosis and evaluation of HCC.

AA98 mAb is a promising mAb that acts against CD146 and has inhibitory effects on 

angiogenesis and tumor growth. Zhou et al.[78] labeled AA98 with iodine-125 (125I) 

and injected intratumorally to treat HCC xenograft lesions. To evaluate the treatment 

efficacy of this radioligand, apoptosis-targeted imaging with 99mTc-HYNIC-duramycin and 

angiogenesis-targeted imaging with 99mTc-HYNIC-3PRGD2 were employed (Figure 3C). 

The high dose group (200 μCi 125I-AA98 mAb) demonstrated the highest relative inhibitory 

rates of tumor (69.5%) and apoptotic index (11.8 ± 3.8%), indicating the potential of 
125I-AA98 mAb to treat CD146-expressing HCC. In conclusion, CD146-targeted molecular 

imaging and therapy may bring tremendous value in the detection, prognosis prediction, and 

management of hepatic malignancies.

2.6 Other cancer types

This deadly disease occurs when the mesothelium, a protective layer surrounding most of 

the body’s internal organs, undergoes malignant transformation. Epithelioid mesothelioma, 

sarcomatoid mesothelioma, and mixed mesothelioma are the most common types. Studies of 

mesothelioma tissue microarrays revealed that CD146 is overexpressed in more than 80% 

of epithelioid and sarcomatous mesotheliomas, but not in normal mesothelium[87]. An et 

al.[88] selected several human scFvs from phage antibody libraries that are highly binding 

to the surface epitopes on mesothelioma cells that are clinically related to mesothelioma. 

They used technetium-99m (99mTc)-labeled anti-CD146 scFvs to detect tumor cells in 

mesothelioma organ xenografts in vivo using SPECT/CT. It was found that anti-CD146 M1 

scFv accumulates more readily in mesothelioma xenografts than the control scFv at a higher 

level than surrounding soft tissues, thus demonstrating the potential utility using noninvasive 

imaging and immunotherapy to treat specific diseases[87].

Yang et al. Page 10

View (Beijing). Author manuscript; available in PMC 2023 December 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CD146 has revealed distinguished performance in nuclear medicine imaging while many 

different forms of antibodies against CD146 have been studied (Table 1). To be consistent 

with the half-life of the whole antibody, most studies selected nuclides with relatively long 

half-lives, such as 52Mn, 64Cu, and 89Zr. However, some studies used 68Ga, which should 

be proper for Fab’2 fragments with a shorter half-life in the blood. Generally, the nuclide 

with a short half-life is more suitable for clinical use. Therefore, future research could tend 

to focus on antibody fragments using short half-life nuclides, whereas there are few studies 

about radionuclide therapy.

3. Concluding remarks and future directions

CD146 is overexpressed in a variety of malignancies and is closely associated with tumor 

aggressiveness, metastasis, poor prognosis, and drug resistance. CD146, therefore, is highly 

attractive for imaging and therapy of cancer. CD146-targeted mAbs or their fragments 

can be utilized in cancer immunoimaging to aid in the diagnosis, staging, and prognosis 

prediction of tumors, as well as provide a novel clinical imaging approach. CD146 is 

also a predictive marker of tumor angiogenesis. Consequently, CD146-targeted imaging has 

been explored to monitor the progression of angiogenesis reperfusion in vivo and track the 

recovery in mouse hindlimb ischemia models[89].

Some studies have used relatively long half-life nuclides to label antibodies targeted by 

CD146, including 89Zr, 64Cu, and 52Mn, which is consistent with the circulating time 

of antibodies in vivo. However, for clinical applications, short half-life nuclides and faster-

circulating antibody fragments seem to be more popular and promising. A study has labeled 

Fab’2 antibody fragment targeting CD146 with a shorter half-life nuclide 68Ga. Although 

the antibody fragment still has the defect of insufficient tumor accumulation, this suggests 

that we should make more improvements in the future.

In terms of cancer theranostic applications, YY146 labeled with therapeutic radionuclides, 

e.g., lutetium-177 (177Lu), may represent a novel treatment for patients who have developed 

tolerance toward conventional therapies. Our research group has used 177Lu labeled anti-

Trop2 and CD38-targeting monoclonal antibodies to treat pancreatic cancer and lymphoma, 

and confirmed that 177Lu-labeled antibodies have good efficacy in xenograft tumor models. 

Therefore, it is likely that 177Lu-labeled CD146-targeted antibody will also have good 

prospects but further studies should be performed[90]. Antibody-based imaging agents 

facilitate higher tumor uptake owing to their slow pharmacokinetics and long circulation 

time in vivo. On the other hand, the fast blood clearance of radiolabeled antibody fragments 

provides a better signal-to-noise ratio, resulting in higher quality images. The coupling of 

short half-life nucleophiles (e.g., 68Ga) necessitates same day immunoPET imaging, which 

may increase the likelihood for clinical implementation. Although current studies have been 

limited to small animal experiments, CD146 targeting proves to be a feasible strategy for 

cancer theranostics and holds great promise in furthering personalized precision medicine.
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Figure 1. 
CD146 associated antibodies and signaling pathways.
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Figure 2. CD146-targeted imaging via nuclear medicine.
(A) 89Zr-Df-YY146 (left) and 89Zr-Df-IgG PET (right) imaging enable visualize CD146-

expressing A375 xenografts clearly[69]. (B) PET images of 64Cu-NOTA-YY146 in mice 

containing U87MG (left) and those are preinjected with a blocking dose of unlabeled 

antibody (right)[27]. (C)PET Images of tumor-bearing mice derived from lung cancer. H460 

(left) and H522 (right) tumors have shown the highest and lowest tracer accumulation, 

respectively[70]. (D) 64Cu-NOTA-YY146 PET imaging in MDA-MB-435 (left) and pre-

blocking (right) tumor models[35]. (E) PET images of mice bearing HepG2 and mice 

pre-injected with a blocking dose of YY146[71]. There is a white dashed circle indicating the 

tumor’s location.
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Figure 3. Theranostic application of three different molecules targeting CD146.
(A) Imaging of YY146 mAb labeled with 64Cu and 52Mn in a breast cancer model[35, 76]. 

(B) PET imaging of malignant melanoma mouse model injected with 68Ga Fab’2-

TsCD146[1]. (C) Treatment of hepatocellular carcinoma by intratumoral injection of 125I-

AA98 and subsequent therapy efficacy assessment by 99mTc-HYNIC-duramycin and 99mTc-

HYNIC-3PRGD2 via SPECT/CT imaging[78].
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Table 1.

Different nuclear medicine tracers targeting CD146

Types of cancer Radionuclides Imaging agents Tumor models References

Breast cancer
52Mn 52Mn-DOTA-YY146 MDA-MB-435 orthotopic breast cancer [76]

64Cu 64Cu-DOTA-YY146 MDA-MB-435 orthotopic breast cancer [35]

Malignant melanoma
68Ga 68Ga-Fab’2 TsCD146 C8161 xenograft melanoma [1]

89Zr 89Zr-DFO-YY146 A375 subcutaneous melanoma [69]

Brain tumor
89Zr 89Zr-DFO-YY146 U87MG subcutaneous brain tumor [81]

64Cu 64Cu-NOTA-YY146 U87MG subcutaneous brain tumor [27]

Lung cancer 64Cu 64Cu-NOTA-YY146 H460 subcutaneous lung cancer [70]

64Cu 64Cu-NOTA-YY146 H460 intrapulmonary metastasis model [83]

Hepatocellular carcinoma 89Zr 89Zr-DFO-YY146 HepG2 subcutaneous liver tumor [71]

Epithelioid mesothelioma 99mTc 99mTc-anti-CD146 scFv Mesothelioma xenograft [87]
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