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The microcirculation comprises the “terminal end” of the systemic circulation1 and is 

the interface via which tissues receive oxygen and metabolites, as well as dispose of 

waste products. It maintains homeostasis and has been implicated in an array of diseases 

ranging from cancer2 to COVID-19.3 Therefore, there is an exigent need for imaging tools 

capable of characterizing the structural and functional heterogeneity of the microcirculation. 

However, imaging and visualizing the microcirculation do pose inherent challenges. For 

example, the spatial scale of the systemic circulation spans several orders of magnitude, 

from a few microns (e.g., endothelial cells) to several hundred microns (e.g., large blood 

vessels), which are difficult to span with a single imaging technique.1 Moreover, tissue 

elements such as adipose deposits, bone, and collagen fibers can interfere with the image 

contrast mechanisms traditionally employed for structural imaging.4 Analogously, since 

microcirculatory changes occur on time scales ranging from seconds (e.g., blood flow 

changes) to hours or days (e.g., wound healing and angiogenesis), characterizing them often 

requires the use of multiple imaging methods or techniques with a large dynamic range 

of sampling frequencies. The studies included in this SI address many of these challenges 

via a host of innovatively designed experimental models, imaging methods, and analytical 

approaches.

This SI begins with two studies describing new experimental assays for interrogating the 

microcirculation. The first, by Francis et al, describes an in vitro fibrin-based assay for 

studying angiogenesis that the authors combine with high spatial resolution live and fixed-

cell microscopy to characterize endothelium-dependent vesicular trafficking in 3D.5 The 

second, by Hodges et al.6 describes an experimental rat mesentery culture model amenable 

to imaging, for investigating the de novo formation of blood vessels after stromal cell 

transplantation.

These studies are followed by four reports describing the development of novel 

hardware and software tools for characterizing structural and functional changes in the 

microcirculation. The first by Senarathna et al.7 describes a fast, multicontrast imaging 

approach to characterize dysregulation of the gut microcirculation in an experimental model 
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of necrotizing enterocolitis. The second by Li et al.8 reports a fractal analysis approach 

for quantifying the complexity of microvascular networks, and demonstrate its utility by 

characterizing the spatiotemporal dynamics of vascular network formation in the yolk 

sac membrane. The third by Christie et al.9 describes an analysis pipeline based on high-

resolution in vivo optical imaging to characterize morphological and functional aspects 

of capillary networks in skeletal muscle. The fourth by Hu et al, provides a comparison 

of metrics derived from microcirculation-sensitive laser speckle contrast imaging for 

quantifying functional activation in the brain.10 Next, the SI includes two studies on 

the lymphatic microcirculation. The first by Wang et al.11 characterizes the dysregulated 

vasomotor dynamics of the collecting lymphatics during hypertension in an experimental 

model of spontaneously hypertensive rats. The second by Russel et al.12 describes a new 

R-based software tool called “Vmeasur” for quantifying lymphatic contractility dynamics 

over extended length scales.

The final three reports of this SI focus on clinically applicable imaging techniques. The 

article by Wikslund et al.13 describes the characterization of microvascular remodeling 

following skin injury. This is followed by an article by Abdelmaksoud et al.14 describing 

the utility of nailfold capillary endoscopy as a potential noninvasive method for detecting 

microvascular changes in patients with adolescent type I diabetes. The article by 

Aghabaglou et al.15 reports on the efficacy of clinically available ultrasound probes for 

detecting and quantifying the status of the microcirculation via a combination of in vitro and 

in vivo studies. The SI concludes with two comprehensive reviews: one on photoacoustic 

imaging by Mirg et al.16 and another on techniques for imaging the lymphatic system by 

Banerjee et al.17 covering preclinical and clinical applications.

Collectively, the articles in this special issue cover a broad range of approaches that 

make visible the myriad aspects of microcirculation and represent a burgeoning frontier 

in microcirculatory research. We are grateful to all the authors for their contributions and 

cannot wait to see what new innovations emerge at the intersection of imaging and the 

microcirculation.
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