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France, 6 Université Paris Cité, EA3518, Institut de Recherche Saint-Louis, Paris, France, 7 Université Paris
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Abstract

Hemostasis impairment represents the most threatening consequence of Viperidae enven-

oming, notably with Bothrops genus. In the French departments of America, B. atrox enven-

omation in French Guiana may lead to bleeding while B. lanceolatus envenomation in

Martinique to thrombosis. Bleeding related to B. atrox envenomation is attributed to vascular

damage mediated by venom metalloproteinases and blood uncoagulable state resulting

from thrombocytopenia and consumptive coagulopathy. Thrombosis related to B. lanceola-

tus envenomation are poorly understood. We aimed to compare the effects of B. atrox and

B. lanceolatus venoms in the rat to identify the determinants of the hemorrhagic versus

thrombotic complications. Viscoelastometry (ROTEM), platelet count, plasma fibrinogen,

thrombin generation assay, fibrinography, endothelial (von Willebrand factor, ADAMTS13

activity, ICAM-1, and soluble E-selectin), and inflammatory biomarkers (IL-1β, IL-6, TNF-α,

MCP-1, and PAI-1) were determined in blood samples obtained at H3, H6, and H24 after

the subcutaneous venom versus saline injection. In comparison to the control, initial fibrino-

gen consumption was observed with the two venoms while thrombocytopenia and reduction

in the clot amplitude only with B. atrox venom. Moreover, we showed an increase in throm-

bin generation at H3 with the two venoms, an increase in fibrin generation accompanied

with hyperfibrinogenemia at H24 and an increase in inflammatory biomarkers with B. lan-

ceolatus venom. No endothelial damage was found with the two venoms. To conclude, our

data support two-sided hemostasis complications in Bothrops envenoming with an initial

risk of hemorrhage related to platelet consumption and hypocoagulability followed by an

increased risk of thrombosis promoted by the activated inflammatory response and rapid-

onset fibrinogen restoration.
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Citation: Larréché S, Chevillard L, Jourdi G, Mathé
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Author summary

Bothrops venoms contain toxins targeting hemostasis, a physiological process aiming stop-

ping bleeding in case of injury. Envenomation by B. atrox in French Guiana leads to hem-

orrhage while envenomation by B. lanceolatus in Martinique results in thrombosis. To

understand the mechanisms involved in these opposite manifestations related to the two

venoms, we designed a comparative rat study of hemostasis based on a comprehensive

approach including blood measurement of initiation time and size of the clot, platelet

count, plasma fibrinogen, thrombin and fibrin generation, and various inflammatory and

endothelial biomarkers. We showed that B. atrox venom induces more marked platelet

and fibrinogen consumption, promoting the risk of hemorrhage, while B. lanceolatus
venom induces an initial fibrinogen consumption followed by a secondary increase in

combination to an enhanced inflammatory reaction resulting in increased thrombosis

risk. Interestingly, the two venoms exhibited no endothelial toxicity.

Introduction

Hemostasis aims to stop bleeding in the event of vessel injury. Its three distinct phases, i.e., pri-

mary hemostasis, coagulation, and fibrinolysis, are closely linked [1]. In the primary hemosta-

sis the injured vessel wall recruits platelets by activating von Willebrand factor (VWF), a

multimeric glycoprotein; thereafter, the activated platelets recruit additional platelets to form

the platelet aggregate [2]. Initiation of the coagulation process is the consequence of the expo-

sure of tissue factor (TF) and leads to thrombin generation [3]. Fibrinogen cleavage mediated

by thrombin and its subsequent polymerization to form fibrin strands provide the network

required for the effective clot formation [4]. Finally fibrin clot is removed from the repaired

blood vessels by fibrinolysis [5]. ADAMTS13 (a disintegrin and metalloprotease with throm-
boSpondin type 1 repeats, member 13) cleaves specifically VWF that unfolds under shear stress,

to reduce the size of VWF polymers in circulation [6].

Hemorrhagic syndrome associated with the absence of blood coagulation are one of the

main characteristics of Viperidae envenomation [7,8]. Other manifestations include pain,

edema, blistering, dermo- and myonecrosis, hypovolemia, cardiovascular collapse, acute kid-

ney injury, and more rarely thrombosis and neurotoxicity [9]. Viperidae are present in all con-

tinents except Oceania and Bothrops genus is mostly involved in Latin America [10]. Toxins

from Bothrops venoms targeting hemostasis exhibit highly diverse enzymatic (snake venom

metalloproteinases (SVMPs), snake venom serine proteases (SVSPs), phospholipases A2

(PLA2s) and L-amino acid oxidases) and non-enzymatic proteins (disintegrins and C-type lec-

tin proteins) [11].

In the French departments of America, B. atrox is the predominant species involved in

envenomation in French Guiana [12,13], whereas B. lanceolatus is the only venomous snake in

Martinique, where it is endemic [14]. While these two species are very close phylogenetically

(B. lanceolatus being included in B. atrox group [15]), they are responsible for opposite

manifestations.

B. atrox bite may result in a typical Viperidae envenomation with the risk of local and sys-

temic bleeding like other Bothrops such as B. asper and B. jararaca [16–20]. Systemic bleeding

is associated with a higher death risk [21,22]. Bleeding is related to SVMP-degradation of base-

ment membrane [23–26] and the subsequent disruption of endothelial cell integrity due to the

enhanced hydrostatic pressure and tangential shear stress [27]. Thrombocytopenia and
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unclottable blood on admission are independently associated with systemic bleedings in B.

atrox- and B. jararaca-envenomated patients admitted to the hospital [22,28,29]. SVMPs are

able to clot citrated plasma by activating prothrombin and/or factor X [30–32]. Thrombocytin,

a SVSP isolated from B. atrox venom, activates factors V, VIII, and XIII [33,34]. Venom-

induced activation of clotting factors generates endogenous thrombin thus consuming fibrino-

gen [35]. Defibrinogenation also depends on the action of thrombin-like enzymes (TLE),

which directly cleave fibrinogen in fibrin and induce in vitro clotting of fibrinogen [36]. Non-

coagulant proteinases exhibiting fibrin(ogen)olytic activity additionally contribute to fibrino-

gen consumption without converting it to fibrin [37].

By contrast, B. lanceolatus envenomation is unusually associated with bleeding and absence

of coagulability, but may be complicated by multiple systemic infarctions up to 48 h after the

snakebite, even in case of moderate envenomation [38,39]. Thrombosis occur in cerebral,

myocardial or pulmonary vessels and may be fatal or lead to major functional sequelae in the

absence of antivenom administration [39,40]. The exact mechanism of thrombosis in B. lan-
ceolatus envenomation is poorly understood. Despite venom-induced thrombocytopenia in

mice, B. lanceolatus venom induced no direct effects on platelet aggregation in human plate-

let-rich plasma [41,42]. B. lanceolatus venom dose-dependently clotted purified human fibrin-

ogen, indicating the involvement of a thrombin-like enzyme. However, it is devoid of

defibrinating activity after intravenous injection in mice [41,43,44]. Interestingly, this venom

was unable to clot citrated plasma in the first studies [41,43,44], suggesting the absence of pro-

coagulant activity until new studies adding calcium to the plasma showed effects on coagula-

tion [45,46]. Consistent, a fatal B. lanceolatus envenomation case with diffuse thrombotic

microangiopathy (TMA) causing multiple cerebral, myocardial, and mesenteric infarctions on

autopsy supported the possible onset of venom-induced endotheliopathy [47].

Surprisingly, venom composition of these two Bothrops species are relatively similar with

comparable activities on coagulation in vitro in the whole blood and plasma [48]. However, in
vitro assays have limitations as they only offer a view of the immediate venom-induced effects

whereas envenomation is a complex dynamic process. Crude venoms exhibit strong dose-

dependent procoagulant effects in vitro [49–51], while in vivo consumption of clotting factors

result in blood hypocoagulability. To observe the time-dependent toxicity of the various

enzymes present in Viperidae venoms, it is necessary to investigate the time-course of hemo-

stasis disorders in vivo [52–55]. Recent global hemostasis assays, which have revolutionized

the approach of hemorrhagic and thrombotic diseases, may improve understanding hemosta-

sis disorders in Bothrops envenomation. By combining rotational thromboelastometry

(ROTEM), a point-of-care viscoelastic test of whole blood hemostasis allowing the global

assessment of clot formation and its dissolution in real time [56], thrombin generation assay

(TGA) assessing the balance between procoagulant and anticoagulant drivers [57] and fibrino-

graphy assessing fibrin clot formation and fibrinolysis [58], it is possible to overall investigate

the complex time-course of venom-induced hypo- and hypercoagulability.

We therefore designed a rat model of human B. atrox and B. lanceolatus envenomation

aiming to identify the determinants of the hemorrhagic and thrombotic effects of venoms and

the contributions of the various key-players of hemostasis, i.e., platelets, coagulation factors,

and endothelial cells.

Material and methods

Ethics statement

Our animal experiments complied with the ARRIVE guidelines and were carried out in accor-

dance with the EU Directive 2010/63/EU for animal experiments and the ethical guidelines
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established by the National Institutes of Health. The experimental protocols were approved by

Paris Cité University Animal Care Ethics Committee and the French Ministry of Research (N˚

APAFIS #26913-20200-120174-024616-V5).

Venoms

Freeze-dried venoms were obtained from Latoxan (Valence, France). B. atrox venom (batch

211.191) is a pool of samples from wild-caught or born-in-captivity, male and female adult

snakes, from French Guiana, Peru and Brazil, whereas B. lanceolatus venom (batch 411.171) is

a pool of samples from wild-caught, two male and one female, adult snakes, from Martinique.

Venoms were stored at +4˚C and dissolved in saline before injection. The lethal dose-50%

(LD50) of B. lanceolatus venom was previously determined at 6 mg/kg in mice by intraperito-

neal route [42]. Since preliminary in vitro experiments conducted in our laboratory using

ROTEM in the rat whole blood showed that the procoagulant effect of B. atrox venom was

2-fold that of B. lanceolatus venom, we used 220% of the estimated intraperitoneal LD50 in

mice for B. lanceolatus venom (i.e., 4 mg per rat), and half of this value for B. atrox venom (i.e.,
2 mg per rat) to target equipotent doses.

Antivenoms

Inoserp South America (Inosan Biopharma, Mexico) is an experimental polyvalent antivenom

against B. lanceolatus, B. atrox, B. alternatus, B. asper, B. jararaca, B. jararacussu, B. diporus, B.

schlegeii, Lachesis muta, L. melanocephala, L. stenophrys, and Crotalus simus. This antivenom

consists of soluble IgG F(ab’)2 fragments. Based on the potency of the supplied batch

(0IT06007; expiry date, June 2022), 1 mL neutralizes 9.9 mg of B. lanceolatus venom and 2.7

mg of B. atrox venom, as stipulated by the manufacturer.

Animals

We used male Sprague-Dawley rats (Janvier-labs, France), weighing 250–400 g, housed for 7

days prior to experiment, maintained under constant temperature conditions (19–21˚C), and

submitted to a 12h/12h light/dark cycle, with food and water provided ad libitum.

In vitro procedure testing by rotational thromboelastometry non-treated

rat whole blood spiked with increasing venom concentrations

The experiment consisted of testing the rat whole blood by ROTEM after adding different con-

centrations of venom or r ex-tem (recombinant tissue factor and phospholipids, #503–05, pos-

itive control) or saline (negative control). The triggering reagent was therefore either venom

or r ex-tem while the addition of saline evaluates spontaneous coagulation.

Whole blood was sampled from the catheterized abdominal aorta in a non-treated rat anes-

thetized using 10mg/kg xylazine and 70 mg/kg ketamine injected intraperitoneally. Syringe

pre-filled with 0.4 mL of buffered sodium citrate (final molarity: 0.109 M) was used to collect

3.6 mL of blood, then gently inverted five times to ensure adequate anticoagulation before

transferring blood samples into tubes.

Rotational thromboelastometry was performed on ROTEM Delta analyzer (Werfen, Le

Pré-Saint-Gervais, France) to assess the venom effect on coagulation system. For each venom,

ROTEM was performed at five different venom concentrations (100, 10, 1; 0.1, and 0.01 μg/

mL). Venom stock was diluted in saline phosphate buffer (PBS) to obtain a 3.5 mg/mL solu-

tion. The non-treated rat citrated whole blood tube was placed in the sample pre-heating sta-

tion (temperature at 37˚C) of the ROTEM analyzer. For the first venom concentration
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(100 μg/mL), all reagents were pipetted into the cup: 20 μL CaCl2 (Star-tem, #503–01), 20 μL

venom sample, and 300 μL whole blood. Viscoelasticity data were then recorded at 37˚C for 60

min. For the other venom concentrations, the volume of venom solution was adjusted to 20 μL

using PBS. The positive control consisted on the same procedure using 20 μL of r ex-tem

instead of venom solution, whereas the venom solution was replaced with 20 μL of PBS for the

negative control (thus corresponding to the spontaneous coagulation activation in whole

blood). Parameters assessed using ROTEM included clotting time (CT) and maximum clot

firmness (MCF). CT is the time (s) from start of the measurement until initiation of clotting

(i.e., clot firmness of 2 mm above base-line) and depends on the concentrations of coagulation

factors. MCF is the maximum strength of the clot (mm) reached during the run, and depends

on the platelet count and function and fibrin formation.

Protocol design of the animal model of envenomation

Secondly, we developed an animal model of envenomation. For each condition (B. atrox
venom, B. lanceolatus venom, and saline) and at each sampling time, rats were randomized

(n = 6/group). Saline (control rat group) or venom (2 envenomated rat groups) was injected

by the dorsal subcutaneous route, with an average 2 mL/kg volume. Blood was sampled at 3 h

(H3), 6 h (H6), or 24 h (H24) after the saline/venom injection, from the catheterized abdomi-

nal aorta in a rat anesthetized using 10 mg/kg xylazine and 70 mg/kg ketamine injected

intraperitoneally.

Syringes pre-filled with 400 μL of buffered sodium citrate (final molarity: 0.109 M) or 20 μL

of EDTA were used to collect 3.6 mL and 2 mL of blood, respectively. They were gently inverted

five times to ensure adequate anticoagulation then blood was transferred into dry tubes. Anti-

venom was added into the tubes (10 μL/mL blood) for venom antagonization before analysis.

ROTEM experiments were carried out immediately using citrated whole blood and platelet

count was performed in EDTA whole blood up to 4 h after blood sampling. Citrate tubes were

double-centrifuged at 2500g for 10 min, at room temperature without brake to obtain platelet-

poor plasma. EDTA tubes were centrifuged at 1000g for 10 min, at room temperature. Citrated

platelet-poor plasma and EDTA plasma were then aliquoted and stored at -80˚C for analysis.

Ex vivo procedure testing by rotational thromboelastometry venom-treated

rat whole blood at different time-points

ROTEM experiments (EXTEM test) were conducted on citrated whole blood, according to the

manufacturer’s instructions. The EXTEM test explores the tissue-factor coagulation pathway.

Experiments were performed as previously described. In EXTEM test, 20 μL of Star-tem, 20 μL

of r ex-tem and 300 μL whole blood were added into the cup. In addition to CT and MCF, the

lysis index (LI) 30 was measured. LI30 is the residual clot firmness at 30 minutes from CT and

reflects the fibrinolysis phase.

Platelet count

Platelet count was performed in EDTA whole blood with a MS9-3 veterinary hematology ana-

lyzer (Melet Shloesing, Osny, France).

Plasma fibrinogen concentrations

Fibrinogen level was measured on citrated platelet-poor plasma using the standard Clauss

method. It was performed on STA-R Max automated coagulation analyzer system (Stago,

Asnières sur Seine, France) using Dade Thrombin reagent (Siemens, Munich, Germany).
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Plasma von Willebrand Factor (VWF) antigen

VWF antigen was measured on citrated platelet-poor plasma using the ELISA Asserachrom

VWF:Ag assay (Stago). Results were normalized using a normal rat citrated pool plasma.

ADAMTS13 activity

ADAMTS13 activity was measured on citrated platelet-poor plasma by an in-house

FRETS-VWF73 assay [59] using commercial recombinant FRETS-VWF73 peptide (Peptide

Institute, Ibaraki, Japan). Results were normalized using a normal rat citrated pool plasma.

Thrombin generation assay (TGA)

TGA was performed on ST Genesia analyzer system (Stago), a fully automated system enabling

quantitative standardized TG assessment derived from Hemker’s fluorescence method, using

dedicated reagents, calibrator and quality controls [60]. Thrombin generation is initiated by

the addition of tissue factor (TF) and phospholipid vesicles. STG-ThrombiCal, a buffered solu-

tion containing a known fixed amount of human thrombin, is incubated in a cuvette with a

solution containing a fixed concentration of Z-Gly-Gly-Arg-7-amino-4-methylcoumarin

(AMC) fluorogenic substrate (STG-FluoSet) and calcium chloride (STG-FluoStart): the cali-

bration curve is thus adjusted for the optical characteristics of the plasma sample correcting

for the inner filter effect. Citrated platelet-poor plasma samples are run in a second cuvette

with STG-ThromboScreen in the absence of thrombomodulin in parallel to STG-FluoSet.

STG-ThromboScreen contains recombinant human TF, at an intermediate picomolar concen-

tration. Four parameters were analyzed: lag time (min; time from test triggering to signal

detection), time to peak (min; time necessary for thrombin concentration to reach its maximal

value), peak height (PH; nmol/L; maximal thrombin concentration), and endogenous throm-

bin potential: ETP (nM�min; area under the thrombin time-concentration curve). Results are

presented as absolute values.

Fibrinography: fibrin polymerization assay and clot lysis study

Fibrin polymerization and fibrinolysis kinetics were assessed by turbidimetry in a TECAN

Infinite M200Pro spectrophotometer (Tecan, Männedorf, Suisse) as previously described [58].

Briefly, 30 μL of imidazole buffer, 27 μL of citrated platelet-poor plasma, and 3 μL of recombi-

nant tPA (Cryopep, Montpellier, France, final concentration: 250 ng/mL) were mixed, then

40 μL of this mixture was transferred in wells of a plate, where had been added 10 μL of a v/v

mixture of FT (Innovin, Dade Behring, Marburg, Germany, final concentration: 1 pmol/L)

and phospholipid vesicles (phospholipids TGT, Cryopep, Montpellier, France, final concentra-

tion: 4 μmol/L). Plasma clotting was triggered with 10 μL of N-2- hydroxyethylpiperazine-N0-

2-ethanesulfonic acid (HEPES) 50 mmol/L containing 60 mg/mL bovine serum albumin, and

100 mmol/L CaCl2. Turbidimetry was recorded at 350 nm at 37˚C every 6 s. Five parameters

were analyzed: lag time (in seconds, time from test triggering to reach 15% of the maximal tur-

bidity), time to peak (s; time necessary for turbidity to reach its maximal value), start tail (s;

time necessary for turbidity to reach its minimal value) and peak height (PH; arbitrary units

(AU); maximal turbidity value). Data were normalized for determining lag time, time to peak,

and start tail.

Plasma inflammatory and endothelial biomarkers (multiplex assays)

Multiplex assays using the Luminex Magpix platform (Luminex, Austin, TX, USA) were per-

formed with the Rat Adipokine Magnetic Bead Panel (Merck Millipore, Molsheim, France) for
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the measurement of interleukin (IL)-1ß, IL-6, tumor necrosis factor alpha (TNF-α), monocyte

chemoattractant protein-1 (MCP-1), plasminogen activator inhibitor type-1 (PAI-1), and the

Rat Vascular Injury Magnetic Bead Panel for the measurement of soluble E-selectin and solu-

ble intercellular adhesion molecule-1 (ICAM-1) in EDTA plasma. These kits were processed

according to the manufacturer’s instructions.

Statistical analysis

Analyses were performed using GraphPad PRISM 9.5.0 (GraphPad Prism Inc., La Jolia, CA,

USA). All results are expressed as mean ± standard deviation for quantitative data and % of

reference values for qualitative data. Data were tested for normality by visual inspection and

Shapiro-Wilk tests. For in vitro experiments, ROTEM parameters had a normal distribution

and were compared between the three experimental conditions (i.e., saline, B. atrox and B. lan-
ceolatus venom) using one-way analysis of variance (ANOVA), followed by Tukey’s multiple

tests. Distribution of measured values were represented as boxplots for CT and MCF. The

median effective concentrations (EC50s) were determined visually using GraphPad PRISM

9.5.0.

For ex vivo experiments, parameters were compared between B. atrox, B. lanceolatus, and

saline groups at each sample time using one-way ANOVAs (or a mixed-effect model in case of

missing values) followed by Tukey’s multiple tests if parameters were normally distributed. If

parameters were not normally distributed, comparisons were performed using Kruskal-Wall-

is’s tests followed by Dunn’s multiple tests. A p-value� 0.05 was considered statistically

significant.

Results

In vitro ROTEM assay: non-treated rat whole blood spiked with increasing

venom concentrations

Negative control (rat whole blood with 0.9% NaCl) exhibited a CT of 261.2 ± 66.5 s and a MCF

of 75.7 ± 4.6 mm. Positive control (with r ex-tem) exhibited a CT of 32.5 ± 5.5 s and a MCF of

78.2 ± 2.4 mm. B. atrox and B. lanceolatus venoms presented dose-dependent procoagulant

activities with significant decrease in CT compared to the negative control (p = 0.0008) but no

significant difference was observed when compared to one another (p = 0.1) (Figs 1A and S1).

EC50 of B. lanceolatus venom was twice that of B. atrox venom (Fig 1B). In comparison to the

negative control, B. atrox venom did not significantly alter MCF (p = 0.08) while B. lanceolatus
venom showed a slight hypercoagulable profile (p = 0.02). There was no significant difference

between the two venoms for MCF (p = 0.7) (Figs 1A and 1B and S1).

Ex vivo ROTEM assay using venom-treated rat whole blood, platelet counts

and fibrinogen at different time-points

CT was not significantly modified at any time and for any venom (Figs 2A and S2). MCF of

venom-treated rats did not differ from controls at H3 and H6. At H24, MCF of B. atrox
venom-treated rats was significantly lower than controls (p = 0.004; Figs 2B and S2). No signif-

icant decrease in LI30 was observed whatever the time or the venom was. Significant thrombo-

cytopenia was observed with B. atrox venom at H3 (p = 0.04), H6 (p = 0.02), and H24

(p< 0.001) while B. lanceolatus venom had no effect on platelet count (Fig 2C). Plasma fibrin-

ogen was significantly lowered with the two venoms at H3 (p = 0.009 for B. atrox and

p = 0.005 for B. lanceolatus) and at H6 (p = 0.03 for B. atrox and B. lanceolatus). At the
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Fig 1. (a) Clotting time (CT) and maximal clot firmness (MCF) assessed by ROTEM in non-treated rat whole blood in presence of 0.9% NaCl (negative

control, grey box-plot), r ex-tem (positive control, yellow box-plot), and B. atrox (blue box-plots) or B. lanceolatus venom (red box-plots) added at various

concentrations (n = 4); (b) Curves representing the CT and the MCF as a function of the dose of B. atrox (red line) or B. lanceolatus (blue line) venom. Grey

dotted area represents the value of negative control. Results are presented as mean ± SD (n = 4).

https://doi.org/10.1371/journal.pntd.0011786.g001

Fig 2. ROTEM clotting time (CT, a), ROTEM maximal clot firmness (MCF, b), platelet count (c), and plasma fibrinogen concentration (d) measured at H3,

H6, and H24 after 0.9% NaCl (white boxplots), B. atrox (blue boxplots) or B. lanceolatus venom (red boxplots) injection in the rat. Results are presented as

mean ± SD (n = 6 rats per group). *p< 0.05, **p< 0.01, ***p < 0.001 as compared to controls.

https://doi.org/10.1371/journal.pntd.0011786.g002
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opposite, plasma fibrinogen was significantly increased at H24 with B. lanceolatus venom

(p< 0.001; Fig 2D).

Thrombin generation assay (TGA)

Alterations in TGA occurred early, almost exclusively at H3. Lag time significantly decreased

with both venoms at H3 (p< 0.001 for B. atrox and p = 0.01 for B. lanceolatus) and only for B.

atrox at H6 (p = 0.019) (Fig 3A). Similarly, the time to peak significantly decreased with both

venoms at H3 (p = 0.001 for B. atrox and p = 0.006 for B. lanceolatus) (Fig 3B). In parallel, the

peak height significantly increased with the two venoms at H3 (p = 0.04) (Fig 3C). The endoge-

nous thrombin potential only significantly increased with B. atrox venom at H3 (p = 0.02)

(Fig 3D).

Fibrinography

Both venoms did not significantly change the lag time and the time to peak of fibrin generation

(Figs 4A and 4B and S3). B. lanceolatus venom significantly increased the start tail and the

peak height at H24 (p = 0.03 and p = 0.002, respectively) (Figs 4C and 4D and S3).

Endothelial function

No significant alteration was observed for plasma VWF antigen with any venom at any sam-

pling time (Fig 5A). ADAMTS13 activity was significantly lowered at H3 with B. lanceolatus
venom (p = 0.006) and at H6 with the two venoms (p = 0.04 for B. atrox and p = 0.02 for B. lan-
ceolatus), before returning to non-significantly different values at H24 in comparison to the

control group (Fig 5B). ADAMTS13 activity was not measured in 2 B. atrox venom-treated

rats and one B. lanceolatus-treated rat due to insufficient sample volume. No modification in

Fig 3. Lag time (a), time to peak (b), peak height (c), and endogen thrombin potential (ETP, d) assessed using thrombin generation assay (TGA) at H3, H6,

and H24 after 0.9% NaCl (white boxplots), B. atrox (blue boxplots) or B. lanceolatus venom (red boxplots) injection in rats. Results are presented as mean ± SD

(n = 6 rats per group). *p< 0.05, **p< 0.01, ***p< 0.001 as compared to controls.

https://doi.org/10.1371/journal.pntd.0011786.g003
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soluble E-selectin was observed whatever the venom at H3 and with B. atrox venom at H6 and

H24 (Fig 5C). By contrast, a significant decrease in soluble E-selectin was observed with B. lan-
ceolatus venom at H6 (p = 0.006) and H24 (p = 0.02). No modification in soluble ICAM-1 was

observed whatever the venom or sampling time was (Fig 5D).

Fig 4. Lag time (a), time to peak (b), start tail (c), and peak height (d) assessed using fibrinography at H3, H6, and H24 after 0.9% NaCl (white boxplots), B.

atrox (blue boxplots) or B. lanceolatus venom (red boxplots) injection in rats. Results are presented as mean ± SD (n = 6 rats per group). *p< 0.05, **p < 0.01

as compared to controls.

https://doi.org/10.1371/journal.pntd.0011786.g004

Fig 5. von Willebrand factor (VWF) antigen (a), ADAMTS13 activity (b), soluble E-selectin (c), and soluble intercellular adhesion molecule-1 (ICAM-1, d)

measured at H3, H6, and H24 after 0.9% NaCl (white boxplots), B. atrox (blue boxplots) or B. lanceolatus venom (red boxplots) injection in rats. Results are

presented as mean ± SD (n = 6 rats per group). *p< 0.05, **p< 0.01 as compared to controls.

https://doi.org/10.1371/journal.pntd.0011786.g005
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Inflammatory parameters (multiplex assay)

We observed no significant modifications in plasma IL-1β (Fig 6A) but a transient increase in

plasma IL-6 and TNF-α at H6 with B. lanceolatus venom (p = 0.001 and p = 0.007 respectively;

Fig 6B and 6C), an increase in plasma MCP-1 at H6 (p = 0.031) and H24 (p< 0.001) with B.

lanceolatus venom (Fig 6D) and an increase in PAI-1 at H3 with B. atrox venom (p = 0.049)

and at H6 and H24 with B. lanceolatus venom (p = 0.039 and p = 0.01, respectively; Fig 6E).

Discussion

Based on a global approach of hemostasis study, we determined the time-course of the com-

mon and differential impairments following B. atrox and B. lanceolatus envenomation in Spra-

gue Dawley rats, with the aim of understanding the clinical complications observed in

humans. In a previous study, we showed that B. atrox and B. lanceolatus venoms had a similar

proteomic composition, with a predominance of SVMPs and a procoagulant effect on human

whole blood [48]. Our in vitro results on venom-spiked rat whole blood were consistent with

our previous findings, supporting procoagulant effects for both venoms.

Our ex vivo ROTEM investigation of venom-treated rat whole blood samples showed no

reduction in CT at H3, suggesting venom-induced procoagulant effects of early and transient

onset if any. Later, no prolongation of CT was recorded, suggesting no or only transient coagu-

lation factor consumption undetectable at our sampling times. A previous work has reported a

prolonged Extem CT at H1 after intravenous B. asper venom injection in mice which recov-

ered at H3 [55]. A fast recovery of the clotting factors may correspond to the rapid elimination

of venom procoagulant enzymes from the blood, consistent with reports on human snakebite

envenomation in French Guiana in which prothrombin time and activated partial thrombo-

plastin time were corrected faster than fibrinogen, even without antivenom administration

[12,13]. Nevertheless, the hypothesis of lack of ROTEM sensitivity to identify any initial hyper-

coagulability in our animal model cannot be ruled out. Another hypothesis is that the dose of

venom used was too low in this experiment.

Although not altered at H3 and H6, Extem MCF was significantly reduced at H24 after B.

atrox venom injection, supporting the onset of venom-induced delayed hypocoagulability.

This observation contrasted with Rucavado’s study reporting no clot at H1 after intravenous B.

Fig 6. Plasma interleukin-1beta (IL-1β, a), interleukin-6 (IL-6, b) tumor necrosis factor-alpha (TNFα, c), plasminogen activator inhibitor-1 (PAI-1, d), and

monocyte chemoattractant protein-1 (MCP-1, e) measured at H3, H6, and H24 after 0.9% NaCl (white boxplots), B. atrox (blue boxplots) or B. lanceolatus
venom (red box-plots) injection in rats. Results are presented as mean ± SD (n = 6 rats per group). *p< 0.05, **p< 0.01, ***p< 0.001 as compared to controls.

https://doi.org/10.1371/journal.pntd.0011786.g006
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asper venom injection in mice but a steady increase in clot amplitude with decreased strength

at H24 [55]. Noteworthy, here we used the subcutaneous route to mimic snakebite condition,

which may account for the observed differences in fibrinogen kinetics. Based on our in vitro
ROTEM study, no significant B. atrox venom-attributed effects were found except with the

highest concentration tested. Whereas ex vivo MCF reduction is usually related to time-depen-

dent venom enzymatic toxicity, in vitro reduction in MCF can be explained by platelet and

fibrinogen consumption in a dose-dependent toxicity.

An early decrease in fibrinogen plasma level was observed with the two venoms at H3 and

H6, whereas it recovered at H24 with B. atrox venom. Defibrinogenation occurs in most

patients bitten by B. atrox [12,13,20,28,61]. A initial decrease in fibrinogen has also been

reported in B. lanceolatus envenomation [38,39,62]. Hypofibrinogenemia is mostly due to the

direct consumption induced by the TLE and fibrinogenases [7,37], but also possibly due to

thrombin generation.

TGA showed a decrease in lag-time and time to peak and an increase in thrombin peak at

H3 with the two venoms while ETP was only increased with B. atrox venom. TGA peak height

is known to be more sensitive to variations in clotting factors than ETP [63]. Therefore, throm-

bin generation at H3 can be considered to be increased with both venoms. Interestingly, TGA

was more sensitive than ROTEM to identify this initial hypercoagulability. To the best of our

knowledge, this is the first study assessing thrombin generation in an animal model of

Bothrops envenomation. TGA was already used to show that other Brazilian Bothrops venoms

(i.e., Bothrops moojeni, B. jararacussu, and B. alternatus) increased endogenous thrombin

potential of human platelet-poor plasma in vitro [35]. SVMP-induced intravascular thrombin

generation plays a preponderant role in the pathogenesis of B. jararaca-related coagulopathy

[52]. Decreased fibrinogen and prothrombin levels were significantly associated with systemic

bleeding in Bothrops envenoming. The presence of such activators has been already reported

with B. atrox [30–32] but never confirmed with B. lanceolatus venom yet despite in vitro data

showing its ability to reduce coagulation time [45,46].

A gradual decrease in platelet count was only observed with B. atrox venom, starting at H3

and being maximal at H24. Because fibrinogen was corrected at that time, the decrease in

ROTEM MCF at H24 was more related to platelet count impairment. Indeed, systemic bleed-

ing has been attributed to thrombocytopenia in B. atrox-envenomated patients [28,64]. In B.

jararaca-bitten patients, systemic bleeding is more frequent in the presence of acute thrombo-

cytopenia than the blood hypocoagulability [65,66]. A negative correlation was found between

platelet count and mean platelet volume in B. atrox-envenomated patients on admission, sug-

gesting peripheral platelet destruction, which tends to increase the mean platelet volume [22].

Thrombocytin and batroxobin, two SVSPs isolated from B. atrox venom, induce washed

human platelets aggregation in a less potent manner than thrombin [67,68]. Nevertheless, a

direct activating effect of venom is unlikely: whole venom did not induce aggregation of

washed rabbit platelets [69]. The increase in thrombin generation, which is considered as a

powerful platelet activator, could be another explanation for thrombocytopenia [70]. However,

this hypothesis seems unlikely since thrombin generation is increased with both venoms,

whereas thrombocytopenia is only observed with B. atrox venom. Moreover, in a mouse

model of B. jararaca envenomation, pretreatment with warfarin that decreases the prothrom-

bin level thus the thrombin generation, did not prevent the occurrence of thrombocytopenia,

suggesting a SVMP-independent mechanism. Finally, thrombocytopenia could be explained

by platelet sequestration in the multiple bleeding sites caused by hemorrhagic SVMPs. There-

fore, thrombocytopenia should be considered more as a consequence rather than a cause of

venom-induced hemorrhages, although it contributes to bleeding.
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A non-significant trend to MCF increase at H24 and a slight hypercoagulable profile were

observed with B. lanceolatus venom in our rat model, nevertheless of little contribution to

explain the mechanisms of thrombosis in this envenomation. Based on postmortem data in a

B. lanceolatus-bitten patient, direct endothelial damage was hypothesized [47]. However, our

results did not support this hypothesis. Despite a transient decrease in ADAMTS13 at H3 and

H6, VWF antigen level was not increased after venom injection, which is consistent with previ-

ous findings in a model of B. jararaca-envenomated rat [53]. Partial recovery of plasma

ADAMTS13 with Na2-EDTA suggested that its decrease was due to SVMPs and thrombin/

plasmin generation [53]. Interestingly, an increase in VWF antigen level, not associated with

an increase in tPA / PAI-1, was reported in B. jararaca-bitten patients, suggesting more endo-

thelial activation by inflammation than a real endotheliopathy directly linked to the venom

[65]. Here, we observed no increase in ICAM-1 nor soluble E-selectin levels, two biomarkers

considered as more specific of endotheliopathy [71]. Consistently, B. lanceolatus venom did

not increase ICAM-1 or E-selectin in vitro [72], supporting our hypothesis of a poor direct tox-

icity to endothelial cells. In a clinical study of Bothrops envenomations in Brazil, angiopoietin-

1 and vascular cell adhesion protein-1 (VCAM-1) were only increased in acute kidney injury

(AKI) patients whereas other biomarkers suggestive of endotheliopathy (i.e., syndecan-1,

angiopoietin-2, vascular endothelial growth factor) were not significantly increased, even in

AKI patients [73]. By contrast, elevated thrombomodulin levels were found in B. jararaca-bit-

ten patients, suggesting endothelial damage at least of late-onset and/or in this snake species

[74].

Venom-induced thrombotic complications could be explained, at least in part, by quantita-

tive changes in fibrinogen. An increase in plasma fibrinogen at H24 was remarkable in our B.

lanceolatus envenomation model. An increase in fibrinogen level during the follow-up and/or

a late onset of hyperfibrinogenemia was often reported in patients with thrombosis in Marti-

nique, also sometimes despite antivenom [39,47,62]. Early fibrinogen restoration leading to

hyperfibrinogenemia might be explained by a less enzymatic activity of SVMPs isolated in B.

lanceolatus venom, although considered as the most abundant family of proteins in this

venom [45]. In mice, injection of B. jararaca venom upregulated hepatic mRNA synthesis of

fibrinogen chains, which may explain the fast fibrinogen level recovery, even in the absence of

antivenom [54]. In our model, fibrinography showed an increased fibrin generation at H24

which mechanism remains unexplained, but does not seem to be linked to a delayed thrombin

generation, whose level was comparable to the control at H24. The increase in PAI-1 at H6

and H24 suggests an inhibition of the fibrinolytic pathway but ROTEM analysis may not show

fibrinolysis shutdown. Perhaps B. lanceolatus venom is able to activate factor XIII: in B. atrox
venom, thrombocytin is able to activate factor XIII by limited proteolysis and increase procoa-

gulant activity of factor VIII similarly to thrombin [33]. Moreover, TLE from B. lanceolatus
venom could increase fibrin generation: once bound to fibrin, the capacity of batroxobin, a

TLE from B. atrox venom, to promote fibrin accretion was found 18-fold greater than that of

thrombin [75].

Thrombosis may be due to coagulation-induced inflammatory activity of the venom. Here,

we observed a systemic inflammatory response involving IL-6, TNF-α, and MCP-1 after B.

lanceolatus venom injection. This result confirms an ex vivo model based on human whole

blood, in which this venom elicited an inflammatory reaction combining pro-inflammatory

interleukin production (IL-1β, IL-6 and TNF-α), chemokine upregulation (MCP-1, RANTES

and IL-8), complement activation and eicosanoid release (leukotriene B4, prostaglandin E2

and thromboxane B2) [76]. These events were triggered by PLA2 isolated from B. lanceolatus
venom [77]. In various other conditions including the coronavirus disease-2019, cytokine

storm affects components of hemostasis, including endothelial cells, platelets, coagulation
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cascade, and fibrinolytic pathway, leading to hypercoagulability named thromboinflammation

thus increasing the risk of thrombosis [78]. Consistent with the inflammatory response to

venom, marked increase in C reactive protein (CRP) has been reported in B. lanceolatus-bitten

patients [47,62]. However, thrombosis is not specific of B. lanceolatus envenomation but may

rarely occur with B. atrox bite [79,80]. In an acute mesenteric ischemia case, mild coagulopa-

thy associated with a marked inflammatory syndrome including hyperleukocytosis and

increased CRP was described [80]. In another ischemic stroke case, limited alterations in

hemostasis were reported on day 4 despite early antivenom administration [79]. Finally, TMA

was diagnosed in several Bothrops envenomation patients, including by B. jararaca [81,82], B.

venezuelensis [83] and B. erythromelas [84], presenting classical bothropic syndrome but no

bleeding. Coagulopathy resolved within 12–24 hours after antivenom infusion, whereas TMA

tended to start 1–3 days post-bite despite antivenom. Following B. venezuelensis bite, hyperfi-

brinogenemia began at day 2 and persisted over 2 weeks despite antivenom administration 4.5

h after the bite [83]. Here, we did not find a significant pro-inflammatory interleukin produc-

tion with B. atrox venom despite an increasing trend in inflammatory biomarkers. Systemic

inflammation has been demonstrated with Bothrops venoms [85,86]. An increase in IL-1β, IL-

6 and MCP-1 but a decrease in TNF-α were observed in B. atrox-bitten patients [64,87]. No

significant differences in proinflammatory cytokine levels were identified in hypofibrinogene-

mic compared to normal fibrinogen patients [87]. This excessive inflammatory response may

have clinical consequences. Increased MCP-1 level was associated with a AKI in B. atrox
envenomation in the Brazilian Amazon [88]. However, more studies are needed to identify

inflammatory biomarkers predictive of the prothrombotic risk in the time-course of Bothrops
envenomation, even after antivenom administration.

Our study has limitations. First, to understand the effects of Bothrops venoms on hemosta-

sis, we used a rat model supporting envenomation features with this genus. However, extrapo-

lation to humans should remain cautious, particularly for thrombin generation as peaks are

twice lower in the rats than in humans [89]. Likewise, fibrinolysis in rats is slower than that

reported in humans [90]. Secondly, we did not look for any bleeding or thrombosis in this

model, consistent with the unsuccessful previous attempts to design a model of B. lanceolatus
venom-induced thrombosis [41,91]. Insufficient blood samples for technical reasons prevented

us to carry out all planned analyzes that might have improved our approach such as the study

of the intrinsic pathway of coagulation using ROTEM with In-tem reagent. Moreover, our

observation time was limited to the first 24 hours of envenomation, while in patients, throm-

bosis usually occurs 48 h after the bite, preventing us to investigate possible delayed-onset

mechanisms such as endothelial damage. The procoagulant effect of B. atrox venom depends

on various factors, notably the geographical origin of the specimens collected [58]. The

venom, which we used, included venoms from French Guiana, Peru and Brazil, to represent

possible region-dependent variability in venom properties. If we had used a venom from only

one region, selective results might have been obtained. Finally, it would have been also inter-

esting to test the same dose of B. atrox venom as that used for B. lanceolatus.

Conclusion

Our global investigation of hemostasis suggest that mechanisms involved in Bothrops enven-

omation-induced bleeding and thrombosis are not distinct but represent the two sides of the

same coin (Fig 7). An initial step of venom-induced hypercoagulability with increased throm-

bin generation could be considered followed by a secondary step of hypocoagulability with B.

atrox venom (as shown at H24 with ROTEM data) or persistent hypercoagulability with B. lan-
ceolatus venom (as shown with fibrinography data), while these two venoms both have a
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similar proteomic composition with a predominance of SVMPs and procoagulant activity in

vitro. By analogy to the Greek myth of Charybdis and Scylla, Bothrops envenomation may thus

follow two opposite clinical expressions: in the event of major platelet and fibrinogen con-

sumption promoting bleeding, hemorrhage will occur early, whereas in case of minor con-

sumption or early restoration of platelet and fibrinogen limiting bleeding, venom-induced

systemic inflammation will expose to thrombotic complications of delayed onset. Our experi-

mental findings also help understanding why B. atrox envenomation could be complicated

with thrombosis lately, as sometimes reported in patients with moderate initial consumption

coagulopathy.

Supporting information

S1 Fig. Representative thromboelastometry trace with non-treated rat whole blood in pres-

ence of (a) B. atrox venom added at various concentrations: 100 μg/mL (red trace), 10 μg/mL

(green trace), 1 μg/mL (blue trace), 100 ng/mL (pink trace); (b) B. lanceolatus venom added at

various concentrations: 100 μg/mL (red trace), 10 μg/mL (green trace), 1 μg/mL (blue trace),

Fig 7. Hypothesized mechanisms of Bothrops venom-induced effects on hemostasis. The consumption of platelets and fibrinogen directly by the venom action

and indirectly by coagulation factor activation induces a hypocoagulable state promoting bleeding. In contrast, proinflammatory cytokine (IL-6 and TNF-α)

and chemokine production (MCP-1) increase tissue factor and factor XIII-A expression on monocytes, fibrinogen hepatocyte synthesis and release by activated

platelets, and plasminogen activator inhibitor type I (PAI-1) production, which deactivates tissue plasminogen activator (tPA) and leads to plasmin decrease

and fibrinolysis shutdown, inducing hypercoagulability and prothrombotic risk. Created with BioRender.com.

https://doi.org/10.1371/journal.pntd.0011786.g007
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100 ng/mL (pink trace); (c) B. atrox venom at 10 ng/mL (blue trace), B. lanceolatus venom at

10 ng/mL (red trace), 0.9% NaCl (pink trace) and r ex-tem (green trace).

(TIF)

S2 Fig. Representative thromboelastometry trace at H3 (a), H6 (b) and H24 (c) after 0.9%

NaCl (green line), B. atrox (blue line) or B. lanceolatus venom (red line) injection in rats.

(TIF)

S3 Fig. Representative turbidimetry curve generating by fibrinography at H3 (a), H6 (b) and

H24 (c) after 0.9% NaCl (black line), B. atrox (blue line) or B. lanceolatus venom (red line)

injection in rats.

(TIF)

S1 Table. Excel spreadsheet containing, in separate sheets, the underlying numerical data

for Figs 1, 2, 3, 4, 5 and 6.

(XLSX)
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10. Rautsaw RM, Jiménez-Velázquez G, Hofmann EP, Alencar LRV, Grünwald CI, Martins M, et al.

VenomMaps: Updated species distribution maps and models for New World pitvipers (Viperidae: Crota-

linae). Sci Data. 2022; 9: 232. https://doi.org/10.1038/s41597-022-01323-4 PMID: 35614080
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44. Lôbo de Araújo A, Kamiguti A, Bon C. Coagulant and anticoagulant activities of Bothrops lanceolatus

(Fer de lance) venom. Toxicon Off J Int Soc Toxinology. 2001; 39: 371–375. https://doi.org/10.1016/

s0041-0101(00)00139-2 PMID: 10978756

45. Alsolaiss J, Alomran N, Hawkins L, Casewell NR. Commercial Antivenoms Exert Broad Paraspecific

Immunological Binding and In Vitro Inhibition of Medically Important Bothrops Pit Viper Venoms. Toxins.

2022; 15: 1. https://doi.org/10.3390/toxins15010001 PMID: 36668821

46. Bourke LA, Zdenek CN, Tanaka-Azevedo AM, Silveira GPM, Sant’Anna SS, Grego KF, et al. Clinical

and Evolutionary Implications of Dynamic Coagulotoxicity Divergences in Bothrops (Lancehead Pit

Viper) Venoms. Toxins. 2022; 14: 297. https://doi.org/10.3390/toxins14050297 PMID: 35622544

47. Malbranque S, Piercecchi-Marti MD, Thomas L, Barbey C, Courcier D, Bucher B, et al. Fatal diffuse

thrombotic microangiopathy after a bite by the “Fer-de-Lance” pit viper (Bothrops lanceolatus) of Marti-

nique. Am J Trop Med Hyg. 2008; 78: 856–861. PMID: 18541759

48. Larréché S, Bousquet A, Chevillard L, Gahoual R, Jourdi G, Dupart A-L, et al. Bothrops atrox and

Bothrops lanceolatus Venoms In Vitro Investigation: Composition, Procoagulant Effects, Co-Factor

Dependency, and Correction Using Antivenoms. Toxins. 2023; 15: 614. https://doi.org/10.3390/

toxins15100614 PMID: 37888645

49. Kuch U, Mebs D, Gutiérrez JM, Freire A. Biochemical and biological characterization of Ecuadorian pit-

viper venoms (genera Bothriechis, Bothriopsis, Bothrops and Lachesis). Toxicon Off J Int Soc Toxinol-

ogy. 1996; 34: 714–717. https://doi.org/10.1016/0041-0101(96)00016-5 PMID: 8817816

50. Rodrigues CFB, Zdenek CN, Bourke LA, Seneci L, Chowdhury A, Freitas-de-Sousa LA, et al. Clinical

implications of ontogenetic differences in the coagulotoxic activity of Bothrops jararacussu venoms.

Toxicol Lett. 2021; 348: 59–72. https://doi.org/10.1016/j.toxlet.2021.05.005 PMID: 34044056

51. Sousa LF, Zdenek CN, Dobson JS, Op den Brouw B, Coimbra F, Gillett A, et al. Coagulotoxicity of

Bothrops (Lancehead Pit-Vipers) Venoms from Brazil: Differential Biochemistry and Antivenom Efficacy

Resulting from Prey-Driven Venom Variation. Toxins. 2018; 10: E411. https://doi.org/10.3390/

toxins10100411 PMID: 30314373

52. Senise LV, Yamashita KM, Santoro ML. Bothrops jararaca envenomation: Pathogenesis of hemostatic

disturbances and intravascular hemolysis. Exp Biol Med Maywood NJ. 2015; 240: 1528–1536. https://

doi.org/10.1177/1535370215590818 PMID: 26080462

53. Thomazini CM, Sachetto ATA, de Albuquerque CZ, de Moura Mattaraia VG, de Oliveira AK, Serrano

SM de T, et al. Involvement of von Willebrand factor and botrocetin in the thrombocytopenia induced by

Bothrops jararaca snake venom. PLoS Negl Trop Dis. 2021; 15: e0009715. https://doi.org/10.1371/

journal.pntd.0009715 PMID: 34478462

54. Sachetto ATA, Jensen JR, Santoro ML. Liver gene regulation of hemostasis-related factors is altered

by experimental snake envenomation in mice. PLoS Negl Trop Dis. 2020; 14: e0008379. https://doi.org/

10.1371/journal.pntd.0008379 PMID: 32479494
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