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Abstract

Identifying cell types is crucial for understanding the functional units of an organism. Machine learning has shown promising
performance in identifying cell types, but many existing methods lack biological significance due to poor interpretability. However,
it is of the utmost importance to understand what makes cells share the same function and form a specific cell type, motivating us to
propose a biologically interpretable method. CellTICS prioritizes marker genes with cell-type-specific expression, using a hierarchy of
biological pathways for neural network construction, and applying a multi-predictive-layer strategy to predict cell and sub-cell types.
CellTICS usually outperforms existing methods in prediction accuracy. Moreover, CellTICS can reveal pathways that define a cell type
or a cell type under specific physiological conditions, such as disease or aging. The nonlinear nature of neural networks enables us to
identify many novel pathways. Interestingly, some of the pathways identified by CellTICS exhibit differential expression “variability”
rather than differential expression across cell types, indicating that expression stochasticity within a pathway could be an important
feature characteristic of a cell type. Overall, CellTICS provides a biologically interpretable method for identifying and characterizing
cell types, shedding light on the underlying pathways that define cellular heterogeneity and its role in organismal function. CellTICS
is available at https://github.com/qyyin0516/CellTICS.

Keywords: explainable neural network; cell type identification; pathways; scRNA-seq data

INTRODUCTION
Single-cell RNA-sequencing (scRNA-seq) provides expression pro-
files of individual cells and molecularly defines cell states or
phenotypes [1]. It also has the potential to identify cell types,
which are functional units of an organism and crucial to other
downstream research investigations. Recently, machine learning
has been widely applied to identifying cell types. Typically, a
machine-learning model is built using a reference dataset with
well-curated cell-type labels. Then, the model is applied to the
query dataset to predict its cell types. Deep learning has consis-
tently shown promising performances in cell-type identification
for various architectures and the customization of hyperparame-
ters [2]. Numerous neural network architectures have contributed
to these achievements, including artificial neural networks [3,
4], convolutional neural networks [5, 6], graph-based networks
[7, 8], generative models (autoencoders or generative adversar-
ial networks) [9–11] and attention-based models (transformers)
[12, 13]. Moreover, recent advances in multimodal learning show
its immense potential in bioinformatics [14, 15]. However, these
deep learning-based models are usually black-box models, lacking
interpretability. Moreover, predicting at the sub-cell-type level has
always been more challenging, even though it provides higher
resolution and can unveil valuable insights into cell heterogeneity
[16]. Motivated by existing limitations, this study aims to address
both the aspects of biological interpretability and sub-cell-level
prediction.

In the field of computational biology, interpretable neural net-
works are constructed using prior biological knowledge, such as
gene ontology and pathway information, to improve the inter-
pretability of deep learning. For instance, DrugCell [17] uses a
visible neural network that predicts anti-cancer drug responses
by leveraging biological process information from the Gene Ontol-
ogy (GO) database [18]. P-NET [19] is a biologically informed
deep-learning model for prostate cancer discovery. Liu et al. [20]
introduced an interpretable deep neural network that faithfully
captures the underlying chemical mechanism of transcription
factor binding to DNA. CancerIDP [21] is an interpretable neural
network that predicts cancer patients’ survival based on drug pre-
scriptions and personal transcriptomes. In these models, neurons
are imbued with biological meaning (GO terms, pathways, etc.),
and certain automatic computational procedures, like DeepLIFT
[22], are employed to evaluate the significance of these neurons.
Hence, these models significantly enhance human understanding
of hidden mechanisms [23] and have shown remarkable success
in both predicting classification labels and explaining results.
Nevertheless, there are few studies that focus on the application
of interpretable neural networks for cell type annotation and the
interpretation of the factors that define a cell type.

Inspired by the success of interpretable neural networks,
this study presents CellTICS (Cell-Type IdentifiCation based
on ScRNA-seq), a biologically explainable neural network for
cell-type identification and interpretation based on single-cell
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RNA-seq data. In CellTICS, marker genes are prioritized as
interpretable features. The network architecture of CellTICS
follows the hierarchy of pathways acquired from the Reactome
database [24] and adopts a two-stage strategy to predict cell and
sub-cell types. What sets CellTICS apart is its innovative approach
of utilizing multiple prediction layers to aggregate information
from various pathway levels. This unique multi-predictive-layer
strategy greatly enhances the accuracy of the pathway-guided
encoder’s predictions. The superior classification performance of
CellTICS is demonstrated by applying it to several public datasets
and comparing it with other cell-type annotation methods.
More importantly, the interpretability of CellTICS provides clues
about which pathway characteristics are essential to define a
cell type or a cell type under a specific physiological condition.
This information is often missed by traditional methods, making
CellTICS a valuable tool for understanding the biology of cellular
heterogeneity.

The remaining sections of this article are organized as follows.
In the “2 Material and methods” section, an overview of the
utilized datasets is provided, followed by a detailed explanation
of the CellTICS model and its associated parameters, and the
description of other methods used for comparison along with the
evaluation criteria. In the “3 Results and discussions” section, a
comprehensive discussion of the results and innovative aspects
of this work is undertaken. It commences with the presentation
of cell-type and sub-cell-type annotation results. Following that,
CellTICS’s capability to uncover novel pathways and their charac-
teristics related to expression stochasticity are explored. Its appli-
cation in the context of the aging process and autism spectrum
disorder (ASD) is also examined. Finally, in the “4 Conclusion”
section, the study is drawn to a close by summarizing the key
findings and insights derived from our research.

MATERIALS AND METHODS
The schematic pipeline of CellTICS is shown in Figure 1. In
CellTICS, marker genes are selected based on their expression
levels in the training set. The neural network is constructed as
the hierarchy of Reactome pathways. A two-stage deep learning
strategy is employed to predict both cell types and sub-cell
types. In the first stage, a feedforward neural network is trained
for cell-type prediction, with a predictive layer corresponding
to each pathway hidden layer. Subsequently, in the second
stage, multiple sub-neural networks are trained for sub-cell-type
prediction, building upon the predicted outcomes from the first
stage. Each sub-neural network is also equipped with multiple
predictive layers for hidden layers. At each stage, prediction
results from all predictive layers are aggregated through a
voting mechanism. Furthermore, during the training procedure,
important pathways that contribute to (sub-)cell-type prediction
can be identified by comparing the activation values of neural
networks corresponding to cells belonging to different cell types.
More details are as follows.

Datasets
The capabilities of CellTICS were showcased using scRNA-seq
data from three mouse brain studies [25–27] and two human
studies [28, 29]. Its predictive accuracy was evaluated across a
total of 10 analysis tasks, including both intra-dataset and inter-
dataset predictions (Supplementary Table S1). The entire process
of the data processing and handling is illustrated in Supplemen-
tary Figure S1.

Raw scRNA-seq data processing
The detailed datasets used in this study included the level-5
mouse brain data (L5MB), DropViz hippocampus (DropViz HC),
DropViz frontal cortex (DropViz FC), and human peripheral blood
mononuclear (PBMC) data, all of which were initially in raw
read count format. In contrast, the aging mouse brain (AMB)
and autism spectrum disorder (ASD) data were first scaled to
10,000 transcripts per cell and then subjected to logarithmically
transformed. As a result, a normalization step was necessary for
the L5MB, DropViz HC, DropViz FC, and PBMC data.

Let us denote exprc,g as the normalized expression measure for
gene g in cell c. The normalization is performed as Equation 1,
where mc,g is the gene-level read count (UMI-based), and G is the
total number of genes. Subsequently, quality control for all data
was performed by the R package scater [30], filtering out cells and
genes with poor quality.

exprc,g = log2

(
10000

mc,g∑G
g′=1 mc,g′

+ 1

)
(1)

Training sets and test sets preparation
The L5MB, DropViz HC and DropViz FC datasets contained infor-
mation on cell types and sub-cell types. To represent intra-dataset
predictions, these datasets were split into a training set and a test
set using the R package caret [31] with 75% of the original data
allocated to the training set, stratified by cell types.

The AMB data contained mouse brain cells for the young and
old age groups as well as their cell types and sub-cell types. We
created three analysis tasks based on the data. The first one
was the original whole dataset (AMB whole), incorporating age
status into the cell-type labels to create our own sub-cell-type
labels (e.g. old-cell-type-A versus young-cell-type-A). Next, the
AMB whole dataset was split into a training set and a test set with
75% of the original data allocated to the training set, stratified by
cell types. The other two analysis tasks were designed for inter-
dataset prediction for both cell types and original sub-cell types.
Specifically, the old data were treated as the training set and the
young data as the test set (AMB OY), or vice versa (AMB YO).

The PBMC data were sequenced by the 10X Genomics v2
(10Xv2), the 10X Genomics v3 (10Xv3) and the Drop-seq protocols.
The three major cell type groups were lymphoid cells (including
sub-cell types: B cells, CD4 T cells, cytotoxic T cells and natural
killer cells), myeloid cells (including sub-cell types: CD14+
monocytes, CD16+ monocytes, dendritic cells and plasmacytoid
dendritic cells) and megakaryocytes [32]. Based on the PBMC
data, three analysis tasks were created to test the cross-protocol
prediction, a special case of inter-dataset prediction. Firstly, the
10Xv3 data were used as the training set, and the 10Xv2 data were
the test set (PBMC 32). Secondly, the 10Xv2 data were the training
set, and the Drop-seq data were the test set (PBMC 2D). Lastly, the
Drop-seq data were the training set, and the 10Xv3 data were the
test set (PBMC D3).

The ASD data contained human brain data for the ASD and
control groups. To explore the mechanism of ASD at the cell-
type level, this work incorporated the disease status into the cell-
type labels to create the sub-cell-type labels (e.g. ASD-cell-type-
A versus control-cell-type-A). This study focused exclusively on
11 neuron cell types, namely L2/3, L4, L5/6, L5/6-CC, IN-PV, IN-
SST, IN-SV2C, IN-VIP, Neu-mat, Neu-NRGN-I and Neu-NRGN-II.
Subsequently, the dataset was split into a training set and a test
set with 75% of the original data allocated to the training set,
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Figure 1. The pipeline of CellTICS. (A) Marker genes are prioritized by considering their cell-type-specific high and low expression measures. (B) The
Reactome pathways are used to construct the network hierarchy. (C) A neural network constructed by the pathway hierarchy is trained and then used
to predict cell types of the test set. The predicted results from all predictive layers are integrated by voting. (D) Based on the predicted results of the first
stage, several sub-neural networks are trained for sub-cell-type prediction. Important pathways defining a cell type (or a sub-cell type) can be obtained
by comparing their activation values across different cell types.

stratified by cell types. The processed data were written into CSV
files and uploaded to Zenodo (see ‘Code and Data Availability’).
The CSV file sizes have also been included in Supplementary Table
S1.

The CellTICS model
Marker gene prioritization
A feature selection step was performed to prioritize marker genes,
which could help enhance the prediction performance of the
CellTICS model. The cell-type-specific high expression measure
for a gene g in cell type t is defined as Equation 2, where τg, x̂t,g

are determined by Equation 3 and Equation 4. Here, n is the total
number of cell types, and exprt,g is the normalized expression
measure for the gene in cell type t. Pseudo number 1 is added
to avoid extremely large fold changes among lowly expressed
genes. Thus, 0 ≤ ϕt,g ≤ 1. The cell-type-specificity measure is a
modification of the tissue-specificity measure proposed by Jiang
et al. [33]. A larger ϕt,g value suggests that the gene is specifically
highly expressed in this cell type. For the cell type with the
maximum expression, ϕt,g = τg, otherwise ϕt,g < τg.

ϕt,g = τgx̂t,g (2)

τg =
∑n

t=1(1 − x̂t,g)

n − 1
(3)

x̂t,g = exprt,g + 1
max1≤t′≤n exprt′ ,g + 1

(4)

Similarly, the cell-type-specific low expression measure for a
gene g in cell type t is defined as Equation 5, where ωg, ẑt,g are
determined by Equation 6 and Equation 7. Thus, 0 ≤ ρt,g ≤ 1.

A larger ρt,g value suggests that the gene is specifically lowly
expressed in this cell type.

ρt,g = ωgẑt,g (5)

ωg =
∑n

t=1(1 − ẑt,g)

n − 1
(6)

ẑt,g = min1≤t′≤n exprt′ ,g + 1
exprt,g + 1

(7)

To select cell-type-specific highly expressed or lowly expressed
genes, for a gene g in cell type t, if ϕt,g was greater than the 100αth
quantile of ϕ in cell type t, the gene would be selected as a marker
gene for the cell type. Similarly, for another gene g′ in cell type
t′, if ρt′ ,g′ was greater than the 100βth quantile of ρ in cell type
t′, the gene would be also selected as a marker gene for the cell
type. All marker genes from all cell types were combined as the
result of the feature selection step. These marker genes were used
to compress both the training set and the test set.

Pathway hierarchy
All levels of the pathway hierarchy were acquired from the Reac-
tome database, which could be represented as a tree. The pathway
hierarchies for mice, humans, and rats were available in CellTICS.
The tree was composed of internal nodes representing hierar-
chical pathways and leaves representing genes. Pathways at the
highest level were connected to the root node, and edges and
nodes not related to the selected marker genes were excluded. To
formally formulate the network, the parameter l was introduced
to specify the number of considered levels (i.e. the number of
hidden layers of the neural network). When l was specified, a
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subtree of the original tree could be constructed. If the upper
depth of a leaf was larger than l, the excessive parental level(s)
of the leave would be excluded and the leaf would be connected
to upper-level pathways. If the upper depth of a leaf was smaller
than l, artificial nodes would be added to represent the parents of
the leaf. From the subtree, a binary mask matrix M was generated
to suggest the connectivity of two entities in adjacent layers. If the
two entities had no connection, the corresponding entry in M was
0; otherwise, it would be 1.

Neural network construction
A feedforward neural network was constructed based on the
mask matrix. We first trained the network for cell-type prediction
and then trained several sub-neural networks for sub-cell-type
prediction. Thus, after obtaining the predicted cell types for the
test set, the test set was divided into subsets based on these
predictions, and similarly, the training set was separated based on
the true cell types. Then, sub-cell-type prediction was performed
for each cell type.

The detailed architecture of the CellTICS neural network is
shown in Supplementary Figure S2. In the neural network, each
node represents an entity such as a gene, pathway, or cell type,
and each edge represents the relationship between the entities
connected by the edge. The input layer comprises a set of genes.
The input data are the expression level of these genes, whose
dimension is the number of genes assigned to the bottom pathway
level. For each layer, the input is denoted as x and the output is
denoted as y. The output of the layer is calculated using Equation
8, where f is the activation function, M is the mask matrix, W
is the weight matrix, and b is the bias vector. Here MW is the
element-wise multiplication of M and W (i.e. Hadamard product).
The activation function is the tanh function (Equation 9). The
activation values are related to the importance measures of path-
ways, and they will be elaborated upon in 2.2.4. The dimension
of each hidden layer is in accordance with the mask matrix M.
To obtain the prediction for each cell, a predictive layer is added
after each hidden layer. The dimension of each prediction layer
equals the number of cell types. The probability of a cell being
classified as the ith cell type is calculated using the softmax
function (Equation 10), where C is the total number of cell types
and z is the input of the softmax function. The cell is assigned
to the class with the highest probability. Finally, the predictions
from all predictive layers are integrated by voting to obtain the
final prediction result.

y = f [(MW)x + b] (8)

f = tanh(z) = ez − e−z

ez + e−z
(9)

σi = ezi∑C
c=1 ezc

(10)

Important pathway identification
To identify important pathways for distinguishing each (sub-)
cell type, CellTICS utilized activation values during the training
procedure. Specifically, the activation values were calculated for
each pathway in every layer in the CellTICS neural network. For
a given pathway p and cell type t, the average activation value
(At,p) was computed across all cells of that type. These average
activation values were then sorted in descending order across all
cell types, obtaining a list (A(1),p,A(2),p,...,A(T),p), where T is the total
number of cell types. To quantify the importance of pathway p, the
difference between the first and second largest average activation

values, Equation 11, was computed. Due to the possibility of a
pathway p being included in the paths of multiple prediction
layers, there might be several dp values. For instance, a pathway
located on the first hidden layer (level 1) could be present in the
network paths leading to prediction level 1, level 2, and so on,
until the final hidden layer was reached. Hence, the maximum
value of dp among all paths of such nested networks was selected
as the final importance measure of the pathway and denoted as
Dp. If the importance value Dp exceeded a predefined threshold
(default: 0.1), pathway p would be deemed important for the cell
type corresponding to A(1),p.

dp = A(1),p − A(2),p (11)

Parameter settings
The CellTICS model was trained by the Adam optimizer with the
cross-entropy loss function with L2 regularization. To optimize
the performance of the CellTICS model, the parameters were
tuned using grid search with 5-fold cross-validation. The default
values for threshold values (α and β) are 0.95 and 0.9, respectively.
The default value for the number of hidden layers of the neural
network (l) is 5. The default hyperparameters for the minibatch
size, learning rate, and regularization parameter are 32, 0.001, and
0.0001, respectively. The default number of epochs is 10 for cell-
type prediction and 50 for sub-cell-type prediction.

Method comparison
This work compared the performance of CellTICS with six other
methods to evaluate its predictive performance. The compared
methods were SingleR [34], scmap [35] (containing scmap-cluster
and scmap-cell), CHETAH [36], scPred [37], and ACTINN [3]. We
selected these specific models based on their representation
of major categories within cell type annotation methods,
encompassing correlation-based methods (SingleR, scmap, and
CHETAH), supervised classification-based methods (scPred),
and traditional neural networks (ACTINN) [38]. Noteworthy, we
compared CellTICS with ACTINN, a traditional neural network-
based method. This choice was made to assess CellTICS’s
proficiency in accurate cell classification and check whether its
interpretability sacrifices the prediction accuracy. The default
parameter settings of these tools were used unless mentioned
otherwise. For scmap, the unassigned threshold, which represents
a similarity threshold, was set to −1.

Evaluation criteria
Evaluation of cell type prediction
The performance of CellTICS and the compared methods were
evaluated using two metrics: accuracy (ACC) and macro-averaged
F1 scores (macro F1 scores). ACC measures the percentage of cells
correctly classified, while the F1 score is the harmonic mean of
precision and recall. The macro F1 score is computed by taking
the arithmetic mean of all per-class F1 scores and is useful when
dealing with class imbalance problems, which are common in
cell-type classification.

Evaluation of important pathway identification
To demonstrate the unique advantages of CellTICS in identifying
cell-type important pathways, the gene set enrichment analy-
sis (GSEA) [39] was utilized for comparison. GSEA is a method
for evaluating cumulative changes in the expression of multiple
genes belonging to a gene set (i.e. a pathway). It can be used to
identify pathways exhibiting differential gene expression between
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cell types, between the young and old cells of a specific cell type,
or between diseased and healthy cells of a cell type.

The logarithmic fold change (logFC) was calculated as a differ-
ential expression measure for a gene by computing the difference
of average log-normalized count data in different groups. Subse-
quently, the R package ReactomePA [40] was used to perform GSEA
and identify important pathways with a P-value less than 0.05.
Finally, the important pathways found by CellTICS and GSEA were
compared.

For pathways identified by CellTICS but not by GSEA, Wilcoxon
signed-rank tests were further performed to examine the
variation difference, instead of the traditional mean difference,
between groups. Thus, for each important pathway identified by
CellTICS, the coefficient of variation (CV) of all genes in both
groups (e.g. cells of cell type A versus other cells, or old cells
of cell type A versus young cells of cell type A) was calculated.
Consequently, a Wilcoxon signed-rank test on the CV values of the
two groups was performed to assess the significance of variation
differences.

RESULTS AND DISCUSSIONS
Identification of cell and sub-cell types
To illustrate the predictive power of CellTICS for (sub-)cell-type
identification, we compared CellTICS with six other methods for
10 analysis tasks (Supplementary Table S1). The procedure was
repeated five times across all datasets, and the average ACC and
macro F1 scores were computed.

The results for the cell-type identification and the sub-cell-
type identification are shown in Figure 2. Clearly, CellTICS out-
performs the other methods in almost all datasets, since the
performance of CellTICS is usually the best, that is, exhibiting
higher scores and smaller performance variations. Although most
methods can obtain high ACC for major cell type identification
(Figure 2A), the sensitivity of many methods is not satisfactory
enough as reflected by the low macro F1 scores in Figure 2B.
However, CellTICS stands out with an average macro F1 score
between 0.9406 and 0.9993 for the considered datasets. Classi-
fying sub-cell types is a more challenging task, while CellTICS
is still superior in most methods (Figure 2C and Figure 2D). The
performance of these models for each analysis task is illustrated
in Supplementary Figure S3.

We also compared CellTICS with the original marker gene
selection to CellTICS with highly variable gene (HVG) selection
(top 2,000, 5,000, or 10,000 HVGs). As shown in Supplementary
Figure S4, the performance of original CellTICS is significantly
better than using the top 2,000 HVGs, while it is comparable with
using the top 5,000 and 10,000 HVGs. In the ASD data analysis,
CellTICS’s marker gene prioritization performs much better than
the HVG approaches (Supplementary Figures S4A–D).

CellTICS is robust in cell type and sub-cell type identification.
We ran CellTICS 20 times and observed very small variations in
the accuracy and macro F1 scores for all cell type prediction and
sub-cell type prediction (Supplementary Figure S5). Also, CellTICS
is computationally efficient. As shown in Supplementary Table S2,
for the L5MB dataset which included about 20,000 cells and about
28,000 genes, the whole runtime (including training and testing)
was about 23 min.

One major distinctive part of CellTICS is the multi-predictive-
layer strategy, which greatly improves the prediction accuracy and
prediction power. Figure 3 demonstrates the effectiveness of this
strategy by comparing the performance of the original CellTICS
with that of CellTICS containing only one prediction layer on the

L5MB dataset. The results show that multiple prediction layers
can significantly enhance the ACC and macro F1 score of the
predictions. For cell type classification, the ACC is improved from
0.7711 to 0.9997, while the macro F1 score is improved from
0.1244 to 0.9878. In sub-cell type classification, the improvement
is even more significant, with the ACC increasing from 0.0303 to
0.9035 and the macro F1 score increasing from 0.0003 to 0.7142.
These findings demonstrate that the multi-predictive-layer strat-
egy adopted by CellTICS can substantially improve the accuracy
of predictions, providing a more nuanced and comprehensive
understanding of cell heterogeneity and disease processes. The
key advantage of this approach is that it allows for the aggregation
of information from different levels of pathway hierarchy, partic-
ularly those at the bottom levels which represent more detailed
pathways. By leveraging the unique information content available
at each level, the network can capture both the broad functional
relationships between pathways and the more specific functional
roles played by individual pathways.

Another noteworthy property of CellTICS is its ability to make
predictions at the sub-cell-type level. CellTICS outperforms most
methods in most cases (Supplementary Figures S3C–D), even for
the L5MB dataset, where the number of sub-cell types is relatively
large (i.e. 220). It also implies that CellTICS has the potential to
handle the class imbalance problem since the percentage of sub-
cell types in the L5MB test set varies from 0.01 to 5.01%. The
success in predicting sub-cell types suggests that CellTICS can
better facilitate the construction of cell atlas in complex tissues
to a deeper level. At this level, the identification of rare cell types
might hold special significance [41]. Rare cell types are sporadic
within a large population of cells, and their marker genes may
exhibit very weak signals. However, CellTICS can capture these
signals by incorporating both highly and lowly expressed marker
genes of all cell types. Particularly, the inclusion of cell-type-
specific lowly expressed genes offers valuable insights as their
expression remains uniquely low in certain cell types, which is
often overlooked in traditional marker gene prioritization. The
comparison between CellTICS’s marker genes and HVGs supports
this assertion.

The trade-off between interpretability and prediction accuracy
for deep neural networks is a common challenge in machine
learning. As the complexity of the model increases to achieve
higher accuracy, its interpretability tends to decrease. However,
the hidden layers of CellTICS follow the pathway hierarchy and
reflect the real relationships between pathway nodes in a cell.
The above results and discussions show that CellTICS can achieve
high prediction accuracy. In the following sections, CellTICS’s
interpretability will be demonstrated.

CellTICS identifies important pathways missed
by GSEA
Many deep learning models designed for cell type annotation
lack the ability to uncover what defines a cell type, which has
prompted us to emphasize achieving biological interpretability.
In addition to predicting cell types accurately and identifying the
genes that contribute to the prediction (i.e. important features),
CellTICS can also pinpoint important pathways (i.e. important
neurons in the neural network architecture) that define (sub-)
cell types or cell types under a specific physiological condition.
This capability represents the most distinctive aspect of this
study. Traditionally GSEA is typically used to identify pathways
with enriched gene expression changes between cell types. In
this section, the comparison between the two approaches will be
shown.
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Figure 2. The prediction performance of CellTICS and other cell-type identification methods. A total of 10 analysis tasks were conducted to generate the
boxplots. In each of these tasks, the average ACC and macro F1 scores based on five analysis repeats were used. (A) The ACC for cell-type identification.
(B) The macro F1 score for cell-type identification. (C) The ACC for sub-cell-type identification. (D) The macro F1 score for sub-cell-type identification.

Figure 3. The importance of the multi-predictive-layer strategy. The
average ACC and macro F1 scores of the original CellTICS and CellTICS
with only one prediction layer are shown for cell-type and sub-cell-type
identification on the L5MB dataset.

For the AMB whole dataset, we compared the important path-
ways of each cell type identified by CellTICS with those by GSEA
and also compared the results for distinguishing old cells from
young cells of a specific cell type. As shown in Figure 4A, CellTICS
and GSEA share some important pathways for both cell type
classification and aging status classification. Moreover, CellTICS
discovers many important pathways missed by GSEA, as it can
identify nonlinear characteristics of the pathway and capture
potential interactions among genes. Some pathways identified by
GSEA are not essential in defining cell types, suggesting that the
simple add-up of differential signals of genes in a pathway is not
necessarily an important cell-type-specific characteristic.

Generally, pathways with larger importance scores of CellTICS
(Dp values) are more likely to be identified by GSEA (Figure 4B and
Supplementary Figure S6). In Figure 4B, pathways from CellTICS
are sorted by Dp in descending order, and the cumulative fraction
of pathways shared between CellTICS and GSEA is shown. The
overlapping fraction is generally higher for pathways with higher
Dp values. Although the number of pathways passing the Dp

threshold of 0.1 is small for VASC (vascular), OLG (oligodendro-
cyte), and EPC (ependymocyte) cells (Figure 4A), the pattern still
holds for these cell types when ordering pathways by Dp without
imposing a cutoff (Figure 4B). Alternatively, the Dp threshold was
adjusted from 0.1 to 0.2 and 0.3 for CellTICS and then compared
the results with GSEA. As shown in Supplementary Figure S6, the
overlapping fractions are higher when the threshold for CellTICS
is more stringent.

The advantage of CellTICS over GSEA is that CellTICS can
aggregate differential signals nonlinearly via a neural network
approach, while GSEA aggregates the differential signals from
individual genes of the same pathway in a linear way. Additionally,
CellTICS compares the average activation scores of a pathway
between the considered cell type and all other cell types in a
pairwise fashion. However, GSEA pools all other cell types together
and compares them with the considered cell type.

Knowing pathways that define a (sub-)cell type is particularly
valuable because it allows for a better understanding of the
molecule dynamics of the cell and how they contribute to predict-
ing a (sub-)cell type. By uncovering cell-type-specific pathways,
CellTICS provides a more comprehensive and interpretable view
of the underlying biological processes.

Expression stochasticity of a pathway could be
cell-type specific
As shown in 3.2, some pathways identified by CellTICS do not
show significant differential gene expression at the individual
gene level and are not identified by GSEA. To explore their
underlying mechanisms, we tested the hypothesis that a
pathway’s expression stochasticity, measured by the coefficient of
variation, could be a cell-type-specific characteristic. For the AMB
whole dataset, a Wilcoxon signed-rank test was performed on the
coefficient of variation values of two groups (cell type A versus
other cell types, or old cells of cell type A versus young cells of
cell type A) for the important pathways discovered by CellTICS but
not by GSEA. Interestingly, among the eight important pathways
(with a Dp threshold of 0.3 and not identified by GSEA) for the
aging-related pathway discovery, seven of them were discovered
in EPCs. Therefore, the differential variation results for pathways
related to EPCs are presented in Figure 5. Three out of the seven
(Figure 5A) pathways uniquely identified by CellTICS exhibit a
significant difference in expression stochasticity between old
and young EPCs, and 10 out of 12 (Figure 5B) pathways did
so for the comparison between EPCs and other cells (P-value
≤ 0.05, Wilcoxon tests on CVs). Results for other cell types are
shown in Supplementary Figures S7–S11, with 14.3–61.1% of their

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad449#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad449#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad449#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad449#supplementary-data
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Figure 4. Comparison between CellTICS and GSEA. (A) The number of important pathways distinguishing cell types or age groups identified by CellTICS
(Dp ≥ 0.1) or GSEA. Pathways important for either old or young cells across all cell types are combined for the “Old or young cells” category. (B) Shared
pathways between CellTICS and GSEA. The cumulative fraction of pathways identified by GSEA is plotted along pathways with decreasing Dp values in
CellTICS.

Figure 5. Important pathways exhibiting differential expression stochasticity. The differential expression stochasticity of pathways is assessed by
Wilcoxon tests for (A) different age groups of ependymocytes or (B) ependymocytes versus other cell types. Only pathways with Dp ≥ 0.3 in CellTICS but
not identified by GSEA are shown. The red dashed lines mark the P-value cutoff of 0.05.

important pathways passing the Wilcoxon tests. These results
suggest that expression stochasticity within a pathway could be
an essential feature for defining a cell type or a specific age group,
which is distinctive for a cell type annotation model. Other studies
have also reported that expression stochasticity is important
and may affect organism functionality, viability, and flexibility
to adapt to environments [42–44].

Based on the findings in Figure 5A, ‘mitotic anaphase’ emerges
as one of the most significant important pathways to distinguish
age groups of EPCs. According to Hu et al. [45], the anaphase-
promoting complex/cyclosome (APC/C) is a novel cellular aging
regulator based on its indispensable role in the regulation of

lifespan and its involvement in age-associated diseases of eukary-
otic organisms. This consistency reinforces the results.

Interestingly, pathways not identified by GSEA but with a
higher importance score (Dp) are usually more likely to exhibit
significantly different expression stochasticity (P-value ≤ 0.05,
Wilcoxon tests on CVs). As shown in Supplementary Figure S12,
approximately 24–79% of the top 100 pathways identified by
CellTICS, but overlooked by GSEA, exhibit statistical significance.
For most cell types (EPC, NEURON, OLG, VASC, ASC, and old/young
cells), there is a decreasing trend in the cumulative overlapping
fractions with smaller Dp values. The only exception is the
IMMUNE cell type. Therefore, for many cell types, expression

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad449#supplementary-data
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Figure 6. Aging-related pathways identified by CellTICS. (A) The UpSet plot showing the number of important aging pathways for different cell types
(Dp ≥ 0.1). (B) GSEA and Wilcoxon tests on CVs for the 19 aging-related pathways shared by all cell types. The corresponding P-values are shown. Also,
the bar plots show the number of pathways passing GSEA or Wilcoxon tests for each cell type (P-values ≤ 0.05).

stochasticity is another important characteristic for a pathway
to define the cell type. A similar conclusion can be made when
comparing results using different Dp thresholds (Supplementary
Figure S13).

Important pathways for cell types undergoing
aging
Aging-related pathways shown above were based on the two-stage
sub-cell-type identification for the AMB whole data. Due to the
challenging task of sub-cell-type identification and to achieve

more accurate aging-related pathway identification, we carried
out the machine learning model for each cell type separately in
a single-stage procedure to separate old cells from young cells.
Figure 6A shows the UpSet plot of the number of important aging-
related pathways (Dp ≥ 0.1) for each cell type. Interestingly, 19
important aging-related pathways are shared by all cell types,
suggesting common and essential mechanisms underlying the
aging process for all considered cell types.

To investigate the 19 pathways important for aging, both
GSEA and the variation-based Wilcoxon signed-rank test were
performed. Figure 6B shows that although the 19 pathways are

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad449#supplementary-data
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Figure 7. Important pathways for ASD. (A) The number of important pathways distinguishing disease status identified by CellTICS (Dp ≥ 0.1) or GSEA.
(B) The number of pathways identified by CellTICS but not by GSEA (Dp ≥ 0.3) with the information whether they pass the Wilcoxon tests on CVs
(P-values ≤ 0.05). (C) Top 15 CellTICS-unique pathways (Dp ≥ 0.3) ordered by their significance of the Wilcoxon test on CVs. The red dashed line marks
the P-value of 0.05. The color of each pathway indicates whether the ASD group exhibits a higher or lower coefficient of variation. (D) Top 15 important
ASD pathways ordered by Dp value. Cell types corresponding to each pathway are also shown.

aging-related for all cell types according to CellTICS, differential
expression (significant GSEA P-values) or the differential expres-
sion stochasticity (significant Wilcoxon test P-values) can only
be detected in a subset of cell types. Notably, these pathways are
more likely to exhibit differential expression for astrocytes, while

they are more likely to show differential expression stochasticity
for immune cells. Although immune cells do not conform to
the trend of “larger Dp, more likely to pass Wilcoxon tests”
(Supplementary Figure S12), which means they may not use
expression stochasticity to distinguish themselves from other

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad449#supplementary-data
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cell types, they utilize it to differentiate old and young cells
(Figure 6B).

Furthermore, our work reveals that pathways related to
nonsense-mediated mRNA decay (NMD) played an important role
in the aging process. NMD is a translation-coupled mechanism
that eliminates mRNAs containing premature translation-
termination codons [46, 47]. In this analysis, “NMD enhanced
by the exon junction complex” and “NMD independent of the
exon junction complex” were discovered as important aging
pathways. Current experimental research has revealed that RNA
surveillance via NMD is crucial for longevity in daf-2/insulin/IGF-
1 mutant C. elegans [48]. The computational results in mice can
complement this understanding of the role of NMD in the aging
process.

Important pathways for ASD
The ASD dataset served as a demonstration of how CellTICS
could identify important pathways associated with disease. The
results are shown in Figure 7. Similarly, we compared the path-
ways identified by CellTICS (Dp ≥ 0.1) that distinguish between
disease status to those identified by GSEA. Despite some overlaps,
CellTICS discovered many more unique pathways (Figure 7A).
Then, the Dp threshold was tightened to 0.3 and Wilcoxon tests
were performed to compare the coefficient of variation of the ASD
and the control groups for these CellTICS-unique pathways. The
tests show that 57 out of 75 disease pathways exhibit a significant
variation difference (Figure 7B), suggesting most of these ASD-
related pathways exhibited expression stochasticity.

The top 15 disease pathways (Dp ≥ 0.3, but not identified
by GSEA) exhibiting the most significant differential expression
stochasticity are shown in Figure 7C, and the top 15 important
ASD pathways ordered by Dp values are shown in Figure 7D. As
expected, the pathway with the highest Dp value is “nervous sys-
tem development”, which is consistent with the etiology of ASD.
The analysis reveals that ‘axon guidance’ is among the top three
terms with the largest Dp value (Figure 7D) and also ranked third
for the differential expression stochasticity analysis (Figure 7C).
Notably, cortical abnormalities and genetic evidence support the
notion that dysregulated axonal growth and guidance are critical
developmental processes underlying the clinical manifestations
of ASD [49]. The findings further reinforce the importance of axon
guidance in ASD.

CONCLUSION
This study introduces CellTICS, a biologically explainable neural
network tailored for cell-type identification and interpretation
using single-cell RNA-seq data. CellTICS adopts a two-stage strat-
egy to predict cell types and sub-cell types, and its innovative
multi-predictive-layer strategy significantly enhances the predic-
tion accuracy. The prediction accuracy of CellTICS is validated
through comparison with alternative methods across various
datasets.

Moreover, CellTICS can discover important pathways that are
missed by conventional methods like GSEA. These pathways may
be characterized by their cell-type-specific expression stochastic-
ity, as quantified by the coefficient of variation in Wilcoxon tests.

Furthermore, the applications of CellTICS in the context of the
aging process and ASD underscore its relevance for cell type iden-
tification under different physiological conditions. This adapt-
ability is invaluable for gaining insights into how the aging pro-
cess or specific diseases impact individuals across various cell
types. In summary, CellTICS offers a powerful and biologically

interpretable tool for advancing our understanding of cellular
dynamics and their role in various health and disease states.

Key Points

• Innovative Interpretability: CellTICS is significantly dif-
ferent from the traditional ‘black box’ deep learning
models, offering biologically interpretable insights into
cell type prediction.

• Accuracy Unleashed: With CellTICS, we have pushed the
boundaries of accuracy in the identification of cell types
and sub-cell types using single-cell RNA sequencing
data, providing a sharper lens into the cellular world.

• Pathways Illuminated: CellTICS uncovers the hidden
pathways that define unique cell types. It sheds light on
the profound influence of expression stochasticity in cell
type delineation which is missed by traditional analysis.

• Disease and Aging Unveiled: CellTICS excels at the
identification of pathways that set cell types apart
under diverse physiological conditions, providing valu-
able insights into the dynamic changes in cellular land-
scapes of disease and aging.

SUPPLEMENTARY INFORMATION
Supplementary information is available online at https://
academic.oup.com/bib.
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