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Embryo mechanics cartography: inference 
of 3D force atlases from fluorescence 
microscopy
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Hervé Turlier    1 

Tissue morphogenesis results from a tight interplay between gene 
expression, biochemical signaling and mechanics. Although sequencing 
methods allow the generation of cell-resolved spatiotemporal maps of gene 
expression, creating similar maps of cell mechanics in three-dimensional 
(3D) developing tissues has remained a real challenge. Exploiting 
the foam-like arrangement of cells, we propose a robust end-to-end 
computational method called ‘foambryo’ to infer spatiotemporal atlases of 
cellular forces from fluorescence microscopy images of cell membranes. Our 
method generates precise 3D meshes of cells’ geometry and successively 
predicts relative cell surface tensions and pressures. We validate it with 
3D foam simulations, study its noise sensitivity and prove its biological 
relevance in mouse, ascidian and worm embryos. 3D force inference allows 
us to recover mechanical features identified previously, but also predicts 
new ones, unveiling potential new insights on the spatiotemporal regulation 
of cell mechanics in developing embryos. Our code is freely available and 
paves the way for unraveling the unknown mechanochemical feedbacks that 
control embryo and tissue morphogenesis.

Understanding the mechanical regulation of embryo and tissue shape 
emergence is a long-standing goal in developmental biology and bio-
logical physics. Although gene expression patterning in early embryos 
is increasingly documented thanks to recent single-cell sequencing 
methods1, we still know very little about how cellular forces are spa-
tiotemporally patterned within embryos and tissues. This is due to 
the lack of efficient methods for extracting cell- and time-resolved 
mechanics in a systematic, tissue-wide and noninvasive manner.

Most experimental methods to measure mechanics2 are local 
and time-consuming, such as micropipette aspiration, atomic force 
microscopy measurement or embedded droplet deformation3–12, mak-
ing the generation of spatiotemporal maps of mechanics tedious; 
others are invasive, such as laser ablation, perturbing normal tissue 
development13,14, or they probe mechanics only at the tissue level15–17, 

ignoring mechanical heterogeneities within the multicellular structure. 
All methods require live 3D imaging to follow the deformation of cells, 
tissues or embedded objects. Advances in fluorescence microscopy 
allow us to record the geometry of cells during the development of 
an embryo in toto from the zygote to a few hundreds of cells with a 
confocal microscope18 and up to thousands of cells with a light sheet 
microscope19. Attractive new microscopy techniques have emerged 
to try to quantify cellular mechanics directly, such as Brillouin micros-
copy20, or membrane tension probes21,22, but such methods still lack 
cross-validations and remain difficult to link directly to mechanical 
models of tissues.

An alternative idea that emerged a decade ago is to infer the 
forces that dictate the shape of cells directly from their geometry by 
solving an inverse mechanical model23. These mechanical inference 

Received: 13 April 2023

Accepted: 12 October 2023

Published online: 6 December 2023

 Check for updates

1Center for Interdisciplinary Research in Biology, College of France, CNRS, INSERM, University of PSL, Paris, France. 2Laboratory of  
Developmental Biology of the Villefranche-sur-Mer, Institute of Villefranche-sur-Mer, Sorbonne University, CNRS, Villefranche-sur-Mer, France.  

 e-mail: herve.turlier@college-de-france.fr

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-023-02084-7
http://orcid.org/0000-0002-8444-0630
http://orcid.org/0000-0002-9332-9125
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-023-02084-7&domain=pdf
mailto:herve.turlier@college-de-france.fr


Nature Methods | Volume 20 | December 2023 | 1989–1999 1990

Article https://doi.org/10.1038/s41592-023-02084-7

Results
Delaunay-watershed algorithm for multimaterial mesh 
generation
An essential first step is to extract the precise geometry of cells from 
microscopy images. Voxel-based segmentation masks are heavy data 
structures that are not well adapted to measuring geometrical features 
such as contact angles or mean curvatures. Alternatively, triangle mesh 
representations of cell interfaces possess several advantages; they are 
sparse data structures that facilitate the retrieval of geometric quanti-
ties using a discrete differential formulas40. They are easy to render 
graphically and form basic elements for computational modeling, 
such as vertex models41,42 or finite element methods43. The surface 
meshes of interest in our case are triangular, nonmanifold to account 
for tricellular junctions and multimaterial to keep track of the iden-
tity of each enclosed cell or region (‘material’), in the spirit of ref. 44. 
Although triangle meshes can be generated by discretizing voxel-based 
segmentation masks directly, using marching cube algorithms45 or 
more recent methods46, we found that previous algorithms introduced 
large errors in angle measurements in general.

Therefore, we developed a new algorithm that robustly generates 
nonmanifold multimaterial surface meshes from cell segmentation 
masks (preexisting or obtained with cellpose47). The first step consists 
of computing from the cell segmentation masks a Euclidean distance 
transform map (EDT)48, which represents a smooth topographic map 
of cell (and image) boundaries (Fig. 1a). This EDT map may also be 
predicted directly from raw fluorescent images by training a convo-
lutional neural network49. From the distance map, we sample points 
at the extrema of the elevation value using a maximum-pooling opera-
tor, which serves as control points to generate a Delaunay tessellation 
of the space (triangulation in 2D or tetrahedralization in 3D). A dual 
Voronoi diagram is then generated from the Delaunay tessellation 
and is represented as an edge-weighted graph 𝒢𝒢 𝒢 𝒢𝒢𝒢𝒢 𝒢𝒢𝒢𝒢𝒢, where 
𝒢𝒢  is the set of nodes, representing tetrahedra in the dual space (tri-
angles in 2D), 𝒢 the set of edges between these nodes and 𝒢𝒢  their 
associated weights. These weights are defined here according to the 
average value of the integrated distance map measured along the 
corresponding triangle (or edge in 2D) in the dual space (Extended 
Data Fig. 1a). Seeding each region using masks, we partition this graph 
using a watershed algorithm50 that separates the nodes in the graph 
between the different cells and the external region. Other graph 
partitioning methods such as multicut51, hierarchical agglomeration52 
or Mutex watershed53 algorithms may also be envisioned, although 
we have not tried them here. Mapped back on the dual Delaunay space, 
this partition defines a unique surface (contour in 2D) mesh that 
accurately follows cell boundaries. Our Delaunay-watershed mesh 
generation algorithm works just as well in 2D as in 3D (Fig. 1a). Since 
the main purpose of this mesh generation algorithm is to extract 
precise geometrical features, we generated a set of 47 foam-like simu-
lations of embryos with a number of cells varying from 2 to 11, which 
we translated into artificial confocal fluorescent images of a size of 
roughly (250 × 250 × 250 pixels) (ref. 54) to compare the error gener-
ated for different geometrical measures of interest (contact angles, 
mean curvature, junction length, area and volume) by our pipeline 
and state-of-the-art surface meshing techniques implemented in 
CGAL46. Our Delaunay-watershed algorithm55 outperforms CGAL46 
for the retrieval of contact angles (Fig. 1b), and cell volumes or junc-
tion lengths (Extended Data Fig. 1b), while its precision is comparable 
for the retrieval of interface areas and mean curvatures (Extended 
Data Fig. 1b).

Tension and pressure balance
Once the geometry of the cells can be calculated from the cell segmenta-
tion mesh (Extended Data Fig. 2 and Supplementary Note), we have to 
formulate the inverse mechanical problem to retrieve the relative force 
of the cells from their geometry. A quasistatic foam-like equilibrium 

methods (also called force or stress inference) are based only on 
image analysis and do not require tissue perturbation: they have 
therefore a lower entry barrier than many other methods, as they do 
not require complex experimental setups. They have been shown to 
be efficient in inferring tensions (and pressure) in two-dimensional 
(2D) cell monolayers24 and can be scaled to hundreds or thousands 
of cells. For tissues and embryos, most inference methods are based 
on the hypothesis that cells adopt shapes and arrangements similar 
to bubbles in a foam, as pointed out by D’Arcy Thompson more than 
a century ago25. This analogy implies that the mechanics of cells is 
dominated by tensile stresses on their surface, which are generated 
by actomyosin contractility26. Because actomyosin contractility may 
be regulated differentially in distinct cells or at different interfaces 
(such as the cell–medium and cell–cell interfaces5), embryos and 
tissues may be seen as heterogeneous foams, where each cellular 
interface may adopt a different tension. Actual inference methods 
also assume generally a quasistatic mechanical equilibrium, where 
the viscous relaxation of tensions (dozens of seconds) is much faster 
than typical developmental time scales (dozens of minutes to hours). 
This foam-like mechanical equilibrium underpins two force balances, 
the Young–Dupré and Young–Laplace equations (‘Results’), relating 
surface tensions with contact angles and cell pressures with interface 
curvatures. In the following, we will therefore refer to tension and 
pressure inference.

First versions of tension inference methods27,28 neglected Laplace’s 
law by assuming straight cell interfaces, as in traditional vertex mod-
els29. In addition, they treated tensions and pressure as independent 
variables, which made the inverse problem generally underdetermined 
and relatively sensitive to noise. Alternatively, segmentation of cell 
membranes into 2D polygonal lines to explicitly measure their curva-
ture30,31 allows successive determinations of tension and pressure and 
makes the set of equations generally overdetermined. In the particular 
case where the whole tissue can be imaged with its boundaries, as 
this is generally the case for early embryos, the problem turns out to 
be systematically overdetermined. However, the generalization of 
this approach to three dimensions has not been convincing so far, 
since high-quality images and a robust segmentation pipeline are 
required32,33. To avoid such issue, an elegant variational 2D approach 
was recently proposed in which cell junctions are fitted by circular 
arcs to find tensions and pressure34, taking advantage of a mapping 
between a heterogeneous 2D foam and the tiling of the space into ‘cir-
cular arc polygons’. This tiling falls actually within the class of Möbius 
diagrams35, whose mapping to 2D foams has already been pointed out 
mathematically36. In three dimensions, however, interfaces have mean 
constant curvatures but are generally not portions of a sphere and may 
adopt saddle-node shapes, as already noted for homogeneous foams37. 
Contrary to a recent assumption in ref. 38, the generalization to 3D of 
the variational scheme developed by ref. 34 with Möbius diagrams is 
mathematically not correct.

To fill the gap, we propose foambryo39, a robust end-to-end com-
putational method for performing tension and pressure inference in 
three dimensions, starting directly from 3D fluorescence microscopy 
of cell membranes. Our pipeline follows the 2D approach of ref. 30, 
where we decouple the inferences of tensions and pressures. It relies 
particularly on a new and efficient surface mesh reconstruction method 
to precisely quantify cell geometry. Our inversion algorithm exploits 
furthermore junction lengths and interface areas as weights to infer 
tensions and pressures more robustly. We perform a comprehensive 
benchmarking of our pipeline using 3D foam-like mechanical simula-
tions and a systematic sensitivity analysis on various equivalent force 
balance formulas. Our inference pipeline yields convincing results 
on early embryos of mice, worms and ascidians by recovering known 
mechanical characteristics and predicting new ones. We provide an 
easy-to-install Python package and a comprehensive set of user-friendly 
3D visualization tools.
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underpins two stress balance equations within the tissue (Fig. 2d).  
The Young–Laplace equation

pi − pj 𝒢 γijHij (1)

relates the hydrostatic pressure difference pi − pj between cells of indi-
ces i and j with the interface tension γij 𝒢 ‖

‖γγγij
‖
‖ and the interface mean 

curvature Hij, which is homogeneous along each interface (by conven-
tion the index 0 will refer to the external medium). The Young–Dupré 
force balance

γγγij + γγγjk + γγγki 𝒢 0 (2)

states that the sum of vectorial tensions should be zero at each tri-
cellular junction line that joins the interfaces between cells i, j and k. 
This vectorial sum is equivalent to saying that tensions are coplanar 
and form a triangle, which implies the triangle inequality γij < γjk + γki 
and equivalent relations by permutation of the indices i, j and k. Non-
compliance with one of these inequalities indicates that tension bal-
ance breaks down and predicts generically a topological transition in 
the embryo or tissue. The Young–Dupré tension balance can generi-
cally be decomposed into a set of two independent scalar equations 
that combine the polar angles between the interfaces αij, αjk and αki  
(Fig. 2d). In the following, we use five different variants of tension bal-
ance that involve cosines and sines of polar angles only23, which we 
named Young–Dupré, Young–Dupré projection, Lami, inverse Lami 
and Lami logarithm56 (Methods and Supplementary Note).

The balance of forces in a foam-like tissue of nc cells can also be 
derived from the minimization of surface energy under cell volume 
constraints. This formulation is particularly adapted to numerical 

simulations on a discrete mesh41,42 and is based on a Lagrangian func-
tion that includes pressures as Lagrange multipliers enforcing volume 
conservation. Based on derivatives of this Lagrangian function with 
respect to vertex position, we defined two additional expressions of 
tension and pressure balances, that we named variational Young–Dupré 
and variational Laplace (Supplementary Note).

Tension and pressure inference
Tensions depend only on contact angles at tricellular junctions and 
are independent of cell pressures, so here we decompose the inverse 
problem into two steps, in the same spirit as ref. 30. First, we solve the 
tensions and then determine the cell pressures using inferred tension 
values. The advantage of this two-step approach is that tensions can 
still be inferred in embryos or tissues under confinement or compres-
sion (such as Caenorhabditis elegans), where Laplace’s force balance 
does not apply anymore, since the interfaces may adopt nonuniform 
mean curvatures. Tensions (and pressures) are known up to a multipli-
cative (respectively, an additive) factor. To remove this indeterminacy, 
we impose that the average tensions shall be equal to unity, which adds 
an equation to the system, and we arbitrarily fix the external pressure 
to zero. The tension inference problem can be generically cast into a 
linear system AΓ × Γ = cΓ, where Γ = (γ1 … ,γm)T (T denoting a transpose) 
collects the nm unknown tensions, AΓ is a matrix of size (nΓ + 1) × nm that 
collects nΓ + 1 equations that relate the tensions and cΓ 𝒢 𝒢0𝒢… 𝒢0𝒢nm𝒢

T 
implements the constraint on the average tensions. This system is 
generally overdetermined and is solved in the sense of ordinary 
least-squares. Performing a systematic benchmark of our method, we 
found that better results are obtained when the nΓ tension equations 
are weighted by the length of the corresponding junction (Supplemen-
tary Note), which is the choice taken further.
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Fig. 1 | Multimaterial mesh generation algorithm. a, Description of the 
successive steps of the Delaunay-watershed algorithm in 2D and 3D. From left to 
right: microscopy image (artificial here), segmentation mask, EDT map, seeding 
from extrema of the EDT and Delaunay tessellation, dual Voronoi diagram after 
the graph was segmented with a watershed cut algorithm50 and multimaterial 
nonmanifold mesh (polygonal in 2D or triangle mesh in 3D). DT, distance 

transform. b, The geometric precision of our mesh generation algorithm is 
benchmarked on foam-like simulations (n = 54), which are transformed into 
artificial images to reconstruct surface meshes. Our pipeline reconstructs cell 
geometry with better precision than state-of-the-art mesh generation methods, 
such as CGAL46, as shown by the comparison of the error (mean ± s.d.) in the 
reconstructed angles as a function of the original angle.
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In Fig. 3, we compare the sensitivity of our inference algorithm for 
the different variants of the Young–Dupré formula in equation (3), and 
the variational Young–Dupré equation. By perturbing vertex positions 
with random noise in mesh solutions of foam-like simulations (Fig. 3a), 
we calculate and plot the mean square error on the tensions inferred 
from this perturbed mesh (Fig. 3b). At low noise values, we find that 
the scalar Young–Dupré equation gives better results, but this error 
increases faster for larger noise. Variational Young–Dupré and the 
different Lami variants have an error that increases faster at low noise, 
but then reaches a lower relative plateau at higher noise.

For pressure inference, we follow the same approach, express-
ing the inverse problem as a linear system AP × P = BP where  
P = (p1, … ,pc)T collects the unknown pressures, which we solve with 
the ordinary least-squares method. Here we compare the tradi-
tional Laplace equation (1) and our new variational Laplace formula 
(Supplementary Note). We find that our mesh-based variational 

formula performs systematically better regardless of the level of  
noise (Fig. 3c).

Error in inference results may originate from deviations of cells 
shape from the solution of an heterogeneous foam or from an insuf-
ficient image resolution (Extended Data Fig. 3c), but they are also the 
result of an inevitable intrinsic noise generated by our pipeline that 
comes from the segmentation and meshing operations. To evaluate 
which formula may be most adapted given this minimal and ineluc-
table level of noise, we generate ideal artificial confocal microscopy 
images from mesh results of foam-like simulations (Supplementary 
Note). This dataset54 is used to benchmark our method: the images are 
segmented using cellpose47 and translated into multimaterial meshes 
with our Delaunay-watershed algorithm to ultimately infer tensions 
and pressures using the various formulas introduced earlier (Fig. 3d). 
In general, we find that the systematic error induced intrinsically by our 
pipeline remains low (below 10% on average), with the best inference 
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ij . e, 3D map of relative surface tensions in 

the embryo, plotted with a color code from blue (lowest) to red (highest).  
f, Pressure map in the embryo, normalized from 0 to 1. g, Exploded view of the 
surface tension map that illustrates cell–cell contact tensions within the embryo. 
h, Force graph representation of the mechanical atlas, where each node 
represents a cell with its associated pressure and each edge corresponds to an 
interface colored by its tension value. i, 3D stress eigenvalue representation, 
corresponding to a stress tensor calculated per cell with the Batchelor formula71. 
Positive eigenvalues are plotted in blue (compressive stress) while negative are 
plotted in red (extensile stress).
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results obtained with the scalar Young–Dupré equation (3) and the 
variational Laplace formula (Fig. 3e–f and Extended Data Fig. 3b), 
consistent with the histograms of eigenvalues of the corresponding 

pseudo-inverse matrices (Extended Data Fig. 3a). For all tension and 
pressure inference examples shown below, we therefore systematically 
use the scalar Young–Dupré and variational Laplace formula.
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embryo image. Scale bars, 20 μm.
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Force inference applied to early embryo development
To validate the biological relevance of our new force-inference pipeline, 
we inferred 3D mechanical atlases of mouse and ascidian embryos 
using fluorescent microscopy images of cell membranes. We first study 
the self-consistency of the heterogeneous foam model in compacting 
eight-cell mouse embryos. Compaction corresponds to the extension 
of internal cell contacts that round up the embryo and was shown by 
micropipette tension measurements5 to be characterized by a decrease 
in the ratio α 𝒢 γcc

2γcm
, called the compaction parameter, where γcm is the 

tension at the cell–medium interface of cells and γcc the tension at 

cell–cell contacts. This single parameter is enough to characterize the 
embryo shape and is equal to the cosine of half the contact angle of the 
cell medium. Using confocal fluorescent images of eight-cell mouse 
embryos at successive levels of compaction, we segmented them into 
multimaterial meshes and inferred relative tensions. We then per-
formed 3D foam-like simulations and compared them with the original 
microscopy images (Fig. 3g), and found a very good qualitative agree-
ment. Our automatic inference methods yields systematically lower 
variability in inferred γcc values than previously obtained by measuring 
contact angles manually5, as illustrated on Extended Data Fig. 3d.  
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and vegetal poles of the early ascidian embryo (P. mammillata) in the 16AS 
(AS for asynchronous), 24-, 32AS, 64- and 120-cell stages. The ratio of mitotic 
to interphase apical tension is colored green if it is less than one and red if it is 
greater than one. Mitotic cells are indicated with a white star.
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This confirms the relevance of a heterogeneous foam model hypoth-
esis and exemplifies the capability of our inference pipeline.

To go beyond this example, where cell–medium and cell–cell 
tensions are uniform within the embryo, we inferred spatiotemporal 
mechanical atlases of the early ascidian embryo Phallusia mammillata. 
We used fluorescent images of cell membranes that were acquired with 

a confocal microscope from the zygote to the 44 cell stage (Methods) or 
with a light sheet microscope from the 64-cell stage to the late neurula 
(less than or equal to 800 cells)19. We first focused on the shape of the 
embryo from 16 cells to the early gastrula, where divisions are reported 
to be asynchronous with cell divisions that alternate between the ani-
mal and vegetal hemispheres57. Recently, it was shown in P. mammillata 
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The white arrows indicate regions of higher tension (red) within the embryo. 
Representative fluorescent microscopy images of myosin II (iMyo) at the vegetal 
pole and in the sagittal view: 3D reconstruction (top left) or selective plane 
projection of ten confocal planes (top middle and bottom left). The orientation 
of the embryo is given by arrows. Ant., anterior; Pos., posterior; Med., medial; 
Lat., lateral; D, dorsal and V, ventral. Scale bars, 20 μm.
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embryos at 16, 32 and 44 cell stages that cells at mitosis entry have 
lower apical tension than their interphase counterparts located in 
the opposite hemisphere6. This striking result, in notable contrast to 
mitotic cortical stiffening reported in most somatic cells58, is accurately 
predicted by our force-inference method, which finds a ratio of apical 
tension between mitotic and interphase cells that is systematically 
lower than 1 in the 16 to 32 cell stages (Fig. 4e). This mitotic softening 
alternates between the animal and vegetal poles, as also illustrated in 
pressure maps (Extended Data Fig. 4a), further explains the overall 
3D shape of the embryo that is flatter on the side of interphase cells 
(16 and 32 cells). As one would expect from Laplace’s law, if applied 
globally to the embryo approximated to a droplet, a higher apical 
tension at one pole leads indeed to its flattening. Inference not only 
confirms previous results, but also predicts an unknown switch in the 
64-cell embryo where mitotic blastomeres have higher apical tension 
than their interphase neighbors (Fig. 4e and Extended Data Fig. 4a) 
suggesting that, from this stage on, cells undergo mitotic stiffening. 
This mitotic stiffening persists during gastrulation (stage 120 in Fig. 4e) 
and later (Extended Data Fig. 4a). This illustrates the predictive power 
of our inference pipeline, which reveals new mechanical features that 
explain the shape of cells and embryos.

To further assess the validity of our inference method, we searched 
for locations in the embryo where the hypothesis of foam-like mechani-
cal equilibrium may break down. An interesting idea is to look for 
junctions that are unstable for the predicted tensions. In fact, when 
γij > γjk + γki, we expect the junction ij to be unstable and undergo a 
(possibly degenerate) T1 topological transition (Fig. 4a). Any unstable 
junction is therefore the sign of mechanical equilibrium breakdown 
that can result either (1) from a too large error in tension inference or 
(2) from an inadequacy of the heterogeneous foam model to describe 
cell arrangement or geometry59. In a 64-cell P. mammillata embryo, we 
found 31 unstable junctions in a total of 569 junctions (Fig. 4d). These 
unstable junctions are detected exclusively close to the embryo center, 
where the lengths of the junctions become very small, and segmenta-
tion struggles to resolve cell geometry (Fig. 4d and Extended Data 
Fig. 4b). In general, the percentage of unstable junctions predicted by 
our inference pipeline remains very low, around 3%, throughout the 
development of the ascidian embryo up to late neurula (Fig. 4b). This 
represents an even lower percentage of unstable junction length below 
1% (Fig. 4c), which confirms that the tension equilibrium predicted by 
our inference pipeline is generally satisfied. To assess the validity of the 
inference, it is also useful to visualize the deviation from equilibrium 
using the force balance at the junctions (equation (2)). We therefore 
propose a visualization of the residuals ∥AΓ × Γ − CΓ∥2 at each tricellular 
junction, as shown in Fig. 4c,d and Extended Data Fig. 4b.

To further illustrate the capabilities of our inference method, we 
report three aspects of early ascidian embryo development brought to 
light by our mechanical atlases. The early development of the ascidian 
is characterized by its high degree of invariance19, and a stereotypical 
feature of this invariance is the bilateral symmetry of the embryo. 
However, each embryo shows a certain degree of geometric variability 
between its left and right sides, which is well reflected in the mechanical 
asymmetry, as illustrated by the (a)symmetry of the tension and pres-
sure maps inferred in Fig. 5a and Extended Data Fig. 5a.

The cell fate in the ascidian embryo is also invariant, as has been 
described for several decades (reviewed in ref. 19). At the 76-cell stage, 
the animal hemisphere is composed exclusively of ectodermal cells, 
while the vegetal hemisphere is segregated into neural and/or noto-
chord progenitors and endoderm or mesoderm germ layers. We find 
that this patterning of cell fate is reflected in a remarkable manner in 
different regions of cell mechanics: ectoderm and endoderm cells 
have lower apical tension and lower pressure, while neural plate and 
mesoderm cells form very distinct regions of higher apical tension 
and pressure (Fig. 5b). This is probably due to the different mitotic 
history of each lineage, since fate specification is accompanied by an 
independent cell cycle timing in each specified tissue19,57. In the 76-cell 
stage, neural and/or notochord and mesoderm cells have, in fact, just 
undergone cell division (they are in their eighth cell cycle), while endo-
derm cells were born more than 40 minutes ago and are in the middle 
of interphase, just before they undergo apical constriction60. In the 
neurula stage, apical constriction has been reported to drive neural 
tube closure with greater contractility on the apical side of the nerve 
cord and brain tissues61. Consistent with this, our inference pipeline 
predicts on the vegetal side of the embryo at 395-, 702- and 758-cell 
stages a high apical tension in cells located in the anterior neural plate 
that are undergoing folding (Fig. 5c arrow in the vegetal pole view, 
Extended Data Fig. 5b). A sagittal section of the embryo at this stage 
reveals that the neural tube has more cortical tension than the overlying 
epidermis of the underlying endoderm and notochord (Fig. 5c, sagittal 
section); this higher tension is reflected in a stronger accumulation of 
myosin II in the neural tube compared to other tissues (Fig. 5c, myosin 
sagittal section and also ref. 61).

Finally, we performed tension inference in the early C. elegans 
embryo from 4 to 15 cells (Fig. 6). Unlike ascidian and, to a certain 
extent, mouse embryos, an eggshell strongly constrains the shape of 
cells from the zygote stage. This confinement has shown to be an essen-
tial cue controlling early cell arrangement62,63 and ensures Laplace’s law 
is no longer adequate to account for cell pressures, which are directly 
affected by the mechanical resistance of the shell. We confirm this 
characteristic with 3D simulations of a four-cell embryo confined within 
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an ellipsoid (Fig. 6a), using realistic parameters that we previously 
measured in ref. 63. In this realistic simulation, we show that the mean 
curvature may be locally perturbed by the shell along cell–medium 
interfaces, especially for ABp and EMS blastomeres, which precludes 
the use of Laplace’s law that assumes constant mean curvature inter-
faces. Indeed, when we infer pressures with the Laplace or Laplace 
variational formula on this mesh, we obtain pressure predictions, which 
are 20 to 30% different from the actual value in the four blastomeres  
(Fig. 6a). Therefore, simultaneous tension and pressure inference may 
not be a good strategy in this case33, while breaking down the inference 
in two successive steps still allows us to infer tensions independently of 
cell pressures. We find, in agreement with the measurements in ref. 63, 
a lower cell–medium tensions in P2 and EMS cells in the four-cell stage 
C. elegans embryo, and predict a general trend of lower cell–medium 
cortical tension in descendants of the P-lineage at subsequent stages 
of embryo development (Fig. 6b).

Discussion
We presented a robust end-to-end computational pipeline to infer 
relative surface tensions and pressures directly from 3D fluorescent 
images of embryos or tissues. It is based, in particular, on a new and fast 
method for generating surface meshes from cell segmentation masks, 
which allows for a more accurate extraction of geometric features than 
previous approaches46. Therefore, our algorithm is compatible with 
the latest segmentation methods47,64,65 and can scale to thousands of 
cells. We also introduced a new formula for inferring pressures from 
a triangle surface mesh, which outperforms the direct inversion of 
Laplace’s law. By performing a systematic sensitivity analysis on simu-
lated embryos, we showed that the classic Young–Dupré formula gives 
the best tension inference results for moderate noise in the image or 
in the cell shape. Our pipeline intrinsically achieves maximum relative 
force errors of roughly 10% from images of simulated embryos (Fig. 3e–f 
and Supplementary Notes C.4.2 and C.5.3). Additionally, we provide 
several visualization tools built on Polyscope66 to display multicellu-
lar morphology and forces in multiple ways, including a force graph 
representation of the cell aggregate and a 3D map of cellular stress 
tensors (Fig. 2h–i). The residues and predicted topological changes of 
inference for each junction in the aggregate can also be directly plotted 
to enable local evaluation of the method and/or the active foam hypoth-
esis (Fig. 4b,c). Subsequently, we demonstrated the biological relevance 
of our approach by generating mechanical atlases of the early ascidian 
embryo: our inference method can recover characteristic patterns of 
apical tension previously observed61, including a lower apical tension 
measured in mitotic cells before the 64-cell stage6. It can also make 
new predictions and reveal mirroring patterns of cell mechanics and 
cell fate in germ layers. Finally, we demonstrate the use of decoupling 
pressure and tension inference by applying our methodology to the 
early C. elegans embryo, which develops within a shell.

One forthcoming challenge will be to generate spatiotemporal 
mechanical atlases of various embryos. Indeed, a temporal reference 
is so far missing to calibrate the successive spatial maps in time. As 
demonstrated in two dimensions63, combining static inference with the 
temporal measurement of absolute forces in a single location, or imag-
ing phosphomyosin fluorescence intensity as a proxy for tension, could 
become a generic approach to construct temporal atlases of absolute 
mechanical forces, but this needs to be repeated in three dimensions.

A second challenge will involve the inclusion of junctional mechan-
ics in the form of additional line tension contributions at the apical 
surface of cells. Indeed, blastomeres with a contact to the cell medium 
acquire generally apico-basal polarity short before the blastula stage in 
early embryos. This emergence of apical polarity is generally associated 
with the formation of tight junctions and a contractile ring of actomyo-
sin delimiting each apical surface67, that is expected to create additional 
line tensions at tricellular junctions. The question of the uniqueness 
of the inverse solution will furthermore arise, since several stable 

discontinuous bifurcation states can exist in the presence of line and 
surface tensions68, which will first require a in-depth theoretical effort.

A third challenge will consist of generalizing force-inference 
methods to more complex mechanical models, such as recent active 
viscous surface models, which naturally generate inhomogeneous and 
anisotropic surface tensions69, as well as possible torques, leading to 
more complex shapes and force balance equations. This will be particu-
larly important for precisely characterizing the mechanics of dividing 
cells43,68 and faster growing organisms, such as C. elegans, for which 
the time scales of visco-active relaxation and development may no 
longer be well separated. A possible generic avenue to solve these prob-
lems may lie in a fully variational approach, where a mathematical loss 
between the microscopy images and the meshes could be constrained 
by an arbitrary mechanical model to allow direct gradient-based opti-
mization of its spatiotemporal parameters. Our recent effort to design 
such an efficient loss for comparing a mesh and an image may begin to 
fill this gap70. The current force-inference method we introduced will 
remain a fundamental building block to this research field, providing 
already accurate geometric and mechanical maps, which will form 
an ideal initial guess to refined but more computationally expensive 
iterative methods.

With a documented and user-friendly implementation in Python, 
our 3D force-inference method can be easily applied to 3D images 
of embryos or small tissues undergoing a sufficiently slow develop-
ment, and can be combined with spatial ‘omic’ data generated in 
early embryos to uncover possible mechanochemical couplings. 3D 
force-inference complements the growing range of tools available 
for studying the mechanical properties of tissues in space and time2, 
and we anticipate that this approach will help explain the mechanical 
underpinnings of large-scale morphogenetic movements at the cellular 
level and illuminate the intricate interplay between chemical signaling 
and mechanics during development. By revealing the developmental 
forces shaping organisms, our method may open new evo–devo stud-
ies, such as the investigation of the mechanical differences between 
closely related phylogenetic neighbors or the understanding of the 
mechanical aspects contributing to the divergence of developmental 
pathways in evolution.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-023-02084-7.

References
1.	 Gawad, C., Koh, W. & Quake, S. R. Single-cell genome 

sequencing: current state of the science. Nat. Rev. Genet. 17, 
175–188 (2016).

2.	 Sugimura, K., Lenne, P.-F. & Graner, F. Measuring forces  
and stresses in situ in living tissues. Development 143,  
186–196 (2016).

3.	 Mitchison, J. & Swann, M. The mechanical properties of the cell 
surface. J. Exp. Biol 31, 443–460 (1954).

4.	 Guevorkian, K., Colbert, M.-J., Durth, M., Dufour, S. & 
Brochard-Wyart, F. Aspiration of biological viscoelastic drops. 
Phys. Rev. Lett. 104, 218101 (2010).

5.	 Maitre, J.-L. Pulsatile cell-autonomous contractility  
drives compaction in the mouse embryo. Nat. Cell Biol. 17, 
849–855 (2015).

6.	 Godard, B. G. et al. Apical relaxation during mitotic rounding 
promotes tension-oriented cell division. Dev. Cell 55,  
695–706 (2020).

7.	 Tanase, M., Biais, N. & Sheetz, M. Magnetic tweezers in cell 
biology. Methods Cell Biol. 83, 473–493 (2007).

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-023-02084-7


Nature Methods | Volume 20 | December 2023 | 1989–1999 1998

Article https://doi.org/10.1038/s41592-023-02084-7

8.	 Bambardekar, K., Clément, R., Blanc, O., Chardès, C. & Lenne, P.-F. 
Direct laser manipulation reveals the mechanics of cell contacts 
in vivo. Proc. Natl Acad. Sci. USA 112, 1416–1421 (2015).

9.	 Rheinlaender, J. et al. Cortical cell stiffness is independent of 
substrate mechanics. Nat. Mater. 19, 1019–1025 (2020).

10.	 Fujii, Y. et al. Spatiotemporal dynamics of single cell stiffness in 
the early developing ascidian chordate embryo. Commun. Biol. 4, 
341 (2021).

11.	 Serwane, F. et al. In vivo quantification of spatially varying 
mechanical properties in developing tissues. Nat. Methods 14, 
181–186 (2017).

12.	 Souchaud, A. et al. Live 3D imaging and mapping of shear 
stresses within tissues using incompressible elastic beads. 
Development 149, dev199765 (2022).

13.	 Beloussov, L. V., Dorfman, J. G. & Cherdantzev, V. G. Mechanical 
stresses and morphological patterns in amphibian embryos.  
J. Embryol. Exp. Morphol. 34, 559–574 (1975).

14.	 Rauzi, M., Verant, P., Lecuit, T. & Lenne, P.-F. Nature and anisotropy 
of cortical forces orienting Drosophila tissue morphogenesis.  
Nat. Cell Biol. 10, 1401–1410 (2008).

15.	 Forgacs, G., Foty, R. A., Shafrir, Y. & Steinberg, M. S. Viscoelastic 
properties of living embryonic tissues: a quantitative study. 
Biophys. J. 74, 2227–2234 (1998).

16.	 Mazuel, F. et al. Magnetic flattening of stem-cell spheroids 
indicates a size-dependent elastocapillary transition. Phys. Rev. 
Lett. 114, 098105 (2015).

17.	 Mary, G. et al. All-in-one rheometry and nonlinear rheology of 
multicellular aggregates. Phys. Rev. E 105, 054407 (2022).

18.	 Cao, J. et al. Establishment of a morphological atlas of the 
Caenorhabditis elegans embryo using deep-learning-based 4D 
segmentation. Nat. Commun. 11, 6254 (2020).

19.	 Guignard, L. et al. Contact area–dependent cell communication 
and the morphological invariance of ascidian embryogenesis. 
Science 369, eaar5663 (2020).

20.	 Bevilacqua, C. et al. High-resolution line-scan Brillouin 
microscopy for live imaging of mechanical properties during 
embryo development. Nat. Methods 20, 755–760 (2023).

21.	 Gayrard, C. & Borghi, N. Fret-based molecular tension 
microscopy. Methods 94, 33–42 (2016).

22.	 Colom, A. et al. A fluorescent membrane tension probe. Nat. 
Chem. 10, 1118–1125 (2018).

23.	 Roffay, C., Chan, C. J., Guirao, B., Hiiragi, T. & Graner, F. Inferring 
cell junction tension and pressure from cell geometry. 
Development 148, dev192773 (2021).

24.	 Ishihara, S. et al. Comparative study of non-invasive force and 
stress inference methods in tissue. Eur. Phys. J. E 36, 45 (2013).

25.	 Thompson, D. W. & Thompson, D. W. On Growth and Form Vol. 2 
(Cambridge Univ. Press, 1942).

26.	 Lecuit, T. & Lenne, P.-F. Cell surface mechanics and the control 
of cell shape, tissue patterns and morphogenesis. Nat. Revi. Mol. 
Cell Biol. 8, 633–644 (2007).

27.	 Ishihara, S. & Sugimura, K. Bayesian inference of force dynamics 
during morphogenesis. J. Theor. Biol. 313, 201–211 (2012).

28.	 Chiou, K. K., Hufnagel, L. & Shraiman, B. I. Mechanical stress 
inference for two dimensional cell arrays. PLoS Comput. Biol. 8, 
e1002512 (2012).

29.	 Farhadifar, R., Röper, J.-C., Aigouy, B., Eaton, S. & Jülicher, F. The 
influence of cell mechanics, cell–cell interactions, and proliferation 
on epithelial packing. Curr. Biol. 17, 2095–2104 (2007).

30.	 Brodland, G. W. et al. Cellfit: a cellular force-inference toolkit 
using curvilinear cell boundaries. PLoS ONE 9, e99116 (2014).

31.	 Kong, W. et al. Experimental validation of force inference in 
epithelia from cell to tissue scale. Sci. Rep. 9, 14647 (2019).

32.	 Veldhuis, J. H. et al. Inferring cellular forces from image stacks. 
Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160261 (2017).

33.	 Xu, M., Wu, Y., Shroff, H., Wu, M. & Mani, M. A scheme for 
3-dimensional morphological reconstruction and force inference 
in the early C. elegans embryo. PLoS ONE 13, e0199151 (2018).

34.	 Noll, N., Streichan, S. J. & Shraiman, B. I. Variational method for 
image-based inference of internal stress in epithelial tissues. 
Phys. Rev. X 10, 011072 (2020).

35.	 Boissonnat, J.-D., Wormser, C. & Yvinec, M. Curved Voronoi 
Diagrams 67–116 (Springer, 2006).

36.	 Eppstein, D. A möbius-invariant power diagram and its 
applications to soap bubbles and planar lombardi drawing. 
Discrete Comput. Geom. 52, 515–550 (2014).

37.	 Sullivan, J. Nonspherical bubble clusters. In Proc. Bridges 2014: 
Mathematics, Music, Art, Architecture, Culture (eds Greenfield, G. 
et al.) 453–456 (Tessellations Publishing, 2014).

38.	 Liu, S., Lemaire, P., Munro, E. & Mani, M. A mathematical theory for 
the mechanics of three-dimensional cellular aggregates reveals 
the mechanical atlas for ascidian embryogenesis. Preprint at 
bioRxiv https://doi.org/10.1101/2022.11.05.515310 (2022).

39.	 Ichbiah, S. & Turlier, H. Virtualembryo/foambryo: v1.0.0. Zenodo 
10.5281/zenodo.8184851 (2023).

40.	 Meyer, M., Desbrun, M., Schröder, P. & Barr, A. H. in Visualization 
and Mathematics III (eds Hege, H.-C. & Polthier, K.) 35–57 
(Springer, 2003).

41.	 Brakke, K. A. The surface evolver. Exp. Math. 1, 141–165 (1992).
42.	 Maitre, J. L. et al. Asymmetric division of contractile domains 

couples cell positioning and fate specification. Nature 536, 
344–348 (2016).

43.	 da Rocha, H. B., Bleyer, J. & Turlier, H. A viscous active shell theory 
of the cell cortex. J. Mech. Phys. Solids 164, 104876 (2022).

44.	 Da, F., Batty, C. & Grinspun, E. Multimaterial mesh-based surface 
tracking. ACM Trans. Graph. 33, 112 (2014).

45.	 Lorensen, W. E. & Cline, H. E. Marching cubes: a high resolution 
3D surface construction algorithm. ACM Siggraph Comput. 
Graph. 21, 163–169 (1987).

46.	 Alliez, P. et al. in CGAL User and Reference Manual doc.cgal.org/5.5.1/
Manual/packages.html#PkgMesh3 (CGAL Editorial Board, 2022).

47.	 Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a 
generalist algorithm for cellular segmentation. Nat. Methods 18, 
100–106 (2021).

48.	 Danielsson, P.-E. Euclidean distance mapping. Comput. Graph. 
Image Process. 14, 227–248 (1980).

49.	 Wang, W. et al. Learn to segment single cells with deep distance 
estimator and deep cell detector. Comput. Biol. Med. 108,  
133–141 (2019).

50.	 Cousty, J., Bertrand, G., Najman, L. & Couprie, M. Watershed  
cuts: minimum spanning forests and the drop of water principle. 
IEEE Trans. Pattern Anal. Mach. Intell. 31, 1362–1374 (2008).

51.	 Kappes, J. H., Speth, M., Andres, B., Reinelt, G. & Schn, C. in 
Energy Minimization Methods in Computer Vision and Pattern 
Recognition (eds Boykov, Y. et al.) 31–44 (Springer, 2011).

52.	 Bailoni, A. et al. Gasp, a generalized framework for agglomerative 
clustering of signed graphs and its application to instance 
segmentation. In Proc. 022 IEEE/CVF Conference on Computer 
Vision and Pattern Recognition (CVPR) 11635–11645 (IEEE, 2022).

53.	 Wolf, S. et al. The mutex watershed: efficient, parameter-free 
image partitioning. In Proc. Computer Vision - ECCV 2018: 15th 
European Conference, Munich, Germany, September 8-14, 2018, 
Part IV (eds Ferrari, V. et al.) 571–587 (Springer-Verlag, 2018).

54.	 Ichbiah, S. & Turlier, H. Simulation dataset to benchmark 3D force 
inference methods. Zenodo 10.5281/zenodo.7881017 (2023).

55.	 Ichbiah, S. & Turlier, H. Virtualembryo/delaunay-watershed: v1.0.0. 
Zenodo 10.5281/zenodo.8184869 (2023).

56.	 Harmand, N. Pertinence et limites des tensions de surface et de 
ligne pour rendre compte des formes des cellules épithéliales. PhD 
thesis, Univ. Paris (2019).

http://www.nature.com/naturemethods
https://doi.org/10.1101/2022.11.05.515310
http://doc.cgal.org/5.5.1/Manual/packages.html#PkgMesh3
http://doc.cgal.org/5.5.1/Manual/packages.html#PkgMesh3


Nature Methods | Volume 20 | December 2023 | 1989–1999 1999

Article https://doi.org/10.1038/s41592-023-02084-7

57.	 Dumollard, R., Hebras, C., Besnardeau, L. & McDougall, A. 
Beta-catenin patterns the cell cycle during maternal-to-zygotic 
transition in urochordate embryos. Dev. Biol. 384, 331–342 (2013).

58.	 Stewart, M. P. et al. Hydrostatic pressure and the actomyosin 
cortex drive mitotic cell rounding. Nature 469, 226–230 (2011).

59.	 Graner, F. & Riveline, D. ‘The forms of tissues, or cell-aggregates’: 
D’Arcy Thompson’s influence and its limits. Development 144, 
4226–4237 (2017).

60.	 Sherrard, K., Robin, F., Lemaire, P. & Munro, E. Sequential 
activation of apical and basolateral contractility drives ascidian 
endoderm invagination. Curr. Biol. 20, 1499–1510 (2010).

61.	 Hashimoto, H., Robin, F. B., Sherrard, K. M. & Munro, E. M. 
Sequential contraction and exchange of apical junctions drives 
zippering and neural tube closure in a simple chordate. Dev. Cell 
32, 241–255 (2015).

62.	 Yamamoto, K. & Kimura, A. An asymmetric attraction model for 
the diversity and robustness of cell arrangement in nematodes. 
Development 144, 4437–4449 (2017).

63.	 Yamamoto, K. et al. Dissecting the subcellular forces sculpting 
early C. elegans embryos. Preprint at bioRxiv https://doi.org/ 
10.1101/2023.03.07.531437 (2023).

64.	 Wolny, A. et al. Accurate and versatile 3d segmentation of plant 
tissues at cellular resolution. eLife 9, e57613 (2020).

65.	 Kirillov, A. et al. Segment anything. Preprint at https://doi.org/ 
10.48550/arXiv.2304.02643 (2023).

66.	 Sharp, N. et al. Polyscope www.polyscope.run (2019).
67.	 Zhu, M. et al. Developmental clock and mechanism of  

de novo polarization of the mouse embryo. Science 370, 
eabd2703 (2020).

68.	 Turlier, H., Audoly, B., Prost, J. & Joanny, J.-F. Furrow constriction in 
animal cell cytokinesis. Biophys. J. 106, 114–123 (2014).

69.	 Marín-Llauradó, A. et al. Mapping mechanical stress in  
curved epithelia of designed size and shape. Nat. Commun. 14, 
4014 (2023).

70.	 Ichbiah, S., Delbary, F. & Turlier, H. Differentiable rendering for 3D 
fluorescence microscopy. Preprint at https://doi.org/10.48550/
arXiv.2303.10440 (2023).

71.	 Batchelor, G. The stress system in a suspension of force-free 
particles. J. Fluid Mech. 41, 545–570 (1970).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2023

http://www.nature.com/naturemethods
https://doi.org/10.1101/2023.03.07.531437
https://doi.org/10.1101/2023.03.07.531437
https://doi.org/10.48550/arXiv.2304.02643
https://doi.org/10.48550/arXiv.2304.02643
http://www.polyscope.run
https://doi.org/10.48550/arXiv.2303.10440
https://doi.org/10.48550/arXiv.2303.10440
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Methods

Article https://doi.org/10.1038/s41592-023-02084-7

Methods
Variants of Young–Dupré formulas
Starting from the vectorial expression of the Young–Dupré law (equa-
tion (2)) we call its decomposition simply by Young–Dupré its decom-
position with cosines of polar angles:

γij + γjk cosαki + γki cosαjk 𝒢 0

γij cosαki + γjk + γki cosαij 𝒢 0

γij cosαjk + γjk cosαij + γki 𝒢 0

Another set involves both cosines and sines of angles made by vectorial 
tensions with one direction chosen arbitrarily choose along a tension 
vector, and we call it the Young–Dupré projection:

γij + γjk cosαki + γki cosαjk 𝒢 0

γjk sinαki − γki sinαjk 𝒢 0

Many other mathematically equivalent formulas may in fact be derived 
from trigonometric laws applied to the triangle formed by vectorial 
tensions (Supplementary Note). Here, we will also use Lami’s theorem, 
which derives directly from the law of sines and was proposed as an 
alternative formula for tension inference in two dimensions34,56:

γij
sinαij

𝒢
γjk

sinαjk
𝒢 γki

sinαki
(3)

To avoid divergence at small polar angles, it was proposed to consider 
the same equations written as γij sinαjk 𝒢 γjk sinαij𝒢 γjk sinαki 𝒢 γki sinαjk, 
which we call inverse Lami, or to consider the logarithm of the equation 
(3), that we call the Lami logarithm.

Biological material
The eggs of the ascidian P. mammillata were harvested from animals 
obtained in Sète and kept in the laboratory in a tank of natural seawater 
at 16 °C. Egg preparation and microinjection have been previously 
described (detailed protocols in refs. 72,73). Eggs and sperm were 
collected by dissection. Sperm was activated in pH 9.0 seawater before 
fertilization (see the detailed protocol in ref. 73). All imaging experi-
ments were performed at 20 °C.

Plasma membrane and Myosin II fluorescent labeling
The plasma membrane was imaged using our characterized construct 
PH::Tomato73 whereas Myosin II was imaged using Myosin II intrabody 
iMyo (called SF9::GFP in Chaigne et al.74 the plasmid pRN3-SF9-GFP 
is a kind gift from the M.H. Verlhac laboratory). RNAs coding for 
PH::Tomato (1 μg μl−1) and SF9/iMyo::GFP (4 μg μl−1) were injected in 
unfertilized Phallusia oocytes that were then fertilized between 2 and 
12 h after injection.

Confocal imaging of P. mammillata embryos
Four-dimensional confocal imaging was performed at 20 °C using a 
Leica TCS SP8 inverted microscope equipped with hybrid detectors and 
a ×20/0.8 numerical aperture water objective lens. A 3D stack was taken 
every minute with a pixel size of 1 × 1 μm and a z step of 1 μm (to obtain 
cubic voxels). The Phallusia embryos shown in Fig. 4d (and Extended 
Data Fig. 4) from 16 cells to 32 cells were imaged in the Team ABC labora-
tory, while embryos from stage 64 cells and later stages (shown in Figs. 
1, 4 and 5 and Extended Data Figs. 4 and 5) were obtained from a public 
dataset of segmented P. mammillata embryos published in ref. 19.

Statistics and reproducibility
The boxplots (shown in Fig. 3e,f and Extended Data Fig. 3b) are real-
ized with the default parameters of the boxplot function of the mat-
plotlib Python library. The box center is located at the median, and its 

extremities represents the first and third quartiles. The whiskers are 
located at Q1 − 1.5× (Q3 − Q1) and Q3 + 1.5× (Q3 − Q1) where Q denotes 
the quartiles.

The shaded regions in plots show the standard deviation  
(in Figs. 3b,c and 2b and Extended Data Fig. 2b). The fluorescence 
microscopy images of Myosin II shown on Fig. 5 are representative of 
n = 4 experiments.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Images and segmentation masks are already available publicly for  
P. mammillata embryos on figshare (greater than or equal to 64 cells)19 
and for C. elegans embryos on figshare18. The simulated dataset (origi-
nal simulation meshes, artificial images, segmentation masks and ten-
sions/pressures) used to benchmark the method is available publicly on 
Zenodo54. Additional experimental images of ascidian embryos (fewer 
than 64 cells) and their segmentation masks are available upon request.

Code availability
Our inference pipeline foambryo39 is distributed as a standalone Python 
package in the repository PyPI (https://pypi.org/project/foambryo/) 
and the source code is available on GitHub (https://github.com/Vir-
tualEmbryo/foambryo) and is archived on Zenodo39. The companion 
code Delaunay-watershed55 is installed automatically with foambryo, 
but is also distributed as a standalone Python package in the repository 
PyPI and the source code available on GitHub. The mesh reconstruction 
pipeline Delaunay-watershed55 is also distributed as a separate Python 
package on PyPI (https://pypi.org/project/delaunay-watershed-3d/) 
and its source code is on GitHub (https://github.com/VirtualEmbryo/
delaunay-watershed) and archived on Zenodo55.
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Extended Data Fig. 1 | Detailed procedure and benchmarking of the 
Delaunay-watershed mesh generation algorithm. a) Pipeline for mesh 
generation from a microscopy image (here in 2D for graphical purposes). From 
the Delaunay triangulation of the image domain, we construct a graph of the dual 
Voronoi diagram. The edge weights of this graph are computed by integrating the 
value of the Euclidean distance map along corresponding edges that separates 

two triangles in the primary domain. The watershed is performed on the dual 
graph, and the seeds are chosen by taking the triangles containing the pixel with 
the highest EDT value in the primary domain. b) Comparison of the geometric 
error (mean ± SD) obtained on interface curvatures, cell volumes, interface areas, 
and junctional lengths between CGAL and our Delaunay-watershed algorithms 
for mesh reconstruction (n=54 simulated embryos).
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Extended Data Fig. 2 | Measurement of geometrical quantities on 
nonmanifold multimaterial triangle surface meshes. a) Contact angles are 
calculated at each junction as the mean of dihedral angles in each triplet of 
triangles that constitutes the junction. A dihedral angle is computed from the 
unit normals to the two adjacent triangles. b) Junctions are lines that separate 
three different materials or regions (three cells or 2 cells and the cell medium). 

Their length can be easily defined and measured with our nonmanifold mesh 
data structure. c) Each cell is represented by a bounded volume (a discrete 
manifold). We can compute their volumes and areas from our multimaterial 
mesh data structure with formulas derived in the Supplementary Note. d) 
Mean discrete curvatures can be computed using the cotangent formula (see 
Supplementary Note).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Inference sensitivity and influence of tensions 
formulas for pressure inference. a) Histogram of eigenvalues of the pseudo-
inverse matrices used to infer tensions and pres- sures for the Young–Dupré, 
variational Young-Dupré, Laplace and Variational Laplace formulas, on our 
simulated embryo dataset. The spread of the histogram is a measure of the 
conditioning of the matrix. b) Comparison of the relative error on inferred 
pressures obtained on our simulated embryo dataset between Laplace and 

variational Laplace formulas (n=54 simulated embryos; the red center line 
denotes the median value, while the box contains the 25th to 75th percentiles of 
dataset; the whiskers mark the 5th and 95th percentiles). c) Mean relative error on 
angles reconstruction (left), tension inference (mid- dle) and pressure inference 
(right), depending on the refinement of the mesh (in pixels) and the image size. d) 
Comparison of the variability (SD/mean) in tensions measured manually (from5) 
and inferred automatically with our pipeline in the 8-cell mouse.
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Extended Data Fig. 4 | Additional validation data of the 3D tension inference. 
a) Mitotic softening and stiffening in the 16AS, 24, 32AS, 64 and 120 cell stages of 
the early ascidian embryo (P. mammillata). Upper row: sagittal view of inferred 
apical tension. Middle and bottow rows: animal and vegetal views of the inferred 
cell pressures. The ratio of mitotic to interphase apical tension is colored green if 

it is less than 1 and red if it is greater than 1. The orientation of the embryo is given 
by arrows Ant: anterior, Pos: posterior, Med: medial, Lat: lateral, V: vegetal, A: 
animal. b) Vegetal view of stable (green) and unstable (red) junctions (Left) and 
tension inference 512 and 702 cell stages. The orientation of the embryo is given 
by arrows Ant: anterior, Pos: posterior, Med: medial, Lat: lateral.
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Extended Data Fig. 5 | Additional tension maps of ascidian P. mammillata gastrula and neurula. a) Nine examples of apical tension maps of 64 cell gastrula 
(animal pole). b) Maps of apical tensions at the animal and vegetal poles of early (Left) and late neurula ascidian embryos. The orientation of the embryo is given by 
arrows Ant: anterior.
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