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Abstract
Combined magnetic resonance imaging (MRI) and positron emission tomography/computed tomography (PET/CT) may 
enhance diagnosis, aid surgical planning and intra-operative orientation for prostate biopsy and radical prostatectomy. 
Although PET-MRI may provide these benefits, PET-MRI machines are not widely available. Image fusion of Prostate 
specific membrane antigen PET/CT and MRI acquired separately may be a suitable clinical alternative. This study com-
pares CT-MR registration algorithms for urological prostate cancer care. Paired whole-pelvis MR and CT scan data were 
used (n = 20). A manual prostate CTV contour was performed independently on each patients MR and CT image. A semi-
automated rigid-, automated rigid- and automated non-rigid registration technique was applied to align the MR and CT 
data. Dice Similarity Index (DSI), 95% Hausdorff distance (95%HD) and average surface distance (ASD) measures were 
used to assess the closeness of the manual and registered contours. The automated non-rigid approach had a significantly 
improved performance compared to the automated rigid- and semi-automated rigid-registration, having better average 
scores and decreased spread for the DSI, 95%HD and ASD (all p < 0.001). Additionally, the automated rigid approach had 
similar significantly improved performance compared to the semi-automated rigid registration across all accuracy metrics 
observed (all p < 0.001). Overall, all registration techniques studied here demonstrated sufficient accuracy for explor-
ing their clinical use. While the fully automated non-rigid registration algorithm in the present study provided the most 
accurate registration, the semi-automated rigid registration is a quick, feasible, and accessible method to perform image 
registration for prostate cancer care by urologists and radiation oncologists now.
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ASD	� Average surface distance
VTK	 �Visualisation toolkit

Introduction

Prostate specific membrane antigen (PSMA) positron emis-
sion tomography/computed tomography (PET/CT) is a 
growing tool in diagnosis and staging of prostate cancer. It 
is more sensitive for tumour detection than magnetic reso-
nance imaging (MRI) reported according to the Prostate 
Imaging-Reporting and Data System (PI-RADS). Therefore, 
the combination of both imaging modalities may enhance 
diagnosis and tumour characterisation [1] to aid surgical 
planning and intra-operative orientation for prostate biopsy 
and radical prostatectomy. Potential clinical benefits are 
improved detection of clinically significant prostate cancer 
with prostate biopsy and reduced positive surgical margins 
during radical prostatectomy [2–4]. Although hybrid PET/
MRI may provide combined imaging, PET/MRI machines 
are not widely available and have image resolution limi-
tations. Conversely, image fusion of PSMA PET/CT and 
MRI may be a practical alternative that can be clinically 
integrated, however is labour intensive with questionable 
precision.

Registration algorithms are routinely used to perform 
image fusion of PSMA PET/CT and MRI in radiation oncol-
ogy but not in urology, and thus clinical methods and val-
ues for alignment and registration errors rely on radiation 
therapy guidelines. Prostate clinical- and planning-target 
volumes (CTVs and PTVs) delineate the prostate and a 
5–10 mm border around the prostate to account for uncer-
tainties [5–7], respectively. It is important that uncertain-
ties including patient positioning, acquisition times, time 
between imaging modalities and registration errors do not 
exceed the typical PTV boundary. In addition, it is well 
understood that compared with MRI, CT scans overesti-
mate prostate CTVs [8]. As such, there has been extensive 
research investigating registration methods to accurately 
align CT and magnetic resonance (MR) images [8–20].

Several previous works have applied manual [8, 10, 11], 
semi-automated [9, 11–13, 16, 17, 19], automated rigid [14] 
and non-rigid [15, 18, 20] methods to perform MR-CT reg-
istration. Rigid prostate MR-CT registration studies have 
utilized point-based methods requiring manual placement 
of landmarks [8–13], iterative closest points between auto-
matically identified landmarks [14], crude manual matching 
paired with automated intensity matching (using focused 
and non-focused regions of interest) [9], and automated 
voxel similarity methods measuring mutual information 
[11, 16]. In addition to rigid-only methods, Rivest-Henault 
and colleagues, developed a robust inverse-consistent 

algorithm combining both rigid and non-rigid techniques 
well suited to CT–MR alignment in prostate radiation ther-
apy [15]. Similarly, Zhong et al. presented a combined rigid 
and deformable registration before their adaptable deform-
able registration method with finite element modelling [17]. 
Further deformable registration algorithms have utilized 
displacement vector fields [18], a probabilistic Bayesian 
framework [18], normalized mutual information [19] and 
a biomechanically constrained deep learning network [20]. 
However, previous works have not compared the accuracy 
and feasibility of clinical translation for a semi-automated 
clinical rigid registration technique with fast and eas-
ily explainable automated rigid and non-rigid registration 
techniques.

The hypothesis of the current study was that accuracy 
(according to volume and distance-based contour validation 
metrics) would be higher for the automated non-rigid reg-
istration method than automated rigid and semi-automated 
rigid methods. The purpose of the present study was to com-
pare three types of registration processes: semi-automated 
clinical rigid registration, automated rigid, and non-rigid 
registration to quantify the accuracy associated within the 
CT-MR fusion process (initial step of PET/CT and MRI reg-
istration process) for urological care of prostate cancer and 
discuss the feasibility and accessibility of their integration 
into clinical practice.

Methods

Patient data

The present study analysed paired whole-pelvis MR and CT 
scan data from 20 prostate patients from Dowling et al.’s 
prior study [21]. The sequences used within this study were 
in line with PI-RADS standards. All patients were diag-
nosed with stage T1 to T3 tumours and intended to proceed 
with radiotherapy. Prior to the acquisition of MR and CT 
planning images, each patient had three pure gold fiducial 
markers inserted transrectally to assist with landmark local-
ization [21]. These gold fiducial markers could be used for 
registration development. However, not all patients present-
ing for urological care of prostate cancer require or consent 
to the insertion of gold seeds. Within this paper, we wanted 
to present an accessible and easily explainable algorithm 
which can be broadly used across patients. Therefore, we 
chose to not use the gold seeds as part of the assessment in 
this paper.

The conventional planning CT scans (voxel size: 
0.977 × 0.977 × 2.5  mm) were acquired with either a GE 
(Milwakee, USA) LightSpeed radiotherapy large bore 
scanner with 2.5  mm slices or a Toshiba (Tokyo, Japan) 
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Acquilion scanner with 2.0 mm slices [21]. The MR images 
were acquired with a 2-dimensional axial T2-weighted 
turbo spin echo sequence (repetition time: 1400 ms, echo 
time: 97 ms, field of view: 200 mm, flip angle: 135°, voxel 
size: 0.625 × 0.625 × 2 mm) on a Siemens (Erlangen, Ger-
many) Skyra 3T scanner [21]. For further information on 
the CT and MR protocol, bladder and bowel preparation, 
patient and MR coil positioning, refer to [21].

A manual contour of the prostate CTV was performed 
by an experienced radiation oncologist independently on 
the MR and CT image of each patient [21]. These manual 
contours were considered the gold standard and used in 
subsequent registration, prostate volume, and surface area 
analyses of the current study.

Prostate contour registration

Semi-automated clinical practice registration

A clinician (urology registrar, 2 years clinical experience) 
used built-in automatic boxed-based registration tools to 
grossly and rigidly align the CT and MR images in two 
stages using commercial software (MIM Maestro 7.6.1, 
MIM Software Inc, USA). Firstly, gross alignment was per-
formed by selecting a region of interest (ROI) with bony 
landmarks, then a refined ROI was chosen around the soft-
tissue of the prostate. Subsequently, manual translation 
adjustments were applied to improve the visual registration 
fitting. The output registration transform was used to project 
the moving CT prostate manual contour into the fixed MR 
image space using nearest neighbour interpolation with the 
3D Slicer software (version 5.0.3) [22, 23].

Automated rigid registration

Libraries within the Simple ITK package (version 2.1.1.2) 
were used to produce the automated rigid and non-rigid 
registration algorithms described below. Initially a nega-
tive normalized cross correlation image metric [24] was 
applied to the fixed MR- and moving CT-prostate manual 
contour. This correlation quantified the extent which the two 
images move in opposite directions. Subsequently, the gra-
dient descent optimizer and rigid transformation [24] with 
additional scaling were applied to calculate the updated 
position of the moving contour iteratively. The alignment 
transformation was computed using linear interpolation [24] 
between the fixed MR- and moving CT-prostate manual 
contour. This transformation was used in combination with 
linear interpolation [24] to align the moving CT image with 
the fixed MR image. Subsequently, the calculated transform 
was applied with nearest neighbour interpolation [24] to 
register the moving CT prostate manual contour to the fixed 

MR manual contour. We note the automated rigid registra-
tion involved additional scaling to account for discrepan-
cies in CT and MR prostate volumes reported previously in 
the literature. Herein, our automated rigid registration with 
scaling will be reported as the automated rigid registration.

Automated non-rigid registration

The signed Maurer distance map filter [25] (implemented in 
[24]) was applied to the fixed MR manual contour and the 
rigidly registered CT manual contour. The fast symmetric 
forces demon’s registration filter [26] (implemented in [24]) 
was then computed on these distance map volumes to obtain 
a deformation field. The deformation field was applied 
with nearest neighbour interpolation to perform a grey-
scale-based registration [24] between the fixed MR manual 
contour and the rigidly registered CT manual contour. Sub-
sequently, the deformation field was used in combination 
with BSpline resampling to perform deformable registration 
[24] between the fixed MR image and the rigidly registered 
CT image.

Prostate segmentation registration analyses

Manual contours of the prostate from MR examinations 
were used to assess each registration method. The aligned 
contours from each registration method were compared 
using the Dice similarity index (DSI) [27] for volume over-
lap (1 representing perfect overlap and 0 representing no 
overlap) and surface distance differences (mm) based on the 
95% Hausdorff distance (HD) [28] and average surface dis-
tance (ASD) [29]. The HD is a measurement of the largest 
minimum distance between two contours. The 95% HD was 
used rather than the HD based on the sensitivity of the HD 
to outliers [28]. The ASD is the average distance calculated 
from the set of minimum distances between two contours. 
Figure 1 displays example illustrations of the DSI and HD 
measurements on an axial (column 1), sagittal (column 2) 
and coronal (column 3) plane within a 3-dimensional MR 
image of the prostate registered using an automated rigid 
(row 1) and non-rigid registration (row 2).

Prostate segmentation overlap

Each registered binary label (generated from the CT manual 
contour) was threshold to a value not equal to 1. Subse-
quently, an image addition between the corresponding MR 
and threshold registered binary label produced an overlap 
of the two contours (where 1: MR only; 2: registered CT 
only; 3: MR and CT union). This overlap contour was used 
for subsequent qualitative assessment of each registration 
algorithm to accurately align the MR and CT contours. The 
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applied to compare the performance of the semi-automated 
rigid, automated rigid and non-rigid registrations using sur-
face- and distance-based metrics. Prior to performing the 
comparisons, the Shapiro-Wilk test was applied to check the 
normality of the data and Wilcoxon signed-rank tests were 
used if the data did not have a normal distribution. For the 
t-test analyses, Levene’s method was used to assess homo-
geneity of variances and Welch’s test was applied if samples 
did not have equal variances. Statistical significance was set 
a priori at p < 0.05 and all statistical analyses were calcu-
lated using a python package, SciPy (version 1.7.3) [34] .

Results

On average, the semi-automated rigid-, automated rigid- 
and automated non-rigid-registration was completed within 
~ 5 min, 1 min 38 s and 23 s, respectively.

Registration comparison

Figure  2 displays boxplots, and Table  1 provides a sum-
mary of the mean and standard deviation data for the DSI 
(Fig. 2a), 95% HD (Fig. 2b) and ASD values (Fig. 2c) for 
the semi-automated rigid-, automated rigid- and automated 

assessment was performed on the prostate volume in three-
dimensional space to visualize the number of mislabelled 
prostate voxels.

Prostate surface generation and assessment

The manual (CT/ MR) and registered CT (semi-automated 
rigid/ automated rigid/ automated non-rigid) prostate man-
ual contours were converted to surfaces using the marching 
cubes algorithm [30]. These surfaces were then smoothed 
using the windowed sinc algorithm [31] and used to cal-
culate the prostate volume and surface area for compari-
son with previous reports of greater CT prostate volumes 
compared to those obtained using MR images [8]. In further 
analyses, the surface distance was calculated using the visu-
alisation toolkit (VTK) [32] signed distance polydata filter 
between the registered CT contours and the MR contours 
to compare the alignment accuracy of different registration 
algorithms.

Statistical analyses

Paired t-tests or Wilcoxon signed-rank tests [33] were used 
to observe comparisons for volume and surface area anal-
yses of the CT and MR prostate surfaces. They were also 

Fig. 1  A representative view of the prostate contour overlap in each 
planar orientation (i.e., axial, sagittal and coronal) illustrates differ-
ences between the manual MR contours and the contours generated 
through the registration of the CT and MR images. The grey circles 
(row 1 (a-c)) and grey arrowheads (row 2 (d-f)) indicate the location of 
maximal HD (the largest minimum distance between the manual and 
registered contour) in each plane within the 3-dimensional image (i.e., 

axial (column 1), sagittal (column 2) and coronal (column 3)). The DSI 
measures the magnitude of overlap of two contours. M, manually con-
toured voxel; R; registered contour voxel; Blue label (M ∩ R), manual 
and registered contour overlap voxels; Green label (R), registered con-
tour only voxels; Yellow label (M), manual contour only voxels; MR, 
magnetic resonance; CT, computed tomography; DSI, dice similarity 
index; HD, Hausdorff Distance
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significantly improved performance compared to the semi-
automated rigid-registration having better average scores 
and decreased spread for the DSI, 95% HD and ASD (all 
p < 0.001).

non-rigid-registered prostate manual contours. Overall, the 
automated non-rigid approach had a significantly improved 
performance compared to the automated rigid- and semi-
automated rigid-registration having better average scores 
and decreased spread for the DSI, 95% HD and ASD (all 
p < 0.001). Additionally, the automated rigid approach had a 

Fig. 2  Boxplots of the evaluation metrics used in this study for com-
parisons between the semi-automated rigid-, automated rigid and non-
rigid registration algorithm performance. (a) DSI values. (b) 95% 

HD values. (c) ASD values. The boxplot centreline marks the median 
value. DSI, dice similarity index; HD, Hausdorff distance; ASD, aver-
age surface distance; Auto, automated; ***, p < 0.001
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The cases displayed obtained the highest (row 1), median 
(row 2) and lowest DSI (row 3) reported using the auto-
mated non-rigid registration method. As such, the cases in 
this figure are representative of the contour results within 
the mid prostate region obtained from the full cohort. Visual 
assessments across axial prostate slices revealed the over-
lap of manual and registered contour results appeared to be 
highest in the mid prostate and lower in the ends of the pros-
tate gland (apex and base). Within all cases, the CT contour 
registered using an automated non-rigid algorithm had an 
excellent fitting to the manual contour.

Prostate volume delineated from MR and CT 
examinations

Figure 4 shows boxplots for the manually contoured CT and 
MR volume (Fig. 4a) and surface area (Fig. 4b). Compared 
to the MR examinations, the CT examinations obtained a 
significantly larger median prostate volume (35.40 cm3 v 
31.89 cm3, p = 0.005) and a non-significantly larger median 
surface area (60.77 cm2 v 54.94 cm2, p = 0.052). On aver-
age the manual prostate segmentations had a CT/ MR vol-
ume of 51.28 ± 40.95/ 38.54 ± 22.61 cm3. On average the 

Prostate segmentation overlap

Figure  3 displays axial view illustrations of the overlap 
between the manual prostate contour completed on the 
MR examination and the CT contour registered using the 
semi-automated rigid-, automated rigid- and automated 
non-rigid-registration method. This visualization clearly 
shows the significantly improved fitting (shaded in blue) of 
the CT contour using the automated rigid (column 2) and 
automated non-rigid registration (column 3) compared to 
the semi-automated rigid registration method (column 1). 

Table 1  Mean and standard deviation data for the semi-automated 
rigid-, automated rigid- and automated non-rigid-registration method 
in the DSI, 95% HD and ASD results
Registration 
Method

DSI 95% HD 
(mm)

ASD (mm)

Semi-automated 
rigid

0.778 ± 0.077 6.768 ± 3.189 2.522 ± 1.369

Automated rigid 0.892 ± 0.031 3. 018 ± 1.364 0.955 ± 0.325
Automated 
non-rigid

0.963 ± 0.009 0.951 ± 0.208 0.192 ± 0.025

DSI, dice similarity index; HD, Hausdorff distance; ASD, average 
surface distance

Fig. 3  Axial view prostate con-
tour overlap illustrations between 
the manual MR contours and the 
contours generated through the 
registration of the CT and MR 
images. Columns 1 (a, d, g), 2 
(b, e, h) and 3 (c, f, i) display the 
semi-automated rigid-, automated 
rigid- and automated non-rigid-
registered results, respectively. 
Rows 1 (a-c) , 2 (d-f) and 3 
(g-i) display the case and prostate 
region which achieved the maxi-
mum-, median- and minimum-
DSI result using the automated 
non-rigid registration method, 
respectively. Blue label, manual 
and registered contour overlap 
voxels; Green label, registered 
contour only voxels; Yellow 
label, manual contour only vox-
els; MR, magnetic resonance; CT, 
computed tomography; DSI, dice 
similarity index
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non-rigid-techniques. Overall, feasibility of all three meth-
ods is shown by sufficient registration accuracy on image 
stacks of typical clinical quality that occurred within accept-
able timeframes (23  s to ~ 5  min). The semi-automated 
rigid-registration method is accessible now via standard 
software while the higher accuracy automated non-rigid 
method uses an accessible and easily explainable algorithm 
that could benefit from pairing with an automated segmen-
tation technique.

When comparing the three registration techniques, the 
automated non-rigid approach had a significantly improved 
performance compared to the automated rigid- and semi-
automated rigid-registration. While the automated rigid 
approach had a significantly improved performance com-
pared to the semi-automated rigid-registration. Manual 
and registered contour overlap- and prostate surface dis-
tance-visualizations revealed a trend for increasing accu-
racy from the semi-automated rigid-, automated rigid- to 
the automated non-rigid registration results. As expected, 
compared to the MR examinations, the CT examinations 
obtained a significantly larger median prostate volume and 
a non-significantly larger median surface area. On average, 
the semi-automated rigid-, automated rigid- and automated 
non-rigid-registration was completed within ~ 5 min, 1 min 
38 s and 23 s, respectively.

In the present study, quantitative and qualitative analy-
ses of three different CT-MR prostate registration algo-
rithms, revealed that automated non-rigid registration 
outperforms both automated rigid- and semi-automated 

manual prostate segmentations had a CT/ MR surface area 
of 72.36 ± 37.40/ 61.83 ± 25.47 cm2.

Prostate surface assessment

Each prostate surface generated from the semi-automated 
rigid-, automated rigid- and non-rigidly-registered contour 
was compared with the manual MR generated surface sep-
arately using the VTK signed distance. Figure  5 displays 
selected coronal view CT prostate surfaces generated after 
semi-automated rigid- (column 1), automated rigid- (col-
umn 2) and automated non-rigid-registration (column 3) 
with the MR image. This visualization clearly shows the 
significantly improved surface-based fitting of the CT con-
tour using the automated rigid and automated non-rigid reg-
istration compared to the semi-automated rigid registration 
method. The cases displayed obtained the highest (row 1), 
median (row 2) and lowest DSI (row 3) reported using the 
automated non-rigid registration method. Within all cases 
assessed, the CT contour registered using an automated 
non-rigid algorithm had an excellent fitting to the manual 
MR contour.

Discussion

The current study described and assessed three dif-
ferent CT-MR registration techniques which utilized 
semi-automated rigid-, automated rigid- and automated 

Fig. 4  Original CT and MR image manually contoured prostate volumes (a) and surface areas (b). CT, computed tomography; MR, magnetic 
resonance
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to surrounding structures on a T2-weighted sequence, and 
the prostatic base transitioning from the bladder neck [36]. 
Additional qualitative comparisons between the manual 
and registered prostate volume showed distinct improve-
ments in the signed distance values with the application of 
the automated registration algorithms in comparison to that 
requiring manual intervention (Fig. 5). This visual inspec-
tion supported the application of the automated non-rigid 
registration algorithm reported within this study to achieve 
a globally accurate prostate surface fitting.

The relatively poorer DSI, 95% HD and ASD achieved 
with the semi-automated rigid registration could be at least 
partially attributed to the significant (p = 0.005) prostate 
volumetric difference between the CT (51.28 ± 40.95 cm3) 
and MR (38.54 ± 22.61 cm3) acquired scans (Fig. 4, Table 
S1). In agreement with these results, previous works have 
reported the prostate CTV delineated on CT images can 
be up to 171% of the prostate CTV delineated on an MR 

rigid-registration methods. The automated non-rigid reg-
istration achieved excellent average DSI (0.963 ± 0.009), 
95% HD (0.951 ± 0.208) and ASD (0.192 ± 0.025) values 
(Fig. 2). The high degree of agreement between the manual 
and automatically registered prostate contours in the present 
work compared favourably with previous prostate CT-MR 
registration studies using manual [8, 12], semi-automated 
[16] and automated [14, 15, 18–20, 35] methods (Table S1). 
Individual qualitative assessments of the automated non-rig-
idly registered contour intersection with the original manual 
contour showed almost perfect overlap within patients that 
were reported to have the minimum, median and maxi-
mum DSI value of the full cohort (Fig. 3). Furthermore, the 
highest overlap of the registered and manual contour was 
present at the mid prostate and lowest at the prostate ends 
(apex and base) which is consistent with studies evaluating 
segmentation of zonal anatomy of prostate. This is likely 
due to the prostatic apex having a similar intensity profile 

Fig. 5  Coronal view prostate surface distance between the manual MR 
contours and the contours generated through the registration of the CT 
and MR images. Columns 1 (a, d, g), 2 (b, e, h) and 3 (c, f, i) display 
the semi-automated rigid-, automated rigid- and automated non-rigid-
registered results, respectively. Rows 1 (a-c), 2 (d-f) and 3 (g-i) display 

the case which achieved the maximum-, median- and minimum DSI 
result using the automated non-rigid registration method, respectively. 
The signed distance scalar bar (rainbow colour map on right side of 
each row) has units in mm. MR, magnetic resonance; CT, computed 
tomography; DSI, dice similarity index
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the verification of the automated non-rigid registration algo-
rithm within this study is transferrable to potential PET/CT 
clinical applications. It is also important for automated reg-
istration algorithms to be explainable to ensure their future 
integration within the clinic. If a clinician can understand 
an algorithm, they are more likely to trust the results it pro-
vides and adopt it within their workflow. However, prior to 
the adoption of the presented algorithm within the clinical 
workflow, a validation study should be conducted in a pro-
spective clinical trial. In addition, future work could be con-
ducted to develop an automated end-to-end prostate (e.g., 
lesion, CTV, PTV) segmentation and registration pipeline 
for paired CT-MR images. Previous automated MR prostate 
segmentation studies have reported very promising results 
[43–48]. The combination of a previously developed auto-
mated segmentation algorithm with the presented registra-
tion algorithm may reduce costs and image post-processing 
time, increase prostate contour and image alignment accu-
racy, to potentially improve prostate cancer diagnosis and 
management.

Although automated non-rigid registration is the most 
accurate method, all three registration methods demonstrate 
an accuracy level which is consistent with literature and 
complies with the recommendations in general [49]. Semi-
automated rigid registration, performed on clinical software 
available in hospitals is thus a quick (performed in ~ 5 min), 
feasible, and accessible option currently to deliver CT-MRI 
registration. This image registration can lead to PSMA PET/
CT and MRI fusion, which can be utilised for prostate can-
cer care. The automated registration methods are however 
promising given their superior accuracy measures and lack 
of inter user variability. Once automated prostate volume 
segmentation is integrated into the automated registration 
algorithm, we believe they may be ready for verification in 
a clinical setting and for future clinical application.

There are several limitations to this study. First, a rela-
tively small sample of 20 patients were assessed. Future 
works are required to confirm the conclusions made in the 
current study. Second, the patients within this study did not 
have any PSMA PET images acquired. Therefore, addi-
tional qualitative analyses assessing the utility of the regis-
tration algorithms presented in this study for the diagnosis 
and staging of prostate cancer using PSMA could not be 
conducted. Third, the MR images used in the present study 
were acquired using a T2 sequence on a Siemens (Erlingen, 
Germany) Skyra 3T scanner [21]. Future research should 
explore the utility of the automated registration algorithms 
presented when applied to other 3D MR sequences such as 
diffusion-weighted-, dynamic contrast-enhanced- [50], and 
T1-weighted-imaging which have been reported to have a 
high diagnostic accuracy for prostate cancer [51]. Finally, 
the patients within this study did not undergo radical 

image [5, 8, 37]. In addition, earlier MR and CT studies 
assessing prostate volume are in good general agreement 
with our study where mean volumes delineated on MR and 
CT images of 30.8 to 33.0 cm3 and 46.0 to 46.5 cm3 have 
been calculated, respectively [8, 10]. The automated non-
rigid and rigid registration within the current study applied 
a scaling step to account for the known prostate volume 
discrepancy between CT and MR acquired scans of the 
same patient. Without this scaling step, scan-specific vol-
ume differences can create registration inaccuracies (e.g., 
those reported from our semi-automated rigid registration). 
A comparison between the semi-automated and automated 
rigid (plus scaling) method within the current paper can be 
used as an indication of the effect of scaling. The substantial 
differences between the current study CTV’s and the GTV’s 
in Ilamurugu et al.’s [9] (CT: 22.11 cm3; MR: 17.52 cm3) 
may be due to considerable differences in the size of the 
prostates in these cohorts.

Differences in internal pelvic anatomy such as the blad-
der and rectum have been identified to create a prostate bed 
tilt [38] and variability in the prostate position [39, 40]. 
Bladder and rectum filling can alter the prostate target vol-
ume position, which leads to difficult image registration. In 
radiation therapy, there are full bladder and empty rectum 
protocols to better control prostate position and reduce radi-
ation exposure risk outside the PTV, however even these 
protocols increase bladder size variability [41, 42] and an 
empty rectum is hard to replicate. Furthermore, despite 
strict adherence to this imaging protocol, substantial bladder 
volume changes can occur. In addition to these anatomical 
variations, CT and MR images observe significant differ-
ences in the prostate size [8, 10, 19]. Although image regis-
tration may have a different type of role in urology through 
pre-operative planning and intra-operative guidance, non-
rigid registration can be utilized to perform a deformation-
based alignment of the images of interest to accommodate 
for these anatomical differences and imaging modality 
variabilities.

The current study presented a robust, fast, and easily 
explainable automated non-rigid registration algorithm ideal 
for usage in a clinical setting. This non-rigid algorithm used 
an anatomical constraint (i.e., the MR contour) to preserve 
the real prostate morphology during deformations. The lim-
its of stretching for the CT morphology are bound by the 
MR contour and the intensity of deformations depends on 
the similarity between the MR and CT contour. In addition, 
although the CT contour can be overestimated, our applica-
tion of the MR contour as fixed reduced the potential for 
discrepancies in the preservation of real morphology. The 
planning CT scan used in the current study had an equiva-
lent quality (i.e., not a high dose and no contrast applied) to 
the CT component of clinical PET/CT acquisitions. As such, 
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