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Electronic properties and optical 
spectra of donor–acceptor 
conjugated organic polymers
Chandra Shekar Sarap , Yashpal Singh , John Michael Lane  & Neeraj Rai *

Organic semiconductors based on conjugated donor-acceptor (D–A) polymers are a unique platform 
for electronic, spintronic, and energy-harvesting devices. Understanding the electronic structure of 
D–A polymers with a small band gap is essential for developing next-generation technologies. Here, 
we investigate the electronic structure and optical spectra of cyclopentadithiophene-based closed/
open-shell D–A polymers using density functional theory and the Bethe–Salpeter equation based on 
G 
0
W

0
 approximation. We explored the role of different acceptor units and chemical substitutions on 

the structural changes and, more importantly, electronic, optical, and dielectric behavior. We found 
that the computed first exciton peak of the polymers agreed well with the available experimentally 
measured optical gap. Furthermore, D–A polymers with open-shell character display higher 
dielectric constant than the closed-shell polymers. We show that the exceptional performance of 
polycyclopentadithiophene-thiophenylthiadiazoloquinoxaline (PCPDT-TTQ) as a scalable n-type 
material for Faradaic supercapacitors can be partly ascribed to its elevated dielectric constant. 
Consequently, these D–A polymers, characterized by their high dielectric constants, exhibit significant 
potential for various applications, including energy storage, organic electronics, and the production of 
dielectric films.

Organic electronic materials comprise a broad range of small molecules to polymers with versatile optoelectronic 
properties. These materials are used in different applications, including supercapacitors, organic light-emitting 
diodes, photovoltaics, biosensor, and storage devices1–7. Moreover, electronic materials exhibiting open-shell 
character and high-spin ground state can accelerate the development of spintronics or magneto-electronic devices 
for quantum computing applications4,8–11. Among various organic materials, donor–acceptor (D–A) polymers 
are among the most successful approaches to achieving tunable bandgap, including high-spin states12–14. These 
polymers can lead to efficient inter- and intra-molecular charge transfer as the exciton migration benefits from 
the π-stacking due to film crystallinity and exhibits efficient charge transport15. However, the intrinsic electronic 
structure properties of the open-shell polymers are distinctive and depend on the nature of the donor and accep-
tor groups. As the interaction of light with this complex donor-acceptor polymers is at the heart of many photonic 
devices, it is essential to investigate their optical spectrum using advanced many-body methods.

Accurately computing the optical spectra of organic polymers is a challenging task, especially for complex 
systems such as amorphous or semi-crystalline D–A polymers. Current methods are limited to closed-shell sys-
tems such as polyethylene, polypropylene, polyterephthalate, polythiophene, and linear polymers/oligomers of 
D–A systems16–21. Although density functional theory (DFT) can describe the electronic structure and bandgap 
of these polymers, the accuracy of the excitonic properties is insufficient, and calculations are often restricted to 
small molecules/oligomeric units22–25. Molecular solids have been studied extensively using DFT and high-level 
ab initio methods, such as many-body perturbation-based GW (G: Greens function, W: Screened-Coulomb inter-
action) approximation26–28. Time-dependent DFT (TDDFT) with range-separated hybrid functional can provide 
better predictions of the optical absorption for small organic molecular solids, similar to the Bethe–Salpeter 
equation (BSE) based on the G 0W0 method (also known as single-shot GW approximation) and experiments27. 
However, extending the above methods to polymers is computationally expensive but required for developing a 
better understanding of the electronic structure and optical properties of D–A polymers.

Here, we investigate the electronic structure and optical response of various cyclopentadithiophene-based 
D–A organic polymers using DFT and BSE methods. Specifically, we concentrate on PCPDT-BT (poly(4-(4H-
cyclopenta[2,1-b:3,4-b′]dithiophen-2-yl)-4,7-(2,1,3-benzothiadiazole)), PCPDT-TTQ (poly(4-(4H-
cyclopenta[2,1-b:3,4-b′]dithiophen-2-yl)-6,7-di(thiophen-2-yl)[1,2,5]thiadiazolo[3,4-g]quinoxaline)), 

OPEN

Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State 
University, Mississippi State, MS 39762, USA. *email: neerajrai@che.msstate.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-48468-9&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:21587  | https://doi.org/10.1038/s41598-023-48468-9

www.nature.com/scientificreports/

PCPDT-TQ (poly(4-(4-benzylidene)-4H-cyclopenta[2,1-b:3,4-b′]dithiophen-2-yl)-[1,2,5]-thiadiazolo[3,4-g]
quinoxaline) and PCPDT-BBT (poly(4-(4-benzylidene)-4H-cyclopenta[2,1-b:3,4-b′]dithiophen-2-yl)-benzo[1,2-
c;4,5-c′]bis[1,2,5]thiadiazole), which possesses acceptor units such as benzothiadiazole, thiadiazoloquinoxaline, 
benzobisthiadiazole and display open/closed-shell character. These polymers find applications in photovolta-
ics, PCPDT-BT, and its analogs are one of the well-known D–A systems29–32. Further, PCPDT-TTQ has been 
identified as a promising material for supercapacitors due to its stable and tunable redox activity33. PCPDT-TQ 
is known for its high-spin ground state with a narrow bandgap and weak exchange coupling between unpaired 
electrons14. It is to be noted that TTQ and TQ differ by an additional dithiophene which significantly changes 
the structural properties. All the BBT-based polymer possesses diradical character and reduced singlet-triplet 
gap34–36 with localized spins at the terminals of the polymer backbone37. Additionally, we investigate the well-
known closed-shell polymers, polyethylene (PE) and polyethylene terephthalate (PET), as these provide good 
experimental data for the benchmark. PE and PET are widely available and commercially accessible polymers 
with distinct structural, electrical, thermal, and optical properties38–41. We include these polymers in the present 
work to allow for comparative analysis, providing valuable insights into the influence of extended/limited π-elec-
tron arrangement and aromaticity on the electronic structure properties among PE, PET, and D–A polymers. 
In Fig. 1, we show the optimized geometries of one-dimensional (1D) and three-dimensional (3D) models of 
PE, PET, PCPDT-BT, PCPDT-TTQ, PCPDT-TQ, and PCPDT-BBT polymers computed using DFT by applying 
periodic boundary condition.

Results
The 1D model provides an excellent approximation for analyzing a single, isolated polymer chain, while 3D mod-
els allow us to incorporate weak intermolecular interactions by including van der Waals contributions through 
dispersion corrections, such as Grimme’s D3 approach42. Each unit cell contains two monomer units, except for 
3D PET, which contains only one monomer. The 3D D–A polymers and PET exhibit the triclinic phase, while 
PE shows orthorhombic. Structural parameters of the crystalline phase of different polymers, including known 
experimental values, are provided in Table S1 in the Supplementary Information. Good agreement between the 
computed and experimental results is observed for PE and PET. The low density (1.4-1.6 g/cm3 ) of the D–A 
polymers compared to conventional inorganic semiconductors (Si = 2.33 g/cm3 and GaAs = 5.32 g/cm3)43 sug-
gests that these polymers have potential applications in lightweight electronic devices.

Unlike small open-shell organic molecules, conjugated organic polymers with a high spin ground state are 
rarely reported in their neutral form10,14,44. Due to the π-conjugated backbone, identifying the localized spin 
states is often challenging. While magnetic measurements such as superconducting quantum interference device 
(SQUID) and electron paramagnetic resonance (EPR) spectra can help identify high spin states10,14, the nature 
of spin-localization in the polymer remains unclear. To gain a better understanding of the electronic arrange-
ment, multi-radical character, valance band (VB), and conduction band (CB) splitting, we have used a hybrid 

Figure 1.   Optimized geometry of 1D and 3D models of organic polymers of PE, PET, PCPDT-BT, PCPDT-
TTQ, PCPDT-TQ and PCPDT-BBT computed using DFT. The C, H, O, S, and N atoms are shown in cyan, 
white, red, yellow, and blue colors, respectively.
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Heyd-Scuseria-Ernzerhof (HSE06) DFT functional to evaluate the band structure of these polymers. Figure 2 dis-
plays the band structure highlighting VB, VB-1, CB, and CB+1 states, with circles representing the valence band 
maximum (VBM) and the conduction band minimum (CBM). We observe degenerate energy levels between VB 
& VB-1 and CB & CB+1 with an indirect bandgap for PE, PET, PCPDT-BT, and PCPDT-TQ, non-degenerate 
levels for PCPDT-TTQ, and nearly degenerate levels for PCPDT-BBT. Further, the CBM of the PCPDT-TTQ 
and PCPDT-TQ polymers touches the Fermi level, and the CBM of PCPDT-BBT is below the VBM, exhibiting 
semi-metallic behavior. To understand the discrepancies in these polymers’ electronic arrangements, we evaluated 
the electron occupancies along various k-points shown in Fig. 2 and Table S2 and S3. We observe a full electron 
occupancy (1.0e) in VB and a zero-electron occupancy (0.0e) in CB in PE, PET, and PCPDT-BT, revealing their 
closed-shell character with a non-zero electronic bandgap. However, PCPDT-TQ shows a CB closer to the Fermi 
level with non-zero electron occupancy along various k-points, indicating open-shell character. Unlike other 
polymers, PCPDT-BBT exhibits a full occupancy with 1.0e in CBM, followed by 0.022e in VBM. The strong 
quinoidal nature of TQ, and BBT acceptors is crucial in lowering the CB and stabilizing unpaired electrons in 
the long-chain limit. These results align with previous experiments/computations demonstrating the open-shell 
character of PCPDT-TQ, and PCPDT-BBT polymers14,37.

To gain insight into the electronic properties and charge transport behavior of various polymers, we employed 
the HSE06 method to analyze their partial (s, P x , P y , and P z orbitals) and projected (contributions from C, N, 
S, O, and H atoms) density of states (DOS) contributions. To compare the results across all polymers, we pre-
sented the normalized PDOS and total DOS in Fig. 3, with the partial DOS shown in Figures S1, S2, and S3. Our 
analysis revealed that the VB and CB edges primarily comprise sp2-hybridized π bonding and π∗ antibonding 
orbitals, respectively, except PE, which is determined by sp3-hybridized σ bonding and σ ∗ antibonding orbitals 
from the P x-orbital. In some polymers, such as PET, conjugation with a lateral overlap of P z-orbitals introduces 
localized states that lower the band gap. Other polymers, such as PCPDT-BT and PCPDT-TTQ, display extensive 
conjugation with high contributions from P z-orbitals in both the VB and CB edges. Adding the benzyl group to 
PCPDT in PCPDT-TQ and PCPDT-BBT through sp2-hybridized carbon leads to a higher contribution from P y
-orbital in both VB and CB edges. We further examined the local DOS to identify the contributions from donor, 
acceptor, and substitution units in the D–A polymers, with results shown in Figure S4 in SI. Our computations 
demonstrate that the localization/delocalization and electronic excitations are strongly affected by the donor 
and acceptor units and the π-electrons. We also observed that all conjugated polymers’ VB and CB edges have 
a relatively substantial contribution from C, N, O, and S atoms in different proportions, indicating that electron 
transition most likely involves a strong correlation between the electrons along the polymer backbone.

Table 1 summarizes electronic bandgap values computed using B3LYP (Becke, three-parameter exchange 
functional; Lee, Yang, and Parr) and HSE06 functionals for 1D and 3D models of polymers, along with previous 
computational and experimental data. PE, a long hydrocarbon chain, is an insulator with a large bandgap of 
8.10 eV, which is in close agreement with the measured optical bandgap of 8.8 eV16,46. On the other hand, PET 
with aromatic rings and C=O groups leads to delocalization of π-orbitals yielding a lower bandgap compared 

Figure 2.   Band structure for PCPDT-BT, PCPDT-TTQ, PCPDT-TQ, and PCPDT-BBT along the high 
symmetry points computed using HSE06 method. VBM-1, VBM, CBM, and CBM+1 states are highlighted in 
colors. The electron occupancies along selected wave vectors are also shown. VBM and CBM are marked with 
“o”.



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:21587  | https://doi.org/10.1038/s41598-023-48468-9

www.nature.com/scientificreports/

to PE. HSE06 predicts the electronic bandgap of PET to be 4.13 eV, which agrees with the experimental optical 
gap of 4.0 eV47. The electronic bandgap of 1D PE and PET computed using B3LYP is at the upper bound due 
to the absence of intermolecular interactions. For 1D PCPDT-BT and PCPDT-TTQ, B3LYP yields electronic 
bandgap values of 1.78 and 0.88 eV, respectively, which agree well with measured values of 1.81 and 0.80 eV33,45. 
However, B3LYP underestimates the electronic gap of PCPDT-TQ by 0.2 eV. Broken-symmetry DFT approach 
for linear single molecular D–A octamers predicts electronic bandgap values that are in good agreement with 
experiments14,37. The bandgap of 3D and octamer models of PCPDT-BT is underestimated compared to the 
experimental electronic and optical gap. However, for PCPDT-TTQ, the fundamental gap of 0.6 eV agrees well 
with the measured optical gap. In contrast, for PCPDT-TQ, and PCPDT-BBT, the CBM aligns along the Fermi 
level, resulting in zero bandgap with Dirac points, similar to Dirac materials, due to crystalline order51–53. The G 0
W0 quasiparticle energy gaps provide more reliable results compared to the HSE06 method. To better understand 
the discrepancies, we also calculated the quasiparticle energy band gap using the G 0W0 approach. However, due 
to the utilization of a coarse k-point grid in our G 0W0 calculation, we do not have access to the quasiparticle 
values required for the estimation of the exact band gap. Nonetheless, we have computed the band gap at the Ŵ

Figure 3.   Projected density of states (PDOS) of organic polymers of PE, PET, PCPDT-BT, PCPDT-TTQ, 
PCPDT-TQ, and PCPDT-BBT computed using HSE06 method. Total DOS and the relative contributions of the 
individual atoms of the C, S, N, O and H atoms are shown. The computed electronic bandgaps obtained from 
band structure for PE, PET, and PCPDT-BT are also shown.

Table 1.   Electronic bandgaps computed using DFT and Macroscopic static dielectric constant ( ε ) computed 
using density functional perturbation theory (DFPT) and BSE for PE, PET, PCPDT-BT, PCPDT-TTQ, 
PCPDT-TQ, and PCPDT-BBT.  For octamers, the computations are carried out using B3LYP at 6-31G(d,p) 
level. The occ in the parenthesis represents the probability amplitude of finding an electron which is 
the electron occupancy in the conduction band minimum level. i  , ii , and iii represent an experimental 
electrochemical gap in the solution phase, absorption onsets from crystalline/thin films, and known 
experimental dielectric constant, respectively14,33,37,45–50.

 Electronic Bandgap (eV)  Optical gap (eV)  Static dielectric constant ( ε)

 (Expt.)i
 Octamer (y0)  1D  3D (Occ)

 (Expt)ii  BSE  DFPT  (Expt.)iii B3LYP  B3LYP  HSE06

 PE   –  5.28 (0.0)  9.89  8.10  8.8  1.84  2.87  2.25

 PET   –  5.11 (0.0)  5.28  4.13  4.0  1.56  2.36 ∼ 3.5

 PCPDT-BT  1.81  1.44 (0.0)  1.78  0.85 (0.0)  1.44  8.82  12.40  3.6

 PCPDT-TTQ  0.80  0.80 (0.98)  0.88  0.60 (0.0) ∼ 0.46  5.49  8.99  –

 PCPDT-TQ  0.6  0.77 (0.91)  0.36 − (0.67)  0.30  10.18  14.62  –

 PCPDT-BBT   –  0.88 (1.00)  1.18 − (1.00)  –  13.73  32.04  –
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-point and have included a comparison of the G 0W0 , HSE06, and PBE methods in Table S4 of the SI. As shown 
in the table, we observe an expected increase in the bandgap values from PBE, HSE06 to G 0W0 . We anticipate 
that a similar increase in the bandgap values can be expected at other k -points as well which may result in finite 
gap values for PCPDT-BBT and PCPDT-TQ which are otherwise nonexistent at the HSE06 level of calculations.

It should be noted that in organic semiconductors, the electronic bandgaps determined from band structures 
are insufficient for describing the optical gap, unlike in inorganic semiconductors. This discrepancy is due to the 
weak electronic coupling in organic semiconductors, resulting in the formation of excitons rather than charge 
carriers upon photoexcitation, with an exciton binding energy of a few hundred meV. To gain insight into pho-
toexcitation, we used PBE (Perdew-Burke-Ernzerhof) and HSE06 functionals to compute optical spectra and 
solve BSE on top of G 0W0 approximation to account for excitonic effects54–56. The optical spectra, as shown in 
Fig. 4, exhibit strong absorption in the ultraviolet, visible, and near-infrared regions. While PE and PET exhibit 
a broad spectrum, sharp and intense peaks are observed in D–A polymers. As anticipated, the spectra obtained 
from PBE are red-shifted compared to those obtained from HSE06. The first peak from HSE06 and BSE aligns 
well with the measured optical bandgap from the absorption onset.

Subsequently, we employed the BSE and density functional perturbation theory (DFPT) to compute the static 
dielectric constant, as shown in Table 1 and S6. Our computed values for PE and PET are in close agreement 
with experimental results. However, for donor-acceptor (D–A) polymers, we observe a high dielectric constant 
owing to their small band gap resulting in a tiny energy denominator (see Methods section). The computed 
dielectric constants for PCPDT-BT, PCPDT-TTQ, PCPDT-TQ, and PCPDT-BBT, exhibiting finite or zero band 
gaps, are 12.40, 8.99, 14.62, and 32.04, respectively. Upon detailed analysis of the dielectric constant tensor (as 
shown in Table 1 and Table S5), it is evident that the primary contribution arises from the tensor component 
aligned with the polymer backbone ( ǫxx ), while the components perpendicular to the backbone axis ( ǫyy and 
ǫzz ) remain relatively low. We also observe a direct correlation between the dielectric constant and the electron 
occupancy (as indicated by Occ in Table 1) in the conduction band (CB), indicating that the presence of localized 
spins in open-shell systems enhances the dielectric properties of these materials. Recent experimental work on 
PCPDT-TTQ has demonstrated its suitability as an n-type material for its applications as Faradaic supercapaci-
tors (as referenced in33). Consequently, the significant dielectric enhancement due to localized spins highlights 
the versatility of open-shell donor-acceptor (D–A) polymers, positioning them for a wide range of applications, 
including organic electronics and the production of dielectric films.

Figure 4.   The imaginary part of the dielectric function ( ε2(ω) ) for the 3D organic polymers of PE, PET, 
PCPDT-BT, PCPDT-TTQ, PCPDT-TQ, and PCPDT-BBT computed using PBE, HSE06 and BSE method. 
The first exciton peak and the experimental optical gap (in parenthesis)14,33,45–47 obtained from the absorption 
onset are also shown. Inset in PET and PCPDT-TTQ shows the first exciton peak computed at BSE and HSE06, 
respectively.
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Discussion
An improved understanding of organic polymers with open-shell character is necessary to realize their full poten-
tial in photonics, spintronics, and quantum computing applications. Here, using DFT and high-level ab initio 
methods, such as the many-body perturbation-based GW approximation and BSE, we elucidate the electronic 
structure and optical properties of CPDT-based D–A organic polymers. We find that the electronic and optical 
properties are significantly influenced by the donor and the acceptor units and π-spacers. In particular, using 
DFT and BSE based on the G 0W0 approach, we have analyzed the band structure and optical spectra. Our results 
indicate a redistribution of electrons along different k-points due to the lowering of CB for open-shell polymers. 
The electronic bandgap computed for PCPDT-BT and PCPDT-TTQ 1D polymers and PCPDT-TTQ, PCPDT-
TQ, and PCPDT-BBT octamers agrees well with experimental measurements. We also observed excitonic peaks 
resulting from transitions to unoccupied bands, complementing the measured optical bandgaps of crystalline/
thin films. D–A polymers have the potential for near-infrared active semiconducting materials and spintron-
ics applications due to the narrow optical bandgap of ∼0.5 eV and inherent open-shell characteristics. Our 
computational model and methodology show potential in determining the optoelectronic properties of organic 
polymers. However, a key challenge for future studies is to expand the model to include disorders, defects, alkyl 
side chains, temperature, and pressure and to model semi-crystalline or amorphous phases using classical and 
ab initio molecular dynamics simulations. By doing so, we can establish the groundwork for improved modeling 
of D–A semiconducting materials, extending the range of computational methods for systematically screening 
and exploring new materials for optoelectronics and spintronics.

Methods
Geometry optimizations of all the three-dimensional (3D) model polymers are carried out using density func-
tional theory (DFT) by imposing periodic boundary conditions as implemented in the VASP code57,58. The 
study commenced with benchmark calculations, predicated on chemical intuition, utilizing diverse configura-
tions in 3D crystalline phases, such as stacked and slipped, as the initial geometries. Optimization of the lattice 
parameters and atomic positions was conducted for each configuration. The minimum energy configuration 
was subsequently identified for comprehensive analysis of the electronic structure and optical properties. The 
projector augmented wave (PAW) pseudopotential is used with Perdew-Burke-Ernzerhof (PBE) functional59. The 
van der Waals interactions are included using the DFT-D3 method of Grimme et al42. A recommended cutoff 
energy of 500 eV is used to generate a plane-wave basis set60,61. A Monkhorst-Pack k-point mesh ( Ŵ-centered) 
is employed for the Brillouin zone integration. To fix the density of the k-grid, we used VASPKIT which uses 
k = Vcell/Nkpt where k is the precession (distance between two adjacent k-points), Vcell volume of the cell, and 
Nkpt is the number of k points. Given the significantly large systems considered in the present work, we chose 
k = 0.04 , which strikes a good balance between accuracy and computational cost. The self-consistent field ener-
gies are converged with a tolerance of 10−5 , and forces on each atom are less than 0.02 eV/Å. The electrons in 
open-shell D–A polymers are strongly correlated and involve a change in spin states. We include the spin-orbit 
coupling (SOC) in our calculations through the noncollinear spin-polarized method as implemented in VASP 
where the spin-polarization of the electronic structure is represented by a three-dimensional vector at each atom 
in the system. It further affects the rate of electron transfer between the donor and acceptor by altering the energy 
levels of electrons involved in the transfer. The relaxed 3D geometries are further used to compute the crystalline 
electronic bandgap using Heyd-Scuseria-Ernzerhof (HSE06) functional62 with a screening parameter set to 0.2 
bohr−1 . To evaluate the band structure, VASPKIT63 is used to generate the k-points covering high-symmetry 
points in the Brillouin zone. Many-body effects are taken into account by computing the quasiparticle (QP) ener-
gies using GW calculations (where G is the Green’s function, and W stands for screened Coulomb interaction) 
with a standard one-shot G 0W0 approach64–66, using a starting wavefunction taken from PBE method with few 
numbers of k-points. Table S6 in SI shows the number of k-points and empty levels considered for various poly-
mers. To determine the dielectric function and optical spectrum, incorporating electron-hole interactions, we 
solve the Bethe–Salpeter equation54,55,67 on top of G 0W0 calculation within the Tamm-Dancoff approximation68. 
This approach effectively characterizes the polymer’s optical response to electromagnetic radiation and effectively 
locates the exciton peaks. We calculate the real ( ε1 ) and imaginary ( ε2 ) components of the dielectric matrix, 
representing the dielectric constant and dielectric loss, respectively. The imaginary part of the dielectric function 
is derived from the momentum matrix elements between occupied and unoccupied wave functions.

While the real part can be evaluated from ε2 using the Kramers–Kronig transformation

Where ǫvk and ǫck+q are energies of VB and CB states. � , q , wk , and uck are cell volume, Bloch vector of the 
incident wave, k-point weights, and cell periodic part of the wave function, respectively.

The first peak in the imaginary part of the dielectric spectrum represents the optical bandgap26,54. To obtain 
the dielectric spectra without any local effects, the frequency-dependent dielectric matrix is evaluated from the 
electronic ground state (PBE and HSE06) using independent particle approximation56.

Further, the macroscopic dielectric constant tensors are evaluated using density functional perturbation 
theory (DFPT) using PBE functional69,70. The random phase approximation accounts for the local field effects 
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4π2e2
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corresponding to the cell’s periodic part of the potential. The Dyson equation shows that the dielectric constant 
is related to polarizability ( χ ), ε = 1+ νχ , ν being Coulomb kernel. Typically, the static dielectric matrix can be 
obtained from the first-order response of the wave function to an externally applied field with the inner product 
of the change in wave function and polarization vector ( �βvk ). The polarizability is inversely proportional to the 
sum-over the states of difference in energies between VB and CB states as well as the polarization in the cell 
periodic part of the wavefunction ( uck).

Thus, high polarizability and the low band gap enhance the dielectric constant. We would like to draw attention 
to an important consideration regarding the calculation of the dielectric constant for PCPDT-TTQ. To mitigate 
potential numerical instabilities, it is advisable to use a denser k-grid with k < 0.04 . This increased grid density 
ensures more accurate and reliable calculations of the dielectric constant, avoiding any inaccuracies that may 
arise from inadequate sampling. However, employing a denser k-grid can significantly increase the computational 
costs for GW and BSE calculations. To address this issue, we employed a shifted Ŵ-centered or Monkhorst Pack 
k-grid for PCPDT-TTQ (see Supplementary Information, Table S6), effectively mitigating the aforementioned 
numerical instabilities associated with this system. A similar k-grid was also utilized for other systems to evaluate 
the dielectric constant at the DFPT level, yielding comparable results to those obtained with a Ŵ-centered grid (see 
Supplementary Information, Table S7). The observed differences in the dielectric constant values at the DFPT 
level across different k-grid choices can be attributed to the errors introduced by the choice of k-grid density.

For one-dimensional (1D) model polymers and octamers, the B3LYP71 method with 6-31g(d,p) basis set is 
employed using Gaussian 16 software72. A broken-symmetry wave function is used to characterize the open-shell 
character for octamers. The open-shell character can be quantitatively described using the multi-radical indexes 
( yi , 0 ≤ yi ≤ 1)73,74. The diradical (y0 ) index is obtained from the occupation number of the lowest unoccupied 
natural orbital (LUNO) with y 0 = 0 and y 0 = 1 referring to a pure close- and open-shell character, respectively.

We note that the calculations that we performed are computationally costly. The optical spectra using BSE 
based on the G 0W0 method for D–A polymers are carried out in the in-house High-Performance Computing 
Collaboratory (HPC2 ) at Mississippi State University. We used 30–40 nodes for each calculation with dual 
20-core Xeon Gold 6148 processors and approximately 6 to 7-terabyte memory. We find an increase in memory 
requirement with k-points. The optical spectra and band structure calculations using HSE06 are carried out 
using Extreme Science and Engineering Discovery Environment (XSEDE)75 with 1500+ cores and 5 to 6 terabyte 
memory.

Data availability
All the relevant data of this study are available in the Supplementary Information. This includes Supplementary 
Data structural parameters of a one-dimensional and three-dimensional model of organic polymers, electronic 
eigenstates, and electron occupancies in valence and conduction band along various k-points in PCPDT-TTQ, 
PCPDT-TQ and PCPDT-BBT polymers computed using HSE06 method, the partial and local density of states, 
static dielectric tensors with Ŵ - centered and the Monkhorst-Pack schemes, band gaps at Ŵ-point, number of k
-points and empty bands used in G 0W0 and DFPT and coordinates of polymers.
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