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Radiomics-based decision support tool assists radiologists in
small lung nodule classification and improves lung cancer
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BACKGROUND: Methods to improve stratification of small (≤15mm) lung nodules are needed. We aimed to develop a radiomics
model to assist lung cancer diagnosis.
METHODS: Patients were retrospectively identified using health records from January 2007 to December 2018. The external test set
was obtained from the national LIBRA study and a prospective Lung Cancer Screening programme. Radiomics features were
extracted from multi-region CT segmentations using TexLab2.0. LASSO regression generated the 5-feature small nodule radiomics-
predictive-vector (SN-RPV). K-means clustering was used to split patients into risk groups according to SN-RPV. Model performance
was compared to 6 thoracic radiologists. SN-RPV and radiologist risk groups were combined to generate “Safety-Net” and “Early
Diagnosis” decision-support tools.
RESULTS: In total, 810 patients with 990 nodules were included. The AUC for malignancy prediction was 0.85 (95% CI: 0.82–0.87),
0.78 (95% CI: 0.70–0.85) and 0.78 (95% CI: 0.59–0.92) for the training, test and external test datasets, respectively. The test set
accuracy was 73% (95% CI: 65–81%) and resulted in 66.67% improvements in potentially missed [8/12] or delayed [6/9] cancers,
compared to the radiologist with performance closest to the mean of six readers.
CONCLUSIONS: SN-RPV may provide net-benefit in terms of earlier cancer diagnosis.

British Journal of Cancer (2023) 129:1949–1955; https://doi.org/10.1038/s41416-023-02480-y

INTRODUCTION
The optimal management of indeterminate lung nodules is a
common clinical problem [1]. While some may represent early
lung cancers, the vast majority are benign [2]. Several guidelines
have been devised to aid management, which uses size as a key
determinant of cancer risk [3–7]. A nodule diameter cut-off of
15 mm has been adopted to dichotomise nodules into “small” or
“large” subgroups [8, 9]. For larger nodules, existing guidelines
can correctly identify lung cancer in 34–50% of patients referred

for further investigation in screening studies [7, 10]. However,
predicting malignancy in small nodules is problematic, as
approximately 15% of participants will be recalled for early
repeat CT in lung cancer screening, and the overwhelming
majority will turn out to be benign [11]. At the same time, some
patients will experience delayed diagnosis of lung cancer and
stage progression due to the growth of nodules initially
regarded as benign or indeterminate while undergoing surveil-
lance [12]. There is, therefore, a need to better stratify small

Received: 18 January 2023 Revised: 21 September 2023 Accepted: 23 October 2023
Published online: 6 November 2023

1Imperial College London, Faculty of Medicine, Department of Surgery & Cancer, London, UK. 2Department of Biomedicine and Prevention, University of Rome, Tor Vergata, Italy.
3The Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’s NHS Foundation Trust, Department of Radiology, London, UK. 4The Royal Brompton and Harefield Hospitals,
Guy’s and St Thomas’s NHS Foundation Trust, Department of Histopathology, London, UK. 5Imperial College London, National Heart and Lung Institute, London, UK. 6Nottingham
University Hospitals NHS Trust, Department of Respiratory Medicine, Nottingham, UK. 7The Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’s NHS Foundation Trust,
Department of Respiratory Medicine, London, UK. 8King’s College Hospital, Department of Radiology, London, UK. 9Hospital Britanico, Department of Radiology, Buenos Aires,
Argentina. 10St Mary’s Hospital, Imperial College Healthcare Trust, Department of Respiratory Medicine, London, UK. 11The Royal Brompton and Harefield Hospitals, Guy’s and St
Thomas’s NHS Foundation Trust, Department of Thoracic Surgery, London, UK. 12The Royal United Hospital, Bath, Department of Radiology, Bath, UK. 13Department of Radiology,
Royal Free Hospital, London, UK. 14Section of “Scienze Radiologiche”, Department of Medicine and Surgery, University of Parma, Parma, Italy. 15Imperial College London, Margaret
Turner-Warwick Centre for Fibrosing Lung Disease, London, UK. 16Lung Unit, The Royal Marsden NHS Foundation Trust, Fulham Road, London SW3 6JJ, UK. 17Early Diagnosis and
Detection, Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK. 18These authors contributed equally: Benjamin Hunter, Christos Argyros.
✉email: a.devaraj@nhs.net

www.nature.com/bjcBritish Journal of Cancer

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-023-02480-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-023-02480-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-023-02480-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-023-02480-y&domain=pdf
http://orcid.org/0000-0003-0038-9039
http://orcid.org/0000-0003-0038-9039
http://orcid.org/0000-0003-0038-9039
http://orcid.org/0000-0003-0038-9039
http://orcid.org/0000-0003-0038-9039
http://orcid.org/0000-0002-9154-8260
http://orcid.org/0000-0002-9154-8260
http://orcid.org/0000-0002-9154-8260
http://orcid.org/0000-0002-9154-8260
http://orcid.org/0000-0002-9154-8260
http://orcid.org/0000-0001-8368-3406
http://orcid.org/0000-0001-8368-3406
http://orcid.org/0000-0001-8368-3406
http://orcid.org/0000-0001-8368-3406
http://orcid.org/0000-0001-8368-3406
http://orcid.org/0000-0003-2276-6771
http://orcid.org/0000-0003-2276-6771
http://orcid.org/0000-0003-2276-6771
http://orcid.org/0000-0003-2276-6771
http://orcid.org/0000-0003-2276-6771
http://orcid.org/0009-0006-5982-6810
http://orcid.org/0009-0006-5982-6810
http://orcid.org/0009-0006-5982-6810
http://orcid.org/0009-0006-5982-6810
http://orcid.org/0009-0006-5982-6810
https://doi.org/10.1038/s41416-023-02480-y
mailto:a.devaraj@nhs.net
www.nature.com/bjc


lung nodules, where clinical management dilemmas are
frequent.
Subsequently, a number of automated machine-learning

algorithms have been developed to improve lung nodule
classification [13–17], though few studies have solely examined
small nodules. Given that the malignancy risk and management
may differ for this group and emerging concerns about AI model
‘hidden stratification’, we propose that lung nodule predictive
models may be improved by training on specific size groups
[9, 18]. Furthermore, few studies explain how automated
algorithms will be applied in clinical practice. Therefore, we aimed
to develop a radiomics-based nodule classification algorithm
using a number of novel approaches: (1) we developed the
algorithm using small lung nodules (≤15mm) only. (2) We
compared model performance to expert thoracic radiologists
and developed a decision-support tool to be used in combination
with radiologist interpretation to aid early cancer detection. (3) We
extracted radiomics features from the peri-nodule lung parench-
yma based on evidence that tumour immune cells are also found
in this region [19]. 4) We validated the algorithm in an external
test set, including prospective lung cancer screening CTs.

MATERIALS AND METHODS
Patients
Health Regulatory Authority (HRA) and Research Ethics Committee (REC)
approvals were obtained for this retrospective observational study (18/
HRA/0434). Informed consent was not required. Patients were identified
using (1) institutional databases of lung pathology reports between
January 2007 and December 2018 and (2) records of lung multidisciplinary
team meetings held between January 2015 and December 2018. All data
were link-anonymised.

Inclusion criteria:

● 5–15mm solid lung nodules on CT imaging
● Biopsy-confirmed ground-truth, OR:
● Radiologically confirmed benignity based on shrinkage on serial CT or

volumetric stability at 1 year4

Exclusion criteria:

● Inability to confirm the location of the lung nodule corresponding to
the pathology report

● CT slice thickness >3mm
● Calcified, cavitating, subsolid, mediastinal, endotracheal, or endobron-

chial nodules.
● Cancer within the last 5 years or lung metastases.

Study recruitment is shown in Fig. 1a. A maximum of five nodules per
scan were included, and the final internal dataset contained 736 solid
nodules from 633 patients. Internal data were divided randomly into
training (609 nodules) and test sets (127 nodules) using the sample.split
function in R, grouped by patient ID to avoid data leakage. An external test
set of 254 nodules was derived from a lung cancer screening programme
(n= 84) and the multi-centre LIBRA study (n= 170) [20, 21]. Clinicodemo-
graphic data are shown in Table 1.

Radiological visual nodule interpretation
The internal test set was also evaluated independently by six thoracic
radiologists (HR, JB, CR, GR, MS and SD). One reader was a resident with 3
years of thoracic experience, and five were consultant thoracic radiologists
with between 5- and 23-years experience (mean 11.2, SD 7.46). Readers
provided a visual assessment of malignancy risk using an ordinal scale: 1–2:
definitely or probably benign; 3: indeterminate, 4–5: probably or highly
likely to be malignant. Inter-reader agreement was calculated using
Krippendorf’s-Alpha metric [22].

Excluded:
Did not meet

eligibility (n = 1029)

Excluded:
Did not meet

eligibility (n = 694)

Excluded:
Technically

ineligible (n = 21)

Lung histopathology database
(n = 1450)

Lung nodule MDT records
(n = 927)

Assessed for radiomics
pipeline (n = 654)

Final dataset (n = 633)

1b

a

2 3

Fig. 1 Recruitment diagram and segmentation labels. a Study recruitment diagram. Databases of lung histopathology (n= 1450) and lung
nodule MDT records (n= 927) were used to identify eligible patients. Following exclusion based on eligibility criteria (n= 1723) and technical
limitations of CT images (n= 21), the final internal dataset consisted of 633 patients with 736 nodules. b Cropped, axial plane CT images
showing binary segmentation masks (red) for nodule regions. The primary lung nodule was segmented (1) and then expanded by 2mm
isotropically to create a spherical annulus structure (2). An 8 × 8mm spherical background structure (3) was segmented 15mm away from the
primary lesion.
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CT image segmentation and radiomics feature extraction
Nodules were segmented in ITK-Snap by CA (http://www.itksnap.org/) and
reviewed by a thoracic radiologist (AD). The following segmentation masks
were generated: (1) the lung nodule; (2) a 2 mm isotropic dilation around
the nodule, termed the annulus structure [23, 24]; (3) an 8mm isotropic
sphere 15mm away from the nodule, termed the background structure
(Fig. 1b).
Resampling to isotropic voxel parameters is recommended by the

Imaging Biomarker Standardisation Initiative to allow comparison across
scan cohorts. Images and segmentations were resampled to isotropic voxel
dimensions of 1 × 1 × 1, which are commonly used by other groups and
models [25]. Cubic spline and nearest neighbour interpolation were used
for scan or mask resampling, respectively. Although there is no clear
consensus on the superiority of one interpolation method over another,
higher-order methods such as cubic spline are generally preferable for
scan images to avoid undesirable image smoothing [26].
Features were extracted using TexLab 2.0 (MATLAB 2015b) as described

previously [27, 28].

Statistical analysis
Statistical analyses were performed in R Studio (v2021-09-20). All tests
were two-sided, with statistical significance defined as p < 0.05. Corrections
for multiple comparisons were performed using the Benjamini–Hochberg/
false-discovery rate (FDR) method. Due to the exploratory nature of this
work, a formal power calculation was not performed. Comparisons of
model AUCs were performed using the DeLong test, which is non-
parametric and makes no assumptions of underlying data distribution.
Previously described feature-reduction measures were implemented

[27] (Supplementary Fig. 1). 1998 radiomic features were scaled using
Z-standardisation ðX � X=SDÞ. Univariable logistic regression was per-
formed to select those with a p value < 0.001 after FDR correction (469
features). A LASSO model was fit using ten-fold cross-validation to select
the optimal lambda (lambda.1se), and the weighted sum of the 5 selected
features gave the small nodule radiomics predictive vector (SN-RPV). One
annulus feature and four lesion-derived features were selected, with no
background-derived features selected for the final model (Supplementary
Fig. 1c and Supplementary Table 1). K-means clustering was used to group
training and test set patients into low, intermediate or high-risk groups
according to the SN-RPV (Supplementary Fig. 1d).
Receiver operating characteristic (ROC) curves were constructed to

assess SN-RPV and radiologist performance in predicting malignancy as
determined by the AUC. 95% confidence intervals were obtained by
resampling with 1000 bootstrap iterations. Threshold-based performance
metrics were reported using the ROC cutoff, which maximised the training-
set Youden index (SN-RPV=−0.1887086). The Youden index is considered
a balanced metric which gives equal weight to both sensitivity and
specificity. Test-set radiologist predictions were converted to a binary
classification of malignant using a threshold of ≥4 (probably malignant).

Integration of radiomics with radiologist interpretation
We developed a decision-support algorithm to assess the impact of
integrating the radiomics model (SN-RPV) with radiologist interpretations
(Fig. 2). We calculated the modelled impact of the decision-support
algorithm on rates of potentially missed cancers and delayed cancer
diagnoses. Potentially missed cancers were defined as proven malignant
nodules categorised as low risk (risk score 1–2) by radiologists. Delayed
diagnosis cancers were defined as proven malignant nodules categorised
as intermediate risk (risk score 3) by radiologists.
To give the most representative comparator to clinical practice,

calculations were performed using risk scores for the radiologist with
performance closest to the mean of the six readers.

RESULTS
Patient and nodule characteristics
Patient, nodule and scan characteristics in the training and test
sets are shown in Table 1. Of the internal dataset, 49% of patients
had benign and 51% had malignant nodules. The overall mean
nodule diameter was 11.14 (3.22) mm. The internal data partitions
were well matched, though in the test set, the proportion of
malignant nodules was higher (57% vs. 50%), and the proportion
of contrast-enhanced CT scans was lower (47% vs. 57%). The
external test data included lower proportions of malignant
nodules (25%) and contrast-enhanced scans (36%).

SN-RPV and radiologist performance
The SN-RPV AUCs for malignancy prediction were 0.85 (95% CI:
0.82–0.88), 0.78 (95% CI: 0.70–0.86) and 0.78 (95% CI: 0.58–0.92) in
the training, internal and external test sets respectively (Table 2).
In the internal test set, the model performance metrics were as
follows: accuracy 73% (95% CI: 65–81), sensitivity 0.86, specificity
0.56, PPV 0.72 and NPV 0.76. In the external test set, the model
performance metrics were as follows: accuracy 75% (95% CI:
69–80), sensitivity 0.63, specificity 0.79, PPV 0.50, NPV 0.87.
The AUC values of the six radiologists ranged from AUC

0.68–0.81 (Table 3). There was moderate inter-reader variability
amongst radiologist classifications (Krippendorf Alpha: 0.58,
Supplementary Fig. 2c). There was no statistically significant
difference between the SN-RPV and the highest-performing
radiologist (DeLong’s p= 0.56).

Clinical benchmarking
In the external test set, the SN-RPV performance was statistically
significant when compared to transaxial diameter (AUC 0.78 vs.

Table 1. Patient clinicodemographic information.

Characteristic Training Test External test

Age, mean (SD) 64.62 (11.90) 66.43 (9.49) 68.72 (8.64)

Gender, No. (%)

Male 285 (46.80) 50 (39.37) 111 (43.70)

Female 324 (53.20) 77 (60.63) 143 (56.30)

Smoking, No. (%)

Y 345 (58.87) 84 (66.14) 197 (77.56)

N 241 (41.13) 43 (33.86) 57 (22.44)

Nodule diameter, Mean (SD), mm 10.98 (3.30) 11.64 (2.94) 9.49 (2.49)

CT with contrast, No. (%)

Y 348 (57.14) 60 (47.24) 92 (36.22)

N 261 (42.86) 67 (52.75) 162 (63.78)

Malignancy, No. (%)

Y 305 (50.08) 72 (56.69) 63 (24.80)

N 304 (49.92) 55 (43.31) 191 (75.20)

Characteristics are displayed at the nodule level. SD standard deviation. Smoking data were missing for 23 nodules.

B. Hunter et al.

1951

British Journal of Cancer (2023) 129:1949 – 1955

http://www.itksnap.org/


AUC 0.68, DeLong’s p= 0.02) but not 3D volume (AUC 0.78 vs.
AUC 0.80, DeLong’s p= 0.24). The relative performance of the SN-
RPV and models based on diameter or 3D volume are compared in
Table 2. In multivariable analysis, volume (p= 0.03), upper lobe
location (0.003) and non-smoking status (0.008) were statistically
significant predictors of malignancy (Table 4). The SN-RPV was
non-significant (p= 0.06).
The RPV was moderately correlated with 3D volume (feature

name SNS_vol, r= 0.68), as were the individual features Annu-
lus_GLCM_Entrop_LLL (r= 0.66) and Lesion_GLCM_InfCo2_LHL
(r= 0.66) in Pearson’s correlation.

We performed a post-hoc analysis to investigate whether the
addition of volume to our predictive models would improve
performance. A concatenated feature vector including the 5 SN-
RPV features plus SNS_vol (3D volume) was used as input to an
XGBoost decision-tree classifier. In the test set, the combined
classifier improved the AUC by 0.01 to 0.79 (95% CI: 0.71–0.86) but
did not improve accuracy (73% [95% CI: 64–80%]).
To assess the impact of IV contrast on performance, we

developed and validated separate models using contrast and non-
contrast-only scans with a 70% training/test split. For the contrast-
only model, the training (n= 285), test (n= 123) and external-test

Radiologist evaluation

Low risk

No further follow-up
or surveillance CT

Early surveillance
CT or further
investigation

Further
investigation

SN-RPV high SN-RPV high

Safety Net
Early

Diagnosis

Intermediate
risk High risk

Fig. 2 Decision-support tool scenarios. In cases where the radiologist categorises a nodule as low-risk, a high-risk SN-RPV triggers the “Safety
Net”, prompting earlier surveillance or investigation. In cases where the radiologist classifies a nodule as indeterminate, a high-risk SN-RPV
triggers the “Early Diagnosis” pathway, prompting further investigation rather than surveillance. Cases evaluated as high-risk by the
radiologist are not affected by the proposed decision support method.

Table 2. Performance metrics for the small-nodule radiomics predictive vector, diameter and volume models.

AUC Accuracy Sens Spec PPV NPV

Training

SN-RPV 0.85 (0.82–0.88) 78% (74–81%) 0.86 0.69 0.74 0.83

Diameter 0.79 (0.75–0.82) 74% (70–77%) 0.75 0.73 0.71 0.76

Volume 0.78 (0.75–0.82) 73% (69–77%) 0.80 0.66 0.70 0.77

Test

SN-RPV 0.78 (0.70–0.86) 73% (65–81%) 0.86 0.56 0.72 0.76

Diameter 0.69 (0.60–0.78) 64% (56–72%) 0.65 0.64 0.73 0.55

Volume 0.77 (0.68–0.85) 77% (69–84%) 0.83 0.69 0.78 0.76

External

SN-RPV 0.78 (0.58–0.92) 75% (69–80%) 0.63 0.79 0.50 0.87

Diameter 0.68 (0.61–0.76) 70% (64–75%) 0.38 0.80 0.39 0.80

Volume 0.80 (0.73–0.86) 69% (62–74%) 0.83 0.64 0.43 0.92

95% confidence intervals are displayed in brackets. SN-RPV radiomics predictive vector, AUC area under the curve, PPV positive predictive value, NPV negative
predictive value.
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(n= 92) set AUCs were 0.86 (95% CI: 0.81–0.91), 0.76 (95% CI:
0.64–0.87) and 0.69 (95% CI: 0.57–0.80), respectively. For the non-
contrast-only model, the training (n= 230), test (n= 98), and
external-test (n= 162) set AUCs were 0.84 (95% CI: 0.79–0.88), 0.83
(95% CI: 0.74–0.89) and 0.76 (95% CI: 0.66–0.85).

PERFORMANCE OF DECISION SUPPORT TOOLS: INTEGRATION
OF SN-RPV AND RADIOLOGIST INTERPRETATION
Results of the K-means clustering analysis to group training and
test set RPVs into low, intermediate and high-risk groups are
shown in Supplementary Fig. 1d. The radiologist decision-support
scenarios are shown in Fig. 2. The impact of the ‘Safety Net’ and
‘Early Diagnosis’ tools for the radiologist with the mean score (R2)
in the test cohort is shown in Supplementary Table 2.
The radiologist categorised 12/72 (16.67%) lung cancers as

benign or probably benign. Eight of the 12 cancers (66.67%)
would have undergone closer surveillance CT or earlier investiga-
tion using the modelled “Safety Net” decision support algorithm
combining radiologist evaluation and SN-RPV (Fig. 2).
Ten out of 55 (18.18%) benign nodules were classified as

indeterminate by the radiologist and would have undergone
surveillance CT based on nodule management algorithms. The
safety net decision support algorithm would have led to
surveillance CT for an additional 2/55 (3.6%) benign nodules that
were classified as low risk by the radiologist.
Nine lung cancers from 72 malignant nodules (12.5%) were

categorised as indeterminate by the radiologist (Supplementary
Table 2) and would have ordinarily undergone surveillance CT. Use
of the “Early Diagnosis” decision-support algorithm would have
identified 6/9 lung cancers (66.67%) as high risk, providing the
opportunity for earlier investigation. The radiologist categorised
19/55 (34.5%) benign nodules as probably or highly likely to be

malignant, leading to potentially unnecessary further investigation
based on the nodule management algorithm. Of the 55 benign
nodules, four (7%) were categorised as indeterminate by the
radiologist but high risk by the SN-RPV and would have
undergone additional potentially unnecessary investigation using
the decision support tool.
To explore how the SN-RPV could integrate with volume in

clinical practice, we dichotomised test-set nodules into low or
high-volume groups using a 300 mm3 threshold to match the BTS
guidelines [4]. Of the 36 nodules with a volume < 300mm3, there
were 9 cancers (25%). 8 out of 9 (89%) cancers had an
intermediate radiomics risk score and would have been upgraded
from CT surveillance (according to BTS guidelines) to further
investigation (after integration with SN-RPV risk) group, with the
limitation that 10 of the 28 (36%) benign nodules would also be
upgraded.

DISCUSSION
Small pulmonary nodules present a challenge for clinicians. The
SN-RPV, developed in 736 ≤ 15mm lung nodules, identified
malignant nodules with a test-set AUC of 0.78 (95% CI:
0.59–0.92) and had comparable performance to the panel of
radiologists (mean radiologist AUC 0.75 [95% CI: 0.67–0.83]). For
cases evaluated as low or intermediate risk by the radiologist, the
“Safety Net” and “Early Diagnosis” decision support scenarios
would have led to a modelled reduction in missed and delayed
cancers of 66.67% [8/12 and 6/9], respectively. The model was
validated in an external test set, including prospective screening
patients, with an AUC of 0.78 (95% CI: 0.71–0.83).
SN-RPV was derived from the lesion and surrounding lung

parenchyma, which may capture important biological processes,
such as peri-tumoural stromal reactions and immune-cell infiltra-
tion, and this region is a key component of lung cancer
radiotherapy planning [19, 29–31]. Moreover, the model was
trained on heterogeneous scans, which may improve applicability
over those developed using only screening trial data.
Recently several machine-learning studies for nodule classifica-

tion have been reported, with AUCs ranging from 0.72 to 0.92
[16, 17, 32, 33]. Most existing studies include a range of nodule
sizes, but our tool is focused on small lung nodules, which form
the bulk of management uncertainty. For example, among
nodules categorised with risk scores between 2 and 4 by
radiologists, there was a substantial spread of both benign and
malignant nodules for all readers (Supplementary Fig. 2c).
Although the SN-RPV performed better than transaxial diameter,
it was not superior to volume alone. In multivariable analysis, the
SN-RPV had a high weight (0.64) but was statistically insignificant
(p 0.06), though close to significance. It appears that by
dichotomising nodules in this fashion, we have discovered that
volume is a strong predictor of malignancy in small nodules that
we were not able to surpass using textural analysis. Interestingly,
volume was not a stronger predictor than radiomics models in our

Table 3. Performance metrics for radiologists in the test set.

Metric R1 R2 R3 R4 R5 R6

Accuracy 65% (56–73%) 69% (60–76%) 61% (52–70%) 74% (65–81%) 71% (62–79%) 64% (55–72%)

AUC 0.74 (0.65–0.72) 0.75 (0.67–0.83) 0.68 (0.58–0.76) 0.79 (0.71–0.86) 0.81 (0.73–0.88) 0.73 (0.65–0.81)

Sensitivity 0.61 0.71 0.51 0.76 0.68 0.53

Specificity 0.69 0.65 0.75 0.71 0.75 0.78

PPV 0.72 0.73 0.73 0.77 0.78 0.76

NPV 0.58 0.63 0.54 0.70 0.64 0.56

Numerators and denominators are shown in parentheses. 95% CIs are shown in brackets. R Reader, AUC area under the curve, PPV positive predictive value,
NPV negative predictive value.

Table 4. Multivariable logistic regression including clinical features.

Variable Beta OR P value

Age 0.02 1.02 (0.0002–1.38) 0.45

Diameter 0.11 1.12 (0.88–1.42) 0.35

Brock −0.008 0.99 (0.92–1.07) 0.83

Volume 0.0007 1.00 (1.00–1.001) 0.03*

RPV 0.64 1.90 (0.99–3.77) 0.06

UL 1.35 3.87 (1.62–9.71) 0.003*

Male sex −0.60 0.55 (0.26–1.13) 0.12

Non-smoker −1.32 0.27 (0.09–0.67) 0.008*

Previous cancer 0.42 1.52 (0.67–3.39) 0.31

Emphysema −0.60 0.55 (0.23–1.23) 0.16

UL upper lobe. *p < 0.05.
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recent study of ≥15mm nodules [21]. Two of the SN-RPV features
were moderately correlated with volume.
Few prior studies have demonstrated how automated tools

might be incorporated into clinical practice, but we have
demonstrated potential net benefits from clinical decision
integration [34].
The 5 features retained by the LASSO method relate to

heterogeneity, as assessed by annulus or tumour-derived grey-
level co-occurrence matrices (GLCM). These features provide a
spatial representation of homogeneity/heterogeneity of pairs of
image voxels with predefined grey-level intensities in orthogonal
directions. Within the tumour adjacent annulus, GLCM entropy,
the degree of randomness, was a predictive feature. Taken
together, the SN-RPV may reflect various biological features
known to contribute to intra-tumoural heterogeneity, such as
genomic instability, hypoxia, stromal reaction and immune
infiltration [19, 35, 36].
There are some other limitations to consider. Firstly, the model

requires image pre-processing and manual segmentation steps,
which would require automation prior to clinical implementation.
Secondly, the model has been evaluated in a retrospective setting
only, and additional prospective validation is needed. Thirdly,
subsolid nodules and ground glass opacities were excluded and
would require separate models for stratification. There is also
some debate within the radiomics community regarding the best
approach to developing models from contrast and non-contrast
enhanced images. While it is recognised that contrast administra-
tion may affect radiomics feature reproducibility and model
performance, there are limited test-re-test data available to
accurately assess the impact of such effects. One study of 104
patients undergoing CT/PET scans found that around 55% of
radiomics features had moderate to good (ICC ≥ 0.75) reproduci-
bility between contrast and non-contrast protocols, but this may
not be directly applicable to other studies [37]. We argue that a
model trained on both contrast and non-contrast images could be
more applicable to ‘real world’ data, with an advantage over
models trained purely on homogeneous, non-contrast nodule
surveillance scans. We have taken this approach in other
published models which attained high performance [21]. The
utility of training on mixed contrast/non-contrast data is
supported by a study of 412 patients by Yang et al. [38]. In this
work, models for predicting EGFR mutation status in lung cancer
patients performed better in non-contrast or contrast-only test
sets when trained on mixed data than if trained purely on one
group [38]. To test that the use of mixed contrast models has not
unduly affected the SN-RPV performance, we trained and
validated separate models on non-contrast and contrast-only
cohorts. The discrimination of these models, as assessed by the
AUC, was not superior to the SN-RPV.
In summary, we have developed a tool to predict lung cancer in

small lung nodules, which has been validated in a large external
test set. The SN-RPV is as good as radiologists’ overall assessments
and can reduce missed cancers. We found that volume is a very
powerful predictor for small nodules. When using the clinically
applicable threshold of <300mm3, the SN-RPV model was able to
find intermediate-risk patients in this group and could potentially
provide a net benefit in combination with volume. Prospective
evaluation of this model, particularly in comparison to existing
volume-based assessments, is warranted before clinical use.

DATA AVAILABILITY
The radiomics data generated in this study are deposited into the Mendeley database
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benjamin-hunter/Small-nodule-radiomics.
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