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Abstract

INTRODUCTION: How to detect patterns of greater tau burden and accumulation is still an open 

question.

METHODS: An unsupervised data-driven whole-brain pattern analysis of longitudinal tau-PET 

was used first to identify distinct tau accumulation profiles and then to build baseline models 

predictive of tau-accumulation type.

RESULTS: The data-driven analysis of longitudinal flortaucipir-PET from ADNI, AVID-05, 

and HABS studies (N=348 cognitively unimpaired, N=188 MCI, N=77 dementia), yielded three 

distinct flortaucipir-progression profiles: stable, moderate-accumulator, and fast-accumulator. 

Baseline flortaucipir levels, Aβ-positivity, and clinical variables, identified moderate- and fast-

accumulators with 81% and 95% positive predictive values, respectively. Screening for fast 

tau accumulation and Aβ-positivity in early-AD, compared to Aβ-positivity with variable tau 

progression profiles, required 46%-77% less sample size to achieve 80% power for 30% slowing 

of clinical decline.
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DISCUSSION: Predicting tau progression with baseline imaging and clinical markers could 

allow screening of high-risk individuals most likely to benefit from a specific treatment regimen.
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BACKGROUND

Alzheimer’s disease (AD) is an irreversible and progressive neurodegenerative disease[1]. 

AD is characterized by the presence of aggregated amyloid-β (Aβ) plaques and by tau-

containing neurofibrillary tangles, leading to neurodegeneration, and then to cognitive 

and clinical decline[2]. Various Aβ-targeting therapies are being developed, with the 

expectation that Aβ reduction would slow both tau accumulation and cognitive decline. 

Thus far, treatments have been largely ineffective in slowing cognitive decline, with modest 

beneficial clinical effects being reported only recently[3-6]. Data from recent clinical trials 

and observational cohorts, provide supportive evidence that Aβ is a key driver of tau[7]. 

Moreover, Aβ and tau together have been shown to promote cognitive decline[8-11]. 

Although Aβ accumulation is strongly associated with AD, disease severity and progression 

have been more closely linked to tau. Several longitudinal studies have investigated the 

spread of tau in AD and have suggested that the density and spatial distribution of tau may 

have implications both for the future tau spread and cognitive decline across the AD clinical 

spectrum[8, 9, 11].

A recent Aβ-lowering therapy trial used baseline tau levels, measured with positron 

emission tomography (PET), to recruit participants and used the change in tau-PET burden 

as a secondary outcome[5]. In that trial, participants with the lowest baseline tau-PET 

burden showed greater clinical benefit with better primary and secondary cognitive and 

functional scores in a post hoc analysis, suggesting that Aβ-lowering therapies result in 

greater clinical outcomes in patients in whom tau is not yet widespread, and that early tau 

may represent an important treatment window where intervention is more likely to have 

a positive outcome if delivered to individuals on an aggressive trajectory of AD protein 

accumulation and in temporal proximity to rapid AD protein burden acceleration.

In this quest to identify patients who will most likely benefit from a specific treatment based 

on their risk for greater tau accumulation, the question of how to detect patterns of greater 

tau-burden and accumulation is largely unanswered. The disease course and the potential to 

successfully target the pathology varies greatly among individuals[12], and heterogeneity in 

tau accumulation and spread patterns is likely a contributing factor. Using cross-sectional 

tau-PET images and a data-driven approach, researchers have identified four distinct 

trajectories of tau in AD[13], and have made longitudinal inferences about the natural 

history of tau progression. Such methods aiming at identifying distinct spatiotemporal 

trajectories of tau accumulation from a single imaging time-point do not often exploit tau 

progression information over time, when available, which might be more important for an 

accurate identification of tau spatiotemporal trajectories.
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With the growing collection of longitudinal tau-PET, many studies show intercorrelation 

among regions representing stages of tau accumulation over time, which greatly depends on 

tau-burden at baseline[9, 14-16]. Machine learning-based approaches have been proposed to 

predict individualized rates of future tau accumulation and to identify populations at greatest 

risk of future tau accumulation[17], which might have great translational impacts on clinical 

trials. However, in majority of published studies, the magnitude of accumulation rates is 

usually based on change at last available measurements reflecting the patient’s current 

status, without accounting for potential heterogeneity in dynamics of temporal profiles and 

in spatial patterns. Thus, there is a need to evaluate the distinct patterns of tau accumulation 

using a method that jointly exploits the whole history of longitudinal measurements of all 

considered spatial tau sites to design optimal tau inclusion criteria for clinical trials.

This work aimed to determine distinct AD tau accumulation profiles among elderly subjects 

in three large longitudinal cohorts of cognitively unimpaired (CU) individuals, individuals 

with mild cognitive impairment (MCI), and individuals with a clinical AD dementia 

diagnosis. Different from previous studies, we propose an unsupervised, data-driven, whole-

brain, longitudinal pattern analysis approach leveraging the spatially and temporally rich 

information provided by longitudinal tau-PET. We first identified distinct subtypes of tau 

accumulation profiles from longitudinal observational data and then built baseline models 

predictive of these tau accumulation profiles.

METHODS

Participants

Data were obtained from a total of N=613 individuals from three independent observational 

cohorts: the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [18], a phase 2/3 

study undertaken as part of Avid Radiopharmaceuticals’ clinical development program for 

their flortaucipir F-18 PET radiotracer (AVID-05) [9], and Harvard Aging Brain Study 

(HABS) [19]. ADNI data used in the preparation of this article were obtained from the 

ADNI database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private 

partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal 

of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron 

emission tomography (PET), other biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of mild cognitive impairment 

(MCI) and early Alzheimer's disease (AD). For up-to-date information, see www.adni-

info.org.

The population in this study included participants with an Aβ PET scan using either 18F-

florbetapir (ADNI and AVID-05) or 11C-PIB (HABS) and two or three 18F-flortaucipir 

tau PET scans within three years of study participation. Aβ PET scans were previously 

processed using published cohort-specific processing streams, and Aβ-positivity was defined 

using previously established thresholds: standardized uptake value ratio (SUVR) = 1.1021 

for 18F-florbetapir PET (ADNI and AVID-05) [20] and distribution volume ratio (DVR) = 

1.20 for 11C-PIB PET (HABS) [21]. Based on these thresholds, for each subject, we utilized 

the Aβ +/− status, instead of the actual composite SUVR value, as one of the prediction 

parameters, and hence, no harmonization of our multi-site Aβ PET data was required.
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Tau PET imaging

Flortaucipir PET data acquisition procedures for each cohort have been described previously 

[22-24]. To minimize the impact of inter-scanner variabilities as well as that of differences in 

acquisition and reconstruction protocols, flortaucipir PET scans from all three cohorts were 

smoothed to an intrinsic smoothness of 8mm full-width-half-max. Subsequently, the data 

underwent preprocessing using the same pipeline recommended by ADNI PET Core (https://

adni.loni.usc.edu/). Motion corrected, averaged, and smoothed flortaucipir images were 

each rigidly co-registered to its respective native T1-weighted MRI, intensity normalized 

using an eroded subcortical white matter mask to estimate tau SUVR images [24, 25], 

and corrected for partial-volume-effect using an T1 MRI-based approach [26]. Each T1-

weighted anatomical MRI was segmented into cortical, subcortical, cerebellar, and white 

matter regions-of-interest (ROIs) using the automated open-source processing framework, 

Advanced Normalization Tools (ANTs), by first applying a bias field correction followed 

by a deformable registration to warp a template to the subject brain image, and then using 

a multivariate MRF-based segmentation method to perform segmentation [27]. The entire 

cortex of each subject’s brain was then parcellated into 35 bilateral ROIs based on a 

previously published volumetric Desikan-Killiany-Tourville atlas [28].

Previous studies on the progression of tau accumulation focused on algorithmic rate 

estimates either from a priori selected anatomical parcellations (e.g., medial temporal lobe 

or inferior temporal gyrus) or target volumes of interest consisting of a weighted average 

of voxels or meta-regions of interest found to contribute to discrimination between clinical 

groups (e.g., Aβ-positive CU vs. Aβ-negative CU or Aβ-positive cognitively impaired (CI) 

vs. Aβ-positive CU) [9, 15]. Findings in both neuropathology studies and emerging data 

with tau PET tracers support the view for the predominance of stereotypical tau PET 

patterns in individuals across the AD spectrum [29]. Leveraging the knowledge of the 

stereotypical patterns of tau accumulation brain sites and aiming for a granular regional 

quantification of tau pathology, we defined tau accumulation sites of interest bilaterally 

following the six-stage operationalized neuropathologic staging scheme proposed by Braak 

et al. [30]. Furthermore, previous studies showed that a lateralized difference in Braak 

tau stages might be present in AD [31, 32]. Therefore, we analyzed ten Braak tau 

composite ROIs from left and right hemispheres: Left/Right Braak-I (entorhinal cortex), 

Left/Right Braak-III (amygdala, parahippocampal, fusiform, and lingual gyri), Left/Right 

Braak-IV (middle temporal, caudal anterior cingulate, rostral anterior cingulate, posterior 

cingulate, isthmus cingulate, inferior temporal, insula, and temporal pole), Left/Right 

Braak-V (superior frontal, lateral orbitofrontal, medial orbitofrontal, frontal pole, caudal 

middle frontal, rostral middle frontal, pars opercularis, pars orbitalis, pars triangularis, 

lateral occipital, supramarginal, inferior parietal, superior temporal, superior parietal, 

precuneus, banks of superior temporal sulcus, and transverse temporal cortex), and Left/

Right Braak-VI (pericalcarine, postcentral, cuneus, precentral, and paracentral cortices). 

Braak-II (hippocampus) was excluded due to flortaucipir signal spill-in from the choroid 

plexus. Regional flortaucipir SUVR values were corrected for normal confounding effects of 

age and sex observed in Aβ-negative CU individuals.
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We recognize that MRI-based pre-processing of tau-PET scans may not be feasible 

or widely available due to various reasons, such as lack of access to MRI scans or 

contraindications for MRI in some patients. In order to evaluate the robustness of the 

tau progression prediction method, described below, to different tau-PET processing 

frameworks, we additionally computed and utilized regional SUVR values from ADNI 

participants using a PET-only processing pipeline without correction for partial volume 

effects [33]. The corresponding results are included in the supplementary material (Figure 

S1).

Statistical analysis

To identify distinct clusters of longitudinal tau progression profiles, we allowed all 

individual regional flortaucipir measures from all time points to factor into an unsupervised 

Bayesian multivariate clustering of the longitudinal data using a mixture of multivariate 

generalized linear mixed (MMGLM) model. We chose to use an unsupervised clustering 

approach in order to discover distinct patterns of longitudinal tau accumulation without 

imposing any prior assumptions on region selection nor on outcome associations. This 

approach allowed us to explore the data without being influenced by previously identified 

tau accumulation results and to identify novel patterns that may not have been apparent 

using traditional supervised approaches. The MMGLM model uses a random-effect 

structure when estimating heterogeneity between individuals’ longitudinal progression 

curves, allowing estimates of distinct clusters of accumulators and probabilities of cluster 

membership. Specifically, a model was built whereby all regional flortaucipir SUVR values 

from all time points were included as multivariate outcome variables (i.e., multivariate 

longitudinal feature space) and regressed on time in the study while accounting for inter-

regional dependence and irregular time sampling. A random intercept and slope for each 

subject were included in the model to adjust for multiple measurements over time and 

for baseline variability across participants. This clustering approach is a K-means-style 

procedure in that the number of clusters must be chosen a priori. Therefore, the optimum 

number of clusters with distinct tau progression patterns was estimated based on deviance 

statistics calculated by using multiple numbers of clusters ranging from one to five.

We assessed the differences among the estimated tau progression clusters based on the 

baseline demographic, clinical, and biomarker variables of interest, including age, sex, 

years of education, ethnicity, race, APOE-ε4 genotype, Aβ-positivity, regional tau burden, 

AD meta-ROI atrophy [34], cerebrovascular white matter lesion (WML) burden, the Mini-

Mental State Examination (MMSE), Clinical Dementia Rating – Sum of Boxes (CDR-

SB), the Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-Cog), MCI 

diagnosis, dementia diagnosis, and psychiatry symptoms (Geriatric Depression Scale or 

GDS), using Wilcoxon rank-sum test and Fisher’s exact test for continuous and categorical 

variables, respectively. Where repeated measures were available for the variables of interest, 

we also calculated the differences between clusters based on the longitudinal change in these 

variables using mixed effect regression assuming an independent correlation structure and 

conditional on a random intercept.
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We then tested the ability to predict, for each subject, the tau progression cluster 

membership from a set of candidate baseline variables using multiclass random-forest 

classification (MC-RFC) modeling. Candidate predictors for MC-RFC modeling were 

limited to factors available for all three study cohorts: age, sex, years of education, APOE ε4 

genotype, Aβ-positivity, regional flortaucipir SUVR, and MMSE, which are also commonly 

collected in clinical trials. Random 60% and 40% split was used to train and test the 

MC-RFC model. The choice of the 60-40 split was based on the size of our dataset and 

to ensure an adequate number of samples in both the training and testing sets. To ensure 

the stability of the results, we repeated the random train-test split 100 times to evaluate the 

performance of our model with different splits.

To assess the value of the estimated flortaucipir-progression profiles, we estimated sample 

sizes required for various clinical trial enrichment scenarios to achieve 80% power to detect 

a range of assumed treatment effect sizes (20-50%) for 18-month trials for Aβ+ early 

AD, AD, and MCI populations, and 48-month trials for Aβ+ CU with cognitive outcome 

assessment performed every six months, using longitudinal clinical measures from ADNI 

participants. Cognitive outcome measures of interest included changed in ADAS-Cog13, 

CDR-SB, and Preclinical Alzheimer Cognitive Composite (PACC) as these are the tools 

typically used in AD clinical trials [35]. Change in flortaucipir SUVR in the temporal 

metaROI comprising the bilateral entorhinal cortex, amygdala, fusiform gyrus, and inferior 

and middle temporal cortices [36] was also considered as an outcome measure of interest 

as this measure has been included in the recent AD trials as a secondary outcome measure. 

The enrichment scenarios considered demographic and clinical inclusion criteria used in the 

current design of clinical trials together with (1) screening for Aβ biomarker evidence only; 

and (2) screening for both baseline Aβ biomarker evidence and for flortaucipir-progression 

profiles. Sample size calculations informed by ADNI data were performed assuming a linear 

mixed-effects model analysis using standard methods described elsewhere [37].

All analyses were performed using R software, v4.1.2 (www.r-project.org). Unsupervised 

MMGLM clustering model, MC-RFC predictive modeling, and sample size calculations 

were performed using the following R packages, MixAK, mlr, and longpower, respectively.

RESULTS

Participants characteristics

Both ADNI (as of Sept 2022) and AVID-05 datasets contained CU and demented 

participants, whereas HABS (date release 2.0; July 2021) dataset was composed of CU 

participants only. Included participants were all 50 years or older. This resulted in 1,515 data 

points from 613 participants with characteristics shown in Table 1 and Table S1.

Distinct Flortaucipir Progression Groups

The MMGLM clustering model resulted in three distinct flortaucipir progression groups 

(Figure 1). Based on the longitudinal flortaucipir progression profiles, these three distinct 

groups are herein referred to as 1) “stable” group presenting with minimal flortaucipir-

accumulation (mean ΔSUVR of 0.011–0.019 SUVR units/year) across all Braak regions; 
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2) “moderate accumulator” group with slow flortaucipir-accumulation rates ( 0.030–0.051 

SUVR units/year) predominantly in Braak III–V regions; and 3) “fast-accumulator” group 

with accelerated flortaucipir-accumulation rates (0.034–0.11 SUVR units/year) in the Braak 

III–VI regions.

Stratification of participants into the three flortaucipir progression clusters results in 440 

participants assigned to the stable group, 96 participants to the moderate flortaucipir-

accumulator group, and 38 participants to the fast accumulator group. The remaining 39 

participants out of 613 (6%) had uncertain classification based on highest posterior density 

credible intervals (Table 2).

Leave-dataset-out analyses replicated the optimal three-group solution, with the percentage 

overlap for participants assigned to the same cluster ranging from 86.26% to 94.86%, with 

an average overlap of 92.70%.

Characteristics of the three flortaucipir progression groups are reported in Table 2 and 

Figure 2. The groups did not differ statistically in ethnoracial and sex distributions. The 

fast accumulators compared to stable and moderate accumulator groups had on average 

one year less years of education, which was statistically significant. Ninety-eight percent of 

Aβ-negative CU individuals presented with stable flortaucipir-progression, and 68% of the 

Aβ-positive individuals with CI and dementia presented with moderate or fast flortaucipir-

progression profiles. The prevalence of moderate and fast flortaucipir-progression profiles 

increased with Aβ-positivity, cognitive impairment, and APOE-ϵ4 carrier status.

The distribution of cases with two vs. three timepoints of flortaucipir PET scans was similar 

among all three groups. However, moderate accumulator and fast accumulator groups had 

on average of 0.5 years and 0.7 years shorter duration of flortaucipir PET follow-ups, 

respectively, reflecting study design differences across ADNI, AVID-05, and HABS.

At the time of the first flortaucipir PET observation, moderate accumulators – in comparison 

to their stable counterparts – were characterized by older age, higher prevalence of APOE 
ε4 carriers, greater WML burden, higher prevalence of Aβ+, greater flortaucipir burden, 

thinner cortex in the AD meta-ROI, worse global cognitive performance in MMSE and 

ADAS-Cog, worse clinical symptoms (CDR-SB), and higher prevalence of clinical MCI 

diagnosis (Table 2 and Figures 2-3). Moderate accumulators had greater rates of cognitive 

and clinical decline overall (MMSE, ADAS-Cog, CDR-SB). In addition, they acquired more 

depressive symptoms (GDS) over time compared to those within the stable flortaucipir 

progression group.

Similarly, fast accumulators, compared to their stable and moderate accumulator 

counterparts, were characterized by greater flortaucipir burden, worse global cognitive 

performance in MMSE and ADAS-Cog, and worse clinical symptoms (CDR-SB). However, 

they were younger with higher prevalence of clinical dementia diagnosis at the time of 

first flortaucipir PET scan (Table 2 and Figures 2-3). Fast accumulators also had a higher 

prevalence of APOE ε4 carriers, Aβ+ status, and thinner cortex in the AD meta-ROI 

compared to the stable group but did not differ in these variables compared to the moderate 
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accumulators. Finally, fast accumulators had greater cognitive and clinical decline (MMSE, 

ADAS-Cog, CDR-SB) over time compared to the stable and moderate accumulator groups.

Predicting flortaucipir progression groups

Next, we tested to what extent the flortaucipir progression groups could be predicted using 

an MC-RFC model based on the baseline variables of interest. This is an imbalanced 

classification problem because of the skewed class distribution towards the stable group, 

making it harder to build a predictive model for moderate accumulator and fast accumulator 

groups. Further, while most classifiers assume that misclassification costs are the same for 

false negative and false positive predictions, the cost of false positive predictions may be 

conceptually greater than the cost of false negative predictions, or vice versa, in clinical 

practice and in clinical trial settings. The classification problem was then set to minimize the 

total misclassification cost instead of optimizing the overall accuracy using a cost-sensitive 

learning scheme to address these challenges. Imbalanced classification costs were assigned 

based on the inverse class distribution.

Results show that baseline flortaucipir uptake in bilateral Braak-IV, Braak-III, Braak-V, and 

Braak-I ROIs, Aβ positivity status, and MMSE ranked with high variable importance in 

predicting the longitudinal flortaucipir progression group (Figure 4), while sex, age, APOE 
ε4 carrier status, and baseline flortaucipir uptake in bilateral Braak-VI ROI were among the 

variables with low-ranking importance. The MC-RFC reached an overall accuracy of 92% 

(95% CI: [91%, 93%]) and balanced accuracy of 87% [86%, 89%] with a positive predictive 

value (PPV) of 81% [77%, 85%] for the moderate accumulators and 95% [92%, 100%] for 

the fast accumulators, and a negative predictive value (NPV) of 94% [93%, 95%] for the 

stable group.

Required Effect Size and Sample Size for Clinical Trials

The effectiveness of screening for evidence of Aβ pathology with variable tau progression 

was compared to joint screening for evidence of Aβ and tau accumulation profiles (stable, 

moderate accumulator, and fast accumulator), as depicted in Figure 5 and summarized 

in Table 3. Figure 5 shows the treatment effect sizes plotted against sample sizes for 

the four enrichment schemes in an 18-month placebo-controlled trial for early AD. The 

figure highlights the combinations required to achieve 80% power for clinical outcome 

measures of ADAS-Cog, CDR-SB, PACC, as well as biomarker outcome measures of 

tau burden in the temporal metaROI. Additionally, Table 3 summarizes the sample size 

requirements for Aβ+ MCI, Aβ+ AD, and Aβ+ CU populations for the same scenarios 

of tau accumulation profile-based enrichment. To achieve 80% power for a 30% slowing 

of clinical decline in ADAS-Cog13 compared with placebo in an 18-month trial for early 

AD, a sample size of N=97 of Aβ+ and fast tau accumulator participants per group was 

required. This is in contrast to N=212 of Aβ+ and moderate tau accumulator participants 

and N=266 of Aβ+ participants with variable flortaucipir progression profiles (i.e., no tau 

progression screening). We estimated a reduction in required sample size of 2.7-4.3-fold 

for clinical outcome measures of ADAS-Cog13, CDR-SB, and PACC, and a 1.8-fold 

reduction for change in temporal meta-ROI tau SUVR as the outcome measure in an 

18-month trial for early AD, when comparing cohort selection based only on Aβ-positivity 
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with variable tau progression profile to selection based on both Aβ-positivity and fast tau 

accumulation profile predictions. Screening for fast, but not moderate, tau accumulation 

profile participants within Aβ+ AD yielded a 1.7-2.1-fold reduction in required sample 

size to detect 30% slowing of the clinical outcome measures of interest, while a 1.4-fold 

reduction in required sample size to detect 30% slowing of change in tau SUVR in temporal 

metaROI was observed only in the screening scenario for moderate tau accumulation. In 

contrast, screening for Aβ+ MCI participants with either moderate or fast tau accumulation 

profiles consistently yielded 1.2-12.3-fold reduction in required sample size to detect 30% 

slowing of both the clinical and temporal metaROI tau outcome measures of interest. 

Finally, when screened for moderate tau accumulation profiles, the sample size required in 

a 4-year placebo-controlled trial for Aβ+ CU was reduced by 4.5-6.8-fold to detect 30% 

slowing of both the clinical and temporal metaROI tau outcome measures of interest.

DISCUSSION

We identified three groups of flortaucipir progression profiles: stable, moderate-accumulator, 

and fast-accumulator. The data-driven clustering results represent an extension of prior 

findings on tau-accumulators. Specifically, 1) Aβ-positive, APOE-ϵ4 carriers with MCI or 

dementia due to AD diagnosis are more likely to progressively accumulate tau, whereas 

Aβ-negative CUs tend to present with stable tau; 2) the faster the pace of tau accumulation, 

the greater the rate of cognitive decline and neurodegeneration; and 3) baseline tau levels 

together with Aβ-positivity and severity of clinical and cognitive symptoms predict a 

subsequent increase in tau levels. Longitudinal tau-PET studies consistently reported that 

tau progresses faster in individuals with Aβ[15, 38], albeit tau accumulation is seen 

in some brain regions among elderly without Aβ deposition[39]. These studies have 

similarly concluded that Aβ deposition is a prerequisite for tau spread to the cortex which 

coincides with onset of clinical symptoms[40, 41], baseline tau levels predict subsequent 

tau accumulation[16, 17], and both baseline and progressive accumulation of tau correlate 

with neurodegeneration and cognitive decline[8, 11, 16, 42]. In line with prior research, 

moderate-accumulators and fast-accumulators in our study presented with greater baseline 

tau levels, worse baseline cognitive performances and clinical diagnoses, and greater rates 

of clinical decline in a dose-dependent manner. Our results strengthen previous observations 

that cortical tau-burden increases particularly in people with significant Aβ pathology and 

that, in these people, the greater is tau-burden at baseline the more it accumulates over time.

We also observed additional clinical and biomarker characteristics unique to these tau-

accumulator groups. Compared to their stable counterparts, moderate-accumulators were 

older with greater cerebrovascular WML-burden and more depressive symptoms’ onset 

over time, whereas fast-accumulators were younger. Older age at symptom onset is 

associated with lower tau and Aβ[43], consistent with established evidence that a younger 

person is more likely to only have AD pathology (Aβ and tau) for any given level 

of cognitive impairment[44], and AD neuropathological changes are strongly associated 

with rapid disease progression in younger elderly[45]. One explanation for observed 

younger age in the fast-accumulators could be that individuals who had Aβ early had 

a more rapid Aβ accumulation leading to rapid aggregation of tau tangles. In contrast, 

an older person is more likely to have non-AD pathologies. For instance, lower levels 
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of Aβ-burden are often observed in dementia patients with cerebrovascular burden[46]. 

Thus, the greater cerebrovascular WML-burden observed in moderate-accumulators might 

be related to their older age[47] and to their poor outcomes in geriatric depression[48]. 

Furthermore, it is widely recognized that non-AD pathologies are highly prevalent in 

individuals with AD neuropathological changes and may interact with neurodegenerative 

processes in AD, leading to worsened outcomes[49]. Unfortunately, our study was limited 

by the exclusion of participants with vascular pathology etiologies and the lack of 

biomarkers to assess the presence of comorbid non-AD pathologies in living individuals 

with AD pathological changes. These limitations prevent us from drawing any definitive 

conclusions about the involvement of non-AD pathologies in the different tau accumulation 

profile groups. Therefore, it is essential for future studies to investigate the underlying 

pathological differences between these groups, including the potential contribution of non-

AD pathologies.

We found that the rates of tau accumulation were particularly significant in Braak III–

IV regions for the moderate-accumulators and further expanded to Braak V-VI regions 

for the fast-accumulators, consistent with neuropathology reports[50]. Overall, moderate-

accumulators and fast-accumulators showed increased tau deposition rates in a topographical 

manner, reflecting initial spreading of tau in early-stage AD, and accurately reproducing 

the topography reported in numerous independent cohorts[51]. This is consistent with 

the suggested “prion-like” network explaining the stereotypical pattern of AD pathology 

spread[52, 53], and is suggestive of the fact that structural and functional connectivity, rather 

than spatial proximity, likely plays a major role in the spread of misfolded proteins across 

the brain[41, 54].

Trials on monoclonal antibodies directed against Aβ plaques have been prescreening 

participants for evidence of Aβ and only recently for tau pathology[5]. Researchers 

have also begun developing tau-targeted vaccines[55]. The primary target of Aβ-lowering 

therapies may be patients with limited widespread tau, as baseline tau-PET can inform 

trajectories of accumulation and suggest optimal intervention for the greatest effectiveness 

of the treatment. From a clinical trial perspective, it is important to note that delivering 

interventions in temporal proximity to time-points of rapid AD protein burden acceleration, 

particularly in individuals with an aggressive trajectory of AD protein accumulation, can 

improve the efficiency and effectiveness of the trial. Moreover, while Aβ-PET is useful for 

detecting early-AD pathology, repeated tau-PET is a better indicator of disease progression. 

Studies have shown that tau-PET progression is associated with future cognitive decline 

across the AD clinical spectrum[16, 56]. In CUs, tau accumulation rate in the inferior 

temporal neocortex, which aligns with the progression from preclinical AD to MCI, was 

associated with the cognitive decline[11]. However, it's important to acknowledge that 

individual variations in tau accumulation rates and disease progression exist. Therefore, 

a more effective strategy for clinical trial recruitment could be to identify individuals 

with a targeted tau accumulation rate at baseline, such as moderate-to-fast, depending on 

their disease stage. In the present study, we effectively identified individuals on a fast tau 

accumulation trajectory with 95% PPV from a single imaging time-point using a multiclass 

classification modeling. Our multiclass approach provides a comprehensive understanding 

of tau progression and its association with disease risk factors and patient characteristics, 
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with the potential to inform the development of more effective treatments for AD. A 

binary classification model to differentiate fast-accumulators and the rest could be explored 

in future studies for the operationalization of tau progression profiling. In hypothetical 

clinical trial scenarios, re-stratifying Aβ-positive early-AD participants for greater risk of 

future tau accumulation, resulted in a reduction in the required sample size by up to 77%. 

This is consistent with previous work showing that a smaller sample size is required to 

detect a clinically meaningful change in cognitive endpoints with trial cohorts screened for 

biomarkers relevant to the underlying biology that is targeted by the treatment[57].

The present study has some limitations. The current study is based on a convenience cohort 

where the degree of true population representation is unknown. Most notably, only 12% 

of our study cohort was diagnosed with dementia and 31% were cognitively impaired, 

limiting modeling of tau progression in later stages of the disease. This is reflected in our 

finding as 57% of the study cohort had stable longitudinal tau profile, which is consistent 

with previous subtyping approaches reporting that over 60% of the ADNI tau-PET cohort 

had no significant tau deposition trajectories[13]. However, our study differs from previous 

tau-burden subtyping studies in that we model tau progression patterns jointly with spatial 

and temporal information from longitudinal data. This is in contrast to identifying distinct 

spatial/stereotypical tau-burden patterns using cross-sectional data and inferring a theoretical 

model of longitudinal tau spreading, as was done in previous studies. Although, direct 

comparison of the results is challenging, we acknowledge the complementary information 

gained from the existing cross-sectional studies. We optimized the classifier based on PPV, 

not NPV, to maximize the probability that included subjects would have moderate-to-fast tau 

accumulation, and thus minimizing the dilutive contribution of non-progressing individuals 

with stable longitudinal tau profiles. This strategy resulted in the exclusion of some fast-

accumulators but maximized the fraction of included subjects with stable low tau levels. 

We chose linear modeling of flortaucipir accumulation profiles due to limited follow-up 

durations in currently available longitudinal flortaucipir PET cohorts. The set of candidate 

independent predictors considered in this study, for tau accumulation profiles may not 

be exhaustive, but was selected to mimic a modeling approach practical in clinical trial 

designs. We chose to use flortaucipir because it is the most extensively studied tau-PET 

tracer, with the largest accessible cohorts and longitudinal studies. Additionally, flortaucipir 

is the only FDA-approved tracer for tau-PET to date. Other tau-PET tracers, such as 18F-

MK-6240 and 18F-PI-2620, have been shown to exhibit patterns that follow the AD Braak 

staging[58, 59]. Thus, we expect the proposed tau progression profiling to be applicable to 

studies that utilize one of these tau radioligand or a combination of more than one tracer, 

if appropriate harmonization is performed. However, the different binding properties and 

off-target binding characteristics of different tau-PET tracers could affect our modeling 

results. Further independent validation, using other tau-PET tracers, is necessary to confirm 

generalizability of the detected tau progression profiles. Finally, while our tau progression 

profiling was performed blinded to clinical diagnosis, we observed increased prevalence of 

MCI and dementia diagnosis in moderate-accumulators and fast-accumulators compared 

to the stables, consistent with the expected dynamics of the tau progression with the 

clinical disease progression[15]. The interpretation of the diagnostic characteristics of the 

identified tau progression groups should be taken in the context of study specific recruitment 
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and clinical assessment protocols, though. Our findings may be limited by each cohort's 

inclusion and exclusion criteria, which may not reflect the broader AD population. Future 

studies are warranted to test the generalizability of our clustering and prediction models to 

other AD cohorts and populations with different demographics and clinical characteristics.

CONCLUSION

The ability to detect tau progression with baseline imaging and clinical biomarkers could 

potentially have a large impact on screening high-risk individuals for accelerated pathology 

progression, identifying treatment response or subgroups of responders, and for identifying 

risk factors, by better defining the biology. Overall, this study might have significant 

implications for designing effective pharmaceutical trials, as well as in the clinical practice 

once a disease modifying treatment becomes available, by stratifying individuals based 

on their probability to undergo greater pathological changes, which are characteristic and 

predictive of their clinical disease progression trajectories. Future studies are warranted to 

further validate and test the proposed clustering and prediction models on diverse cohorts. 

In addition, partnering with ongoing AD clinical trials to assess the real-life performance of 

these models in participant stratification in clinical trials is a promising future direction.
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RESEARCH IN CONTEXT

Systematic review:

The authors reviewed PubMed, Google Scholar, and reference lists of relevant research 

articles. Some studies have shown heterogeneity in tau accumulation and spread patterns 

in Alzheimer’s disease (AD) which may contribute to variability in the disease course 

and individual response to treatments targeting AD pathology. However, the magnitude 

of accumulation rates is usually based on change at the last available measurements 

reflecting current patient status without accounting for potential heterogeneity in 

dynamics of temporal profiles and spatial patterns.

Interpretation:

Our modeling approach identified three distinct spatiotemporal patterns of tau 

progression, which are predictable from baseline tau-PET and clinical data with 

81%-95% PPV. Screening for Aβ-positivity and fast tau accumulation could deliver up to 

77% reduction in required sample size in clinical trials of Aβ-targeting drugs.

Future Directions:

Future work should further validate tau biomarker enrichment for designing effective 

pharmaceutical trials by stratifying high-risk individuals for accelerated pathology 

progression and assessing whether such enrichment criteria introduce biases to trial 

outcomes.
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Figure 1. 
Longitudinal flortaucipir progression rates for three distinct accumulation groups in the 

ADNI, AVID-05, and HABS cohorts. Plots represent annual change in flortaucipir positron 

emission tomography (PET) standard uptake value ratios (SUVRs) within each group (A) 

and estimated effect sizes (FDR adjusted p<0.01) between accumulators and their stable 

counterparts in anatomical regions-of-interest (B). (C) Bar and box plots represent the 

annual change and variance in left and right Braak I – VI SUVRs within each group, 

respectively. # Braak II region was not included in the clustering model. * and *** 

represent statistically significant group differences compared to the stable group at p<0.05 

and p<10−16, respectively.
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Figure 2. 
Distribution of stable, moderate accumulator, and fast accumulator flortaucipir-progression 

profiles with respect to Aβ-positivity, cognitive impairment, and APOE-ϵ4 carrier status.

Tosun et al. Page 19

Alzheimers Dement. Author manuscript; available in PMC 2024 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Baseline characteristics of the three distinct flortaucipir progression groups in the 

ADNI, AVID-05, and HABS cohorts. Plots represent estimated baseline flortaucipir positron 

emission tomography (PET) standard uptake value ratios (SUVRs) effect sizes (FDR 

adjusted p<0.01) between accumulators and their stable counterparts in anatomical regions-

of-interest (A). (B) The radar and box plots represent baseline flortaucipir PET Braak 

SUVRs within each group. #Braak II region was not included in the clustering model. * 

and *** represent statistically significant group differences compared to the stable group at 

p<0.05 and p<10−16, respectively.
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Figure 4. 
Variable importance variance diagram for the multiclass random forest classifier to predict 

the longitudinal flortaucipir progression groups: stable, moderate accumulator, and fast 

accumulator. Each entry represents the probability of the baseline variable of interest 

(position on the y-axis) ranking at variable importance position on the x-axis, ranging from 

0 in white to 1 in red. The positional variance diagram shows the variability of variable 

importance as measured by the multiclass random forest model from each cross-validation 

iteration. Each row represents a candidate predictor variable included in the multiclass 

random forest modeling, while each column represents a position in variable importance. 

The color of each entry corresponds to the probability of occurrences of that predictor 

variable at that variable importance position. The rows are ordered to rank predictor 

variables based on their average variable importance position across all cross-validation 

iterations. For example, the tau burden from bilateral Braak IV ROIs ranks in the top two 
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in the variable importance ordering in 60-70% of cross-validation iterations, while sex ranks 

the lowest in more than 80% of the cross-validation iterations.
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Figure 5. 
Required Treatment Effect and Sample Size Calculations. Required treatment effect sizes 

are plotted against sample sizes in an 18-month trial for four enrichment schemes – black: 

screened for evidence of Aβ pathology but with variable tau progression; green: screened 

for evidence of Aβ pathology and stable tau profile; blue: screened for evidence of Aβ 
pathology and moderate tau accumulation profile; and red: screened for evidence of Aβ 
pathology and fast tau accumulation profile. The plotted curves show the combinations of 

the required treatment effect and sample size to achieve 80% power for clinical outcome 

measures of ADAS-Cog and CDR-SB and biomarker outcome measures of tau burden in the 

metaROI, Braak III, Braak IV, and Braak V regions.
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Table 1:

Demographics, cognitive scores, AD biomarker characteristic, and number of flortaucipir PET scans within 

study cohorts. Baseline refers to first flortaucipir PET observation time point.

ADNI (N=326) AVID-05 (N=161) HABS (N=126)

Variables Mean
(SD)

Range Mean
(SD)

Range Mean
(SD)

Range

Age (years; baseline) 74.2 (7.3) [55.7,92.2] 71.0 (9.7) [50.0,95.0] 75.7 (6.1) [64.8,90.0]

Education 16.4 (2.7) [8,20] 15.5 (2.2) [8,18] 16.0 (3.1) [8,20]

Duration of flortaucipir PET follow-up (years) 2.2 (1.1) [0.65,5.9] 1.4 (0.3) [0.6, 1.9] 2.4 (0.9) [1.2,5.6]

% Female (N) 48% (157) 49% (79) 56% (70)

% Black or African American (N) 5.6% (18) N/A 13.6% (17)

% Asian (N) 0.9% (3) N/A 0.8% (1)

% Hispanic or Latinx (N) 5.6% (18) N/A 0% (0)

% CU (N) (baseline) 52% (171) 32% (51) 100% (126)

% MCI (N) (baseline) 34% (111) 48% (77) 0% (0)

% Dementia (N) (baseline) 13% (44) 20% (33) 0% (0)

% w/ 2-timepoint flortaucipir PET scans 56% (184) 20% (32) 86% (108)

% w/ 3-timepoint flortaucipir PET scans 44% (142) 80% (129) 14% (18)

APOE: apolipoprotein E gene; MMSE: Mini-Mental State Examination; PET: positron emission tomography
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Table 2.

Demographics, cognitive scores, Alzheimer’s disease biomarker and risk characteristics for the three 

flortaucipir progression groups in ADNI, AVID-05, and HABS cohorts. Baseline refers to first flortaucipir 

PET observation time point.

Stable
(N=440)

Moderate
accumulator
(N=96)

Fast
accumulator
(N=38)

Stable vs
Moderate
accumulator

Stable vs
Fast
accumulator

Moderate
accumulator
vs Fast
accumulator

Uncertain
classification*
(N=39)

Variables Mean (SD) Mean (SD) Mean (SD) Pr Pr Pr Mean (SD)

Age (years; baseline) 73.1 (7.7) 76.1 (7.3) 70.6 (9.8) <0.001 0.05 <0.001 76.7 (8.0)

Education 16.2 (2.8) 16.3 (2.3) 15.1 (2.3) 0.55 0.02 0.005 16.0 (2.5)

MMSE (baseline) 28.7 (1.8) 26.5 (3.3) 23.0 (4.2) <0.001 <0.001 <0.001 26.8 (2.6)

ΔMMSE## −0.04 (0.33) −0.6 (0.7) −1.7 (0.9) <0.001 <0.001 <0.001 −0.57 (0.55)

CDR-SB# (baseline) 0.46 (1.1) 1.5 (1.6) 4.4 (3.0) <0.001 <0.001 <0.001 1.7 (2.0)

ΔCDR-SB## 0.09 (0.3) 0.5 (0.6) 1.5 (0.8) <0.001 <0.001 <0.001 0.45 (0.46)

ADAS-Cog# (baseline) 9.3 (4.2) 13.6 (6.2) 21.4 (6.9) <0.001 <0.001 <0.001 14.2 (5.2)

ΔADAS-Cog## 1.1 (0.4) 1.6 (0.6) 2.7 (0.7) <0.001 <0.001 <0.001 1.6 (0.50)

GDS# (baseline) 1.9 (2.6) 2.1 (2.1) 1.8 (1.8) 0.59 0.83 0.56 1.8 (2.3)

ΔGDS## 0.06 (0.15) 0.12 (0.14) 0.10 (0.17) 0.04 0.37 0.72 0.084 (0.16)

WML ## burden (cc; 
baseline)

1.2 (8.0) 5.8 (17.8) 3.8 (8.2) 0.01 0.09 0.91 3.07 (10.7)

Meta ROI thickness 
(mm; baseline)

3.0 (0.32) 2.6 (0.40) 2.5 (0.45) <0.001 <0.001 0.29 2.7 (0.40)

Duration of flortaucipir 
PET follow-up (years)

2.2 (1.1) 1.7 (0.8) 1.5 (0.5) <0.001 <0.001 0.17 1.7 (0.9)

% Female (N) 50% (218) 55% (53) 55% (21) 0.37 0.61 1 36% (14)

% Black or African 

American# (N)

7.7% (26/338) 6.2% (4/64) 0% (0/18) 18% (5/27)

% Asian# (N) 0.6% (2/338) 0% (0/64) 0% (0/18) 7% (2/27)

% Hispanic or Latinx# 
(N)

3.5% (12/339) 4.7% (3/64) 5.6% (1/18) 0.72 0.50 1.0 26% (7/27)

% APOE ε4 carriers (N) 30% (131) 63% (61) 71% (27) <0.001 0.002 0.88 63% (22/35)

% Aβ(N) (first 
observation)

32% (141) 88% (84) 97% (37) <0.001 <0.001 0.18 69% (27)

% CU (N) (first 
observation)

70% (308) 29% (28) 0% (0) <0.001 <0.001 <0.001 31% (12)

% MCI (N) (first 
observation)

25% (111) 47% (45) 37% (14) 46% (18)

% Dementia (N) (first 
observation)

5% (21) 24% (23) 63% (24) 23% (9)

% w/ 2-timepoint 
flortaucipir PET scans 
(N)

54% (240) 52% (50) 39% (15) 0.73 0.09 0.25 49% (19)

% w/ 3-timepoint 
flortaucipir PET scans 
(N)

46% (200) 48% (46) 61% (23) 51% (20)

% ADNI cases (N) 52% (228) 60% (58) 47% (18) <0.001 <0.001 0.04 56% (22)
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Stable
(N=440)

Moderate
accumulator
(N=96)

Fast
accumulator
(N=38)

Stable vs
Moderate
accumulator

Stable vs
Fast
accumulator

Moderate
accumulator
vs Fast
accumulator

Uncertain
classification*
(N=39)

Variables Mean (SD) Mean (SD) Mean (SD) Pr Pr Pr Mean (SD)

% AVID-05 cases (N) 22% (98) 32% (31) 53% (20) 31% (5)

% HABS cases (N) 26% (114) 7% (7) 0% (0) 23% (5)

APOE: apolipoprotein E gene; cc: cubic centimeter; CDR-SB: Clinical Dementia Rating – Sum of Boxes; GDS: Geriatric Depression Score; 
MMSE: Mini-Mental State Examination; PET: positron emission tomography

#
Data only available for ADNI and HABS participants.

##
Data only available for ADNI participants.

*
Uncertain classification based on highest posterior density credible intervals; 46% (18/39) were classified as stable, 41% (16/39) as moderate 

progressor, and 13% (5/39) as fast progressor
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Table 3.

Scenarios of biomarker-based enrichment in placebo-controlled trial for clinical populations with evidence of 

AD pathology based on Aβ PET imaging. The sample size required to detect a 30% slowing in change in 

outcome measures with 80% power, along with the estimated annual rates of change in outcome measures, are 

reported as mean [95% CI].

ADAS-13 CDR-SB PACC metaROI tau

Population Duration
(months)

Enrichment Annual 
rate

of change

Sample 
size

(n/group)

Annual 
rate

of change

Sample 
size

(n/group)

Annual rate
of change

Sample 
size

(n/group)

Annual 
rate

of change

Sample 
size
(n/

group)

Early AD 18 Aβ+ 3.07 
[2.28,3.85]

266 
[169,482]

1.03 
[0.73,1.32]

333 
[202,649]

−1.98 
[−2.48,−1.47]

277 
[176,499]

0.08 
[0.06,0.1]

139 
[92,233]

Aβ+; 
moderate 
accumulator

2.67 
[1.8,3.54]

212 
[120,466]

0.85 
[0.51,1.19]

344 
[174,969]

−1.68 
[−2.29,−1.06]

285 
[152,711]

0.11 
[0.08,0.14]

95 
[60,173]

Aβ+; fast 
accumulator

7 
[4.47,9.53]

97 
[52,238]

2.53 
[1.76,3.29]

77 
[45,158]

−4.14 
[−5.58,−2.69]

91 
[50,215]

0.07 
[0.04,0.1]

75 
[38,208]

AD 18 Aβ+ 4.52 
[3.14,5.91]

198 
[116,412]

1.92 
[1.49,2.34]

119 
[80,197]

−3.1 
[−4.05,−2.15]

220 
[129,458]

0.09 
[0.06,0.12]

172 
[98,382]

Aβ+; 
moderate 
accumulator

2.29 
[0.81,3.76]

337 
[125,2657]

1.62 
[0.89,2.36]

223 
[106,748]

−2.14 
[−3.37,−0.9]

293 
[118,1634]

0.11 
[0.06,0.15]

124 
[59,421]

Aβ+; fast 
accumulator

7.6 
[5.06,10.14]

96 
[54,217]

2.55 
[1.95,3.15]

58 
[38,100]

−4.65 
[−6.34,−2.96]

129 
[69,318]

0.09 
[0.04,0.15]

225 
[91,1204]

MCI 18 Aβ+ 1.93 
[1.26,2.61]

481 
[264,1136]

0.41 
[0.24,0.59]

694 
[342,2102]

−1.2 
[−1.6,−0.8]

463 
[261,1034]

0.08 
[0.06,0.1]

163 
[103,298]

Aβ+; 
moderate 
accumulator

2.71 
[1.74,3.68]

227 
[123,551]

0.5 
[0.24,0.75]

443 
[194,1877]

−1.32 
[−1.92,−0.72]

383 
[181,1286]

0.11 
[0.09,0.14]

85 
[54,154]

Aβ+; fast 
accumulator

5.55 
[3.47,7.62]

39 [20,98] 1.41 
[0.19,2.64]

230 
[66,1330]

−3.81 
[−5.66,−1.95]

65 
[29,245]

0.07 
[0.03,0.11]

60 
[26,257]

CU 48 Aβ+ 0.54 
[0.32,0.76]

496 
[253,1375]

0.07 
[0.03,0.11]

1267 
[524,6382]

−0.29 
[−0.44,−0.15]

663 
[301,2484]

0.04 
[0.02,0.05]

284 
[166,596]

Aβ+; 
moderate 
accumulator

1.32 
[0.76,1.89]

96 
[47,295]

0.35 
[0.17,0.53]

187 
[81,814]

−1.07 
[−1.58,−0.55]

148 
[68,547]

0.11 
[0.07,0.14]

44 
[25,97]
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