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ABSTRACT. Purpose: Previous studies have demonstrated that three-dimensional (3D) volu-
metric renderings of magnetic resonance imaging (MRI) brain data can be used
to identify patients using facial recognition. We have shown that facial features can
be identified on simulation-computed tomography (CT) images for radiation oncol-
ogy and mapped to face images from a database. We aim to determine whether CT
images can be anonymized using anonymization software that was designed for T1-
weighted MRI data.

Approach: Our study examines (1) the ability of off-the-shelf anonymization algo-
rithms to anonymize CT data and (2) the ability of facial recognition algorithms to
identify whether faces could be detected from a database of facial images. Our study
generated 3D renderings from 57 head CT scans from The Cancer Imaging Archive
database. Data were anonymized using AFNI (deface, reface, and 3Dskullstrip) and
FSL’s BET. Anonymized data were compared to the original renderings and passed
through facial recognition algorithms (VGG-Face, FaceNet, DLib, and SFace) using
a facial database (labeled faces in the wild) to determine what matches could be
found.

Results: Our study found that all modules were able to process CT data and that
AFNTI’'s 3Dskullstrip and FSL’s BET data consistently showed lower reidentification
rates compared to the original.

Conclusions: The results from this study highlight the potential usage of anonym-
ization algorithms as a clinical standard for deidentifying brain CT data. Our study
demonstrates the importance of continued vigilance for patient privacy in publicly
shared datasets and the importance of continued evaluation of anonymization meth-
ods for CT data.
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1 Introduction

Brain scan imaging data, such as computed tomography (CT) and magnetic resonance imaging
(MRI), can create three-dimensional (3D) volumetric images of facial regions. These 3D render-
ings allow for improved visualization and analysis of medical images, which has led to
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significant progress for clinical and research applications of medical data. As the implementation
of 3D renderings of imaging data grew, however, increased attention was drawn to the unique
challenges of neuroimaging data.' Specifically, with technological advancements, there is a pos-
sibility for faces to be recognized from the brain scans. Studies have now demonstrated this
ability to identify patients from these renderings not only visually by human review but also
using commonly available facial recognition algorithms with great accuracy.””’ This poses a
major privacy concern for public data sharing and patient privacy as the identification of an
individual can lead to access of private information such as medical diagnosis, genetic data, and
other personal medical information.

This ability to identify facial features from 3D brain scan data renders the current standard of
removing only metadata from medical images inadequate. As an attempt to further protect patient
privacy, anonymization algorithms have been developed to deidentify the 3D rendering of a
medical image, predominantly geared at T1-weighted (T1W) MRI data. These anonymization
algorithms work by skull-stripping, defacing, or refacing the identifiable facial features, such as
the eyes, nose, mouth, and ears. Skull-stripping algorithms isolate the brain from extracranial or
nonbrain tissues from MRI head scans.® Defacing algorithms remove voxels containing data that
could be used to render identifiable facial features and leave the remaining imaging data intact.’
The complete stripping or large removal of facial surface features in skull-stripping and defacing
algorithms, respectively, make it difficult for facial detection. Refacing algorithms do not remove
any data and instead, replace the face on the image by applying scaled precreated masks of values
from a population average.'®!" Other current methods of anonymization of 3D brain scan data
include local deformation? and blurring of the facial region®. Local deformation methods work by
applying significant deformations to defining facial characteristics on the image while preserving
the internal anatomy. Blurring techniques apply facial masks to the image that smooth the facial
surface to blur the anatomical structures of the face and prevent identification. Previous studies
have shown success in the ability of anonymization algorithms to reduce tracing back to the
original medical data.''™"

We previously investigated if facial features could be identified on simulation-CT data of
patients wearing an immobilization mask used for treatment for radiation oncology.'* We found
that patients were able to be reidentified with high accuracy. It is unknown whether CT images
can be anonymized using publicly available anonymization software, which are typically
designed for TIW MRI data. Our study sought to investigate the ability of off-the-shelf software
anonymization software used for TIW MRI data to deidentify CT data and to assess the ability of
facial recognition algorithms to then identify whether anonymized images could be identified in a
database of facial images.

2 Methods

2.1 Overview

The purpose of this study is to evaluate if anonymization algorithms designed for T1W MRI data
can work on CT data and, if so, if facial features can still be recognized and matched to an
original patient image. This was done in three parts: (1) head CT and MRI data were collected
from The Cancer Imaging Archive (TCIA) and OpenNeuro, respectively. (2) Data were anony-
mized using off-the-shelf TIW MRI-based anonymization algorithms (Afni_deface,
Afni_reface, AFNI’s 3Dskullstrip, and FSL’s BET) and original and anonymized data were visu-
alized in 3D Slicer. (3) Data were then run through various facial recognition softwares (VGG-
Face, FaceNet, DLib, and SFace) and were then evaluated for true positive/false positive and true
negative/false negative matches. The true positive (matched to original after anonymization) and
false positive rates (matched to different face images) are reported.

2.2 Data Acquisition

This study is a follow-up to our previous study in which we found that facial features were found
in CT images and correctly mapped to corresponding patient faces when included in a database
of publicly available facial images (LFW: labeled faces in the wild).'* For this study, we acquired
new head CT data and tested whether the CT data could be anonymized. We acquired head CT
scans of 57 patients from TCIA database and generated 3D renderings of the patients. The

Journal of Medical Imaging 066501-2 Nov/Dec 2023 e Vol. 10(6)



©
c
8]
C
(]
£
g
@
o}
—
<
£
3
S]
=
i)
=
©
8
©
>
©

SS

ueds [HIA peay ||Iis |ensn e pue sjoejiue

pajejal-uolow YIm UBDS Y|\ Ue SUBDS |HIN OM}

sey juedpiped yoeg 'sjoJuod }npe Ayyeay ui paurelqo

14N SUedS YN ML Urelq 8joym Jo SISISUoD jaserep Ssiyl
sjuedioiued ayy 1o}

sdew pjal} oyos uids pue ‘Mgl ‘ML sepnjoul Joselep

ua.1IN2 8y "S|0Au0d Aylesy pue siaplosip aAlssaidap

UHM S[ENPIAIPUL Ul Ulj@Aw [BD1U0D Sainseaw Jey}

4N Apnis [euipnyibuol Buiobuo ay) jo ped e si 1eselep ay
swaned Qv1d9 jo sebewr ABojoyred

pue (L3d pue | D) ABojoipel sisoy VIDL “einsu|

lsoue) [euoneN oy} Ag paysiigeise ‘Hoyod DS

10 -OV.1dO 8y} wolj s[enpiAipul JO SiSISU0D J8Selep Siy |
sabewl

10 9sop-mo| pue ‘13d ‘|HIN Sesudwod uoioa|j0o

8yl “(INgD) suuonw ewolse|qol|b yum pesoubelp

Ajpuadal sjenplAlpul Ul [eAIANS 8alj-uolssalboud

yiuow-9 pue ‘awn uoissaiboid asessip ‘[eAinns

2180 YHm souaw [N pue axeldn 13d OSINA

10 Bul|eseq Xul| 0} pswie [el} [edluljd $899 NIHOV UL
sueos

|euiwopge Q0| pue ‘sueods }sayd Q0| ‘Sueds peay 66

10 |10} B SBPN[OUI UOI08||00 Y| "SUOISS| JOAI| OleISE}oW

108}9p 0} SUBDS |9 [eUILIOPJE PaOUBYUS-ISBIIU0D pue

‘se|npou Bun| 1o} syuaned ysu-ybiy Bulussios 1o} sueods

1S8Y9 1SBJUOOUOU BSOP-MO]| ‘SHONBpP Jojow Jo dAIUBoD

$SOSSe 0] pasn sueds |9 peay isesuoouou Buipnjoul

19 ‘SUBDS [BOIPBW JO UON}08)|00 B SUIejuod Ateiq)| ayL

S)Iomlau

90UBLIBAOD [BINIONIIS pue

oinaNuadO uoljow pesy Jauueds-u|
S|0JJU0D Ayleay pue SsIaplosIp
anIssaldap yum sjenplaipul

ur onel Me1/M L 8yl Ag

oinsNusdo painseaw ull@Aw |Bo1L0D

VIOL O0ST-0V1dO 8yl

VvIOL urelg-OSINA-NIdOV

(eyep-uonoafoid-pue-19QT) erep
VIOL uonosloid pue ebewi | D asop-mo]

Apnis uno Joy
palinboe syusned
JO JaquinN

Apnis Ino oy uonduosaqg
pasn Ajepow

Buibew|

aseqeleq leseleq

"sjosejep |YIN pue 10 jo uonduosaq L alqeL

Vol. 10(6)

Nov/Dec 2023 o

066501-3

Journal of Medical Imaging



Patel, Provenzano and Loew: Anonymization and validation of three-dimensional. ..

datasets used were ACRIN-FMISO-Brain, the Clinical Proteomic Tumor Analysis Consortium
Lung Squamous Cell Carcinoma Collection (CPTAC-LSCC), and low-dose CT image and pro-
jection data (LDCT-and-Projection-data).'®*> Open-source TIW and T2-weighted (T2W) MRI
data were also used from OpenNeuro.>*?* MRI data were included as a control to demonstrate
that the anonymization software worked prior to its application to CT data. Description of the
used datasets is given in Table 1.

2.3 Data Processing and Anonymization

The data were first preprocessed to convert the original DICOM data to a usable form for the
anonymization software. We generated 3D renderings of the head CT and MRI data using 3D
Slicer prior to anonymization as a control.”>** DICOM files of the data were converted to the
NIfTI format using icometrix: dicom2nifti.”” Original CT and MRI DICOM files were converted
to NIfTI as the anonymization algorithms used for our study only process NIfTI files. The con-
verted NIfTT data were then anonymized using algorithms from AFNI (Analysis of Functional
Neurolmages [NIH]: deface, reface, and 3Dskullstrip) and FSL (FMRIB Software Library
[Oxford]: BET).!%?-32 Anonymization algorithms were used to mask or remove identifiable
facial features from the CT or MRI data. These algorithms work differently; descriptions of the
T1W MRI-based algorithms used in our study are summarized in Table 2.

Final visualization used 3D slicer. MRI and CT images are two modalities of medical im-
aging that serve different functional purposes in terms of depth and clarity of imaging. A CT scan
takes a fast series of X-rays and reconstructs them to create a full image of the area scanned. MRI
uses strong magnetic fields and radiofrequency signals to image the inside of the body to visu-
alize soft tissue. The standardized units and scales of the imaging modalities are different as well.
CT uses Hounsfield units for each pixel grayscale representation that ranges from —1000 to 3000.
MRI uses a different grayscale that typically ranges from 0 to 255. Additional processing was
required to account for these structural differences between CT and MRI to obtain the appropriate
results postanonymization. No additional processing of the data were needed for the defacing and
refacing algorithms to function. The algorithms were able to process the unprocessed NIfTT file
of the head CT data. Skull-stripping algorithms, however, required additional processing, includ-
ing thresholding and smoothing the image and applying the filled skull-stripped mask to the
original image.** All CT data required processing postanonymization using a custom algorithm.
The MRI-based anonymization algorithms altered the CT data according to the value of air for
MRI, which is 0. However, the CT value of air is —1000. This resulted in an image of a black box

Table 2 Summary of TIW MRI-based anonymization algorithms.

Anonymization Method of
algorithm anonymization Description of algorithm Citation
Afni_deface Defacing Uses a precreated mask to modify Cox et al.®
the image by replacing the voxel
values of the face and ears with
zero
Afni_reface Refacing Modifies the image by applying a Cox et al.®

scaled replacement “generic face”
mask that was created by warping
and averaging several public
datasets; Modifies the same
regions as Afni_deface
FSL’s BET Skull-stripping A deformable model that makes an Smith et al.®
intensity-based estimation of the
brain and nonbrain threshold,
determines the center of gravity of
the head and defines a sphere at
that point, and expands until it
reaches the brain edge
AFNI's 3Dskullstrip  Skull-stripping ~ Modified version of BET; uses “AFNI: 3Dskullstrip,” National
additional processing such as Institute of Mental Health®
nonuniformity correction and edge
detection to minimize errors
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that surrounded the head anatomy when rendered into a 3D image using 3D slicer. We developed
a custom algorithm that modified the values of the anonymized CT image to match the appro-
priate Hounsfield units of air outside the patient volume, changing the pixel values of 0 to —1000.
Our example code is found in Table S1 in the Supplementary Material. This provided a 3D
rendering of the CT image that matched that of an anonymized MRIL

2.4 Facial Recognition

LFW was used as an expanded facial image dataset to determine the generalizability of our
results. The LFW dataset consists of 13,233 images and 5749 people (with 1680 of them having
two or more images). LFW was augmented with the 57 CT control images. Snapshots of the head
in the form of PNG images were taken in the forward-facing position. Regions were limited to the
head; any other region of the human body in the image was removed. The original and anony-
mized data were then passed through facial recognition algorithms (VGG-Face, FaceNet, DLib,
and SFace) using LFW to determine whether matches between the control images and anony-
mized images could be found.**~*® Description of the facial recognition algorithms used in this
study are in Table 3. As in our previous study, any incorrect match of a putatively anonymized
image to an LFW image was considered an incorrect match. During facial recognition, a param-
eter called “enforce detection” was turned off for VGG-Face, FaceNet, DLib, and SFace. Those
algorithms would not run to completion if they were not able to detect a face in an image. With
the “enforce detection” parameter off, if a face was not able to be detected, the algorithm would
continue to analyze the image as a whole.

Facial recognition algorithms determine a match by comparing the distance between two
images using measures of similarity, such as cosine distance or Euclidean distance with a deter-
mined tolerance value. Tolerance values are the set threshold distance for which two images are
deemed a match. The lower the threshold is, the stricter the algorithm is in recognizing a match.
For the purpose of our study, each facial recognition algorithm determined a match based on the
cosine distance of the images. The set threshold values for our study for the cosine distance of
VGG-Face, FaceNet, DLib, and SFace are 0.2, 0.2, 0.04, and 0.3, respectively.

2.5 Statistical Analysis

Statistical analysis was conducted to evaluate the performance of the facial recognition algo-
rithms when applied to the images subjected to the different anonymization algorithms
(Afni_deface, Afni_reface, FSL’s BET, and AFNI’s 3Dskullstrip). To gauge the efficacy of these
anonymization methods, we computed specificity and sensitivity metrics which measure the

Table 3 Description of facial recognition algorithms.

Facial recognition
algorithm Description of algorithm Citation

VGG-Face A model that uses a deep CNN with 22 layers and 37 Parkhi et al.3*
deep units that converts faces into feature vector
representations and employs a triplet loss function
to make them generalizable
FaceNet A deep CNN model built by Google based on the Schroff et al.®
inception model that uses a triple-based loss
function to directly create 128D embeddings; similar
to VGG-Face, the model represents the images as
small dimension vectors and uses similarity to
determine the identification
DLib A CNN model with a ResNet-34 network with built King®®
convolution layers that uses a facial map created by
HOG to generate 128D vectors and checks
similarity for facial recognition
SFace A CNN model that uses a loss function called Zhong et al.¥”
sigmoid-constrained hypersphere loss that imposes
intraclass and interclass constraints on a
hypersphere manifold that allows for better balance
between underfitting and overfitting, further
improving generalizability of deep face models
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facial recognition algorithms’ capacity to correctly identify true negative/false positive and true
positive/false negative matches, respectively. The sensitivity represents the ability of the system
to correctly match faces to their originals after anonymization. The specificity measures the abil-
ity of the system to correctly identify nonmatching images.

3 Results

3.1 Visual Anonymization Results

As shown in Figs. 1 and 2, 3D visualization of the control images and anonymized images reveal
that all of the off-the-shelf anonymization algorithms were able to anonymize the CT data by
altering the 3D rendering of the patient image. The skull-stripping algorithms, FSL’s BET and
AFNTI’s 3Dskullstrip, successfully extracted the brain from the surrounding tissue and completely
removed all identifiable facial features from the rendering. Afni_deface worked to deface the
image by replacing the values of the face and ear with zero. Afni_deface defaced the CT image
and removed facial features comparably to the anonymized T1W and T2W images. Afni_deface
has some minor gray artifacts present on the CT scan exterior of the face after processing.
Afni_reface successfully refaced all medical images by replacing the face and ears with artificial
values.

@ T by § ©

Fig. 1 3D volumetric rendering and imaging scan from (a) computed tomography, (b) TIW mag-
netic resonance imaging, and (c) T2W MRI.

Afni_deface :

Afni_reface

FSL’s BET

AFND’s
3Dskullstrip

Fig. 2 Comparison of anonymized 3D volumetric rendering images from CT, T1W, and T2W
modalities.
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Table 4 Comparison of the total number of anonymized images matched to the original patient
image by the facial recognition algorithm.

Number of matches to original image

Facial recognition algorithm  Original ~ Afni_deface  Afni_reface = FSL's BET  AFNI’'s 3Dskullstrip

VGG-Face 57 42 33 5 4
FaceNet 57 14 5 3 2
D-Lib 57 31 8 4 0
SFace 57 14 0 0 0

Table 5 Comparison of the total number of false positive matches of each image by the facial
recognition algorithm.

Number of false positive images matched

Facial recognition algorithm  Original ~ Afni_deface = Afni_reface  FSL's BET = AFNI's 3Dskullstrip

VGG-Face 600 473 260 100 169
FaceNet 407 1674 2959 5893 4945
D-Lib 91 68 47 80 90
SFace 0 0 0 0 0

3.2 Facial Recognition Results

The total number of matched images for each anonymized image by the facial recognition algo-
rithm is shown in Table 4. A baseline of all facial recognition algorithms was established by
running the control images against themselves. For all facial recognition algorithms, all 57 head
CT images were able to be matched back to each other. In comparison to the original
Afni_deface, and Afni_reface images, the skull-stripping algorithms FSL’s BET and AFNI’s
3Dskullstrip showed significantly lower rates of reidentification for all facial recognition algo-
rithms, with BET and 3Dskullstrip being zero for SFace and 3Dskullstrip being zero for D-Lib.
Afni_reface also showed low rates of reidentification in all facial recognition algorithms except
VGG-Face. Afni_deface comparatively showed the highest rates of reidentification across all
facial recognition algorithms.

All algorithms except SFace had false positive matches to images in the LFW dataset as
shown in Table 5. For both VGG-Face and D-Lib, the original image had the highest number
of false positive matches, whereas for FaceNet, the original image had the lowest number of false
positive matches. For FaceNet and D-Lib, FSL’s BET and AFNI’s 3Dskullstrip had higher false
positives matches when compared with Afni_deface and Afni_reface.

3.3 Statistical Analysis

Specificity and sensitivity values for each anonymized image by facial recognition are given in
Table 6. All anonymized images resulted in a decrease in sensitivity compared to the original.
Sensitivity values of the skull-stripping algorithms, AFNI’s 3Dskullstrip and FSL’s BET, were
the lowest across all images and all facial recognition algorithms. Afni_reface had comparatively
lower sensitivity values for all facial recognition algorithms except VGG-Face. Afni_deface con-
sistently had higher sensitivity values compared with the other anonymized images across all
facial recognition algorithms. The specificity values varied across the anonymization methods
and facial recognition algorithms, but the facial recognition algorithms, D-Lib and SFace, con-
sistently had the highest specificity.
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Table 6 Comparison of specificity and sensitivity metrics across anonymized images and facial
recognition algorithms.

Anonymized images

Facial Original Afni_deface Afni_reface FSL’'s BET AFNI’s 3Dskullstrip

recognition
algorithm  Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity

VGG-Face  0.95 1 0.96 0.88 0.98 0.87 0.99 0.08 0.99 0.07
FaceNet 0.97 1 0.87 0.20 0.78 0.08 0.56 0.05 0.63 0.03
D-Lib 0.99 1 0.99 0.54 0.99 0.12 0.99 0.07 0.99 0
SFace 1 1 1 0.20 1 0 1 0 1 0

4 Discussion

The clinical and research community commonly practices sharing of medical imaging data. The
current standard of deidentifying medical imaging data is to remove metadata. With the ability to
render medical images as 3D volumetric images, however, it makes the current standard inad-
equate because the underlying image remains identifiable. Schwartz et al.” published a study in
the New England Journal of Medicine that demonstrated a key finding that patients could be
identified based on 3D renderings of MRI images of the brain. The study found that 83% of
the patients were able to be identified by facial recognition algorithms. The findings from that
study raised serious concerns about current privacy practices. The identification of an individual
can lead to illegal exploitation of health information.** Acknowledging this concern, we inves-
tigated whether a similar privacy concern existed in the sharing of CT simulation radiation
therapy data of brain tumor or head and neck cancer patients. Similarly, our work demonstrated
that a thermoplastic mask used for radiation oncology treatment planning was not sufficient to
prevent identification and that 83% of patients were able to be recognized with a publicly avail-
able facial recognition algorithm.'* Our findings further emphasized the need to change the cur-
rent standard of only removing metadata for head and neck imaging data not only for MRI data
but also for CT data.

In this study, we investigated the ability of off-the-shelf anonymization software designed
for TIW MRI data to anonymize CT data and prevent facial recognition identification of the
original data. CT and MRI imaging are different imaging modalities not only in their usage but
also in how they function and how the data are structured. The grayscale pixels in each modality
are represented by different values. The significance of our work is that none of the anonymiza-
tion algorithms used in this study have been designed for CT data. All of the anonymization
software packages were able to anonymize the CT data to a certain extent. When the anonymized
images were run against the LFW dataset modified with the control image using various facial
recognition algorithms, we found that the skull-stripped images, FSL'’s BET and AFNI’s
3Dskullstrip, showed significantly lower rates of reidentification when compared across all facial
recognition algorithms. Data anonymized by Afni_reface and Afni_deface varied in terms of
detection performance among the facial recognition algorithms. As sensitivity was defined as
the ability of the system to correctly match faces to their originals after anonymization, the
skull-stripped images resulted in the greatest decrease in performance of all facial recognition
algorithms. The results from this study highlight the effectiveness of anonymization algorithms
in preventing reidentification of CT data and the potential ability to use TIW MRI-based ano-
nymization software as a clinical standard for deidentifying CT data. Further, they emphasize the
need for greater attention to be drawn to anonymization methods for CT data and anonymization
software in general for all medical imaging modalities.

This study was limited in its sample size. It sought to use only publicly available medical
imaging data in its evaluation of anonymization. There is a limited amount of publicly available
CT data, and the publicly available MRI data released are already anonymized. Visual evaluation
of the control anonymized images for TIW and T2W MRI was already partially anonymized
when run through the anonymization software, which explains the differences in results
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compared with CT. Usage of additional medical CT and MRI data may provide greater insight
into the effectiveness of publicly available anonymization algorithms. Additionally, this study
did not evaluate the loss of anatomical structures within the head and brain but focused on the
surface alterations to prevent identification. Anonymization algorithms could potentially induce
alterations that reduce the effective utilization of data derived from medical data images by
changing the appearance of the brain.

Additional considerations include the differences between CT and MRI volume renderings
versus standard facial images. CT and MRI are primarily designed for clinical diagnostics and
research, resulting in different imaging protocols and resolutions compared to the standard pho-
tographs for which facial recognition algorithms are predominantly used. This leads to variations
in image quality and appearances for medical imaging data. Facial recognition with traditional
facial images considers cues such as lighting and expressions that aid recognition. CT and MRI
volumetric renderings lack such cues, however, and may include medical devices, thermoplastic
masks, or artifacts that further complicate recognition. Facial recognition of a 3D medical im-
aging rendering does not consider the full volumetric ability of the medical data as distinguishing
features could be present on the lateral or dorsal region of the head. For the purposes of our study,
we used face-forward images of the patient and removed any external artifacts to the best of our
ability to account for such considerations and differences between the CT volumetric rendering
and the traditional facial images in the LFW dataset.

Techniques such as supervised and unsupervised machine learning on extensive datasets as
well as the concept of data fusion have added increased complexity to the challenge of anonym-
ization. These new machine learning techniques leverage the power of algorithms to discern
patterns that may not be immediately apparent through manual analysis. This could potentially
allow for methods to reidentify patient data despite current efforts to conceal the patient’s identity
while still allowing data exchange for research. In addition, the concept of data fusion is becom-
ing increasingly prevalent as medical imaging data is being fused with other relevant sources,
such as genetic profiles and demographic information. The amalgamation of the different types
of data enhances the ability to reidentify the patient. Such techniques cause significant concern
about the navigating the balance between leveraging the available data for clinical and research
purposes and ensuring the protection of patient identities. Our results along with the rising con-
cern of new techniques underscores the pressing need to continue evaluating and improving
methods for the anonymization of medical imaging data, including CT, to uphold individual
privacy as medical research advances.

The exploration of anonymization in medical imaging requires further inquiry, driven by the
need to safeguard patient privacy while preserving diagnostic value. Future endeavors to enhance
anonymization techniques might involve the development of purpose-built Al algorithms explic-
itly designed to uncover vulnerabilities in reidentifying anonymized images. Other possibilities
include delving into the realm of image quality and the effects of machine variations as they hold
the potential to unveil patient identities, imaging sites, scanner configurations, and geographic
origins. The spectrum of possible investigations is extensive, reflecting the ever-evolving land-
scape of technology. As technology progresses, the importance of protecting patient privacy
grows, necessitating an increased focus on avenues for robust patient data protection and ano-
nymization evaluation.

5 Conclusion

Our study found that all modules were able to process CT data in addition to TIW and T2W data
and that all modules anonymized patient data such that there were reductions in the reidentifi-
cation rate of the patients. AFNI’s 3Dskullstrip and FSL’s BET anonymization modules resulted
in the most significant reduction in reidentification. Afni_reface, AFNI’s 3Dskullstrip, and FSL’s
BET had zero matches to the original patient image for SFace. Our study demonstrates the impor-
tance of continued vigilance for patient privacy in publicly shared datasets and the importance of
evaluation of anonymization methods for CT data. The next step for further validation of the
results is radiologist evaluation of the clinical utility of the anonymized CT data.
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All software code used in this study can be publicly accessed online on the associated anonym-
ization algorithms and facial recognition software’s website. The custom algorithm used to change
the pixel values of the CT images for postanonymization processing is given in Table S1 in the
Supplementary Material. The CT data used in this study were obtained from TCIA and are not
publicly available. Data are available upon request and permission from TCIA. The CT datasets
used in this study are available with permission in the Low Dose CT Image and Projection Dataset
at DOI:10.7937/9NPB-2637, ACRIN-FMISO-Brain Dataset  at DOI:10.7937/K9/
TCIA.2018.vohlekok, and CPTAC-LSCC Dataset at DOI:10.7937/K9/TCIA.2018.6EMUB5L2.
The MRI data used in this study are publicly available in the OpenNeuro database. The T1W-
MRI is available in the in-scanner head motion and structural covariance networks dataset at
DOI:10.18112/openneuro.ds003639.v1.0.0. The T2W-MRI is available in cortical myelin mea-
sured by the T1w/T2w ratio in individuals with depressive disorders and healthy controls dataset
at DOI:10.18112/openneuro.ds003653.v1.0.0.
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