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Abstract

Background: The contribution of platelets in thrombosis within microcirculation has

been extensively documented in the literature. We previously showed, in vivo, that

platelet activation revealed by intracellular calcium mobilization was a crucial step in

the growth of thrombi following laser-induced injury, a model of thromboinflammation.

Objective: Our goal was to investigate the extent of platelet activation and the spatial

distribution of platelets throughout a growing thrombus.

Methods: We employed a multimodal, correlative microscopy approach and compu-

tational biology to study the state of platelets on a growing thrombus obtained after a

laser injury.

Results: We observed a reversible intracellular platelet calcium mobilization that cor-

relates with the time a platelet resides during thrombus growth. Our bioinformatics

analysis displayed the following 3 distinct platelet subpopulations resident within a

thrombus: (1) resting, (2) partially activated, and (3) “fully” activated platelets. The

spatial distribution of the platelet subpopulations in the thrombus creates a double

gradient in both the transversal and longitudinal axis, with the maximal percentage of

fully activated platelets close to the site of injury. However, these activated platelets

did not express negative phospholipids. The injured endothelium was identified to play

a vital role in activating the blood coagulation cascade in this model of thrombosis.

Conclusion: Following a laser-induced injury, thrombi are formed by a gradient of

activated platelets from the injury site to the periphery of the thrombus. These

different activation states of platelets throughout the thrombi regulate the biome-

chanics of the thrombus. The injured endothelium, rather than platelets, was identified

to play a key role in the activation of the blood coagulation cascade in this model of

thromboinflammation.
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1 | INTRODUCTION

Adhesion and aggregation of platelets to an injured vessel wall are

critical steps in thrombus formation. Once platelets become adherent,

they are activated and recruit additional circulating platelets by

secreting secondary agonists, such as adenosine diphosphate (ADP)

and thromboxane A2 (TxA2) [1,2]. On activation, platelets change

their shape: from an initially discoid structure, platelets can spread out

by forming filopodia and lamellipodia [3]. The degree of this shape

change depends on the degree of activation of the platelet: a weakly

activated platelet will remain in its discoid form and is typically named

a “primed platelet.” The procoagulant activity of platelets is one of the

consequences of platelet activation and is characterized by platelet

granule secretion and aggregation [4]. Procoagulant platelets, such as

“COllagen And Thrombin activated” platelets, are characterized by a

high level of intracellular calcium, a loss of mitochondrial potential, the

secretion and expression of proteins typically localized within granules

now on the outer membrane surface as well as P-selectin, the

expression of negative phospholipids at their surface [5].

Platelet activation within a thrombus is, however, not uniform.

The first evidence demonstrating this point came from in vitro studies

using electron microscopy [6,7]. Within the last decade, it has become

evident that platelets are not a homogeneous cell population but

rather a heterogeneous assortment of subpopulations. These sub-

populations differ in their activation, shape, and thus their functions

[8]. This heterogeneity in platelet populations has prompted scientists

to study the composition of platelet clots resulting from different
experimental thrombosis models using in vivo mouse models in

conjunction with ex vivo human sample preparations.

The study of the hierarchical structure of thrombi and the dis-

tribution of differentially activated platelet subpopulations is highly

controversial and differs depending on the model used. Stalker et al.

[8] were the first to characterize 2 distinctive parts with a growing

thrombus using the “Furie model” (a dye laser on the cremaster

microcirculation of a living mouse): (1) An inner core close to the site

of injury, composed of closely packed P-selectin positive platelets. This

region’s primary agonist is thrombin, which results in fibrin deposition

[9]. The core is hard to infiltrate with targeting antibodies [10]. The

presence of procoagulant platelets in this core is unknown; however,

our computational biology approach allows us to observe and quantify

the platelet composition within the core of thrombi. (2) The second

region defined by Brass et al. was an outer shell formed by loosely

packed platelets that do not express P-selectin. The primary platelet

agonists in this region are ADP and TxA2 [11].

We have previously demonstrated that, when using the Furie

model, activated neutrophils on endothelium act as the initiator of the

tissue factor (TF)-dependent coagulation cascade needed for the

accumulation and activation of platelets at the site of injury. Our re-

sults also emphasized the contribution of the adenosine triphosphate

(ATP)/adenosine ratio in the activation of both neutrophils and

platelets [12,13], rendering the role played by the different platelet

agonists within the core and shell of a thrombus even more complex

than previously thought. In this manuscript, we studied the degree of

activation of platelets throughout thrombi using multimodal,
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correlative microscopy, and computational biology approaches with

real-time laser scanning intravital confocal microscopy (LSCIM) and

serial block-face scanning electron microscopy (SBF-SEM) in the Furie

model of thromboinflammation. Based on our previous results, we

hypothesized that, in this model, a thrombus could be formed by

resting and activated, but not procoagulant, platelets.

We demonstrate that firm adhesion of platelets to developing

thrombi requires calcium mobilization and show that rather than 2

separate sections (core and shell), a radial gradient of platelet acti-

vation is formed throughout the thrombus emanating from the

thrombus core. We also showed using P2Y12 deficient mice that

P2Y12 signaling is required for efficient platelet-platelet interaction,

but its contribution to coagulation is limited. Indeed, fibrin generation

is independent of the activation of platelets, but it is colocalized with

the endothelium.
2 | METHODS

2.1 | Mice

Wild-type (WT) C57Bl/6JRj mice (5-9 weeks old) were obtained from

Elevage Janvier. P2Y12-deficient mice (EM:02301, B6;129-

P2ry12tm1Dgen/H) were purchased from DeltaGen Inc (EMMA,

EM;02301). All animal care and experimental procedures were per-

formed as recommended by the European Community Guidelines

(directive 2010/63/UE) and approved by the Marseille Ethical Com-

mittee #14 (protocol number: APAFIS#20334-2019041811535225

and APAFIS#15334-2018060115491816V2).
2.2 | Antibodies and reagents

Antibodies and reagents were purchased from the following vendors.

Anti-mouse GPIb antibody (cat# X649, emfret ANALYTICS). Anti-

mouse CD31 antibody (clone MEC13.3, BioLegend). Isolectin GS-IB4

from Griffonia simplicifolia (cat#I21412, ThermoFisher Scientific).

Fura-2 AM and BAPTA-AM (cat# F1221, Molecular Probes and CAS#

126150-97-8, Calbiochem, respectively. Anti-mouse GPIbα (CD42b)

used for platelet depletion (cat# R300, emfret ANALYTICS). Annexin-

V PE-Cy5 (cat# 1015, BioVision).
2.3 | Preparation of washed mouse platelets and

use in vivo

Washed platelets were prepared, as previously described [12]. Three

WT C57BL/6 mice were anesthetized (100 mg/kg ketamine, 25 mg/kg

xylazine, and 0.25mg/kg atropine), and blood was collected in citrated

buffer (1/9e) in the presence of 0.5mM prostacyclin and 0.02U/mL

apyrase. Platelets were isolated by centrifugation at 450 g for 15

minutes at 37 ◦C and washed twice in Tyrode’s buffer in the presence

of 0.04U/mL apyrase and 500 nM PGI2 (cat# P6188 Sigma-Aldrich).
Washed platelets were resuspended at 1 × 108 platelets/mL in

Tyrode’s buffer containing 0.2% bovine serum albumin. Platelets were

incubated with 3 mM Fura-2 AM in the absence or presence of 50 mM

BAPTA-AM for 40 minutes in the dark at 37 ◦C, centrifuged, and
finally resuspended in Tyrode’s buffer at 1 × 108 platelets/mL before

injection into a recipient mouse. Resting platelets are visualized at a

wavelength of 363 nm and depicted in green. Activated platelets

undergoing calcium flux are visualized at 335 nm and depicted in red.
2.4 | Preparation of human platelet-rich plasma,

aggregation test, and scanning electron microscopy

Human platelet-rich plasma (PRP) and platelets have been obtained

from healthy and consenting human volunteers under agreement

number 7580 established with the Provence-Alpe-Cote d’Azur French

Blood Establishment. Blood samples were prepared, as previously

described [12]. Briefly, blood was centrifuged, and PRP was prepared

in the presence of CaCl2 (2 mM) and MgCl2 (1 mM) for 30 minutes at

37 ◦C. PRP was preincubated at 37 ◦C in a cuvette using an aggreg-

ometer (APACT 4004). The aggregation assay was started with a 0%

aggregation baseline. Then, PRP was exposed to ADP (12 μM) or

vehicle control. An aggregation test was performed for 5 minutes,

followed by fixation with 4% paraformaldehyde-phosphate buffer 0.1

M and pH 7.4 for 1 hour. Adhered resting or ADP-activated human

platelets on coverslips treated with poly-lysine were coated with 20

nm gold in 24-well flat-bottom plates. After dehydration, coverslips

were coated with 20 nm gold a second time and analyzed in a scanning

electron microscope (Quanta 200, FEI).
2.5 | Intravital microscopy and laser-induced injury

Intravital video-microscopy of the cremaster muscle microcirculation

was done, as previously described [12]. WT mice CR57BL/6 were pre-

anesthetized with intraperitoneal ketamine (100 mg/kg), xylazine

(12.5 mg/kg), and atropine (0.25 mg/kg). A tracheal tube was inserted,

and the mouse was maintained at 37 ◦C. To maintain anesthesia,

thiopental (12.5 mg/kg every 30 minutes) was administered through a

cannula placed in the jugular vein. Following the incision of the

scrotum, the testicle and cremaster muscle were exteriorized, and the

cremaster was perfused with a thermo-controlled buffer (37 ◦C).
Microvessel data were obtained using an Olympus AX microscope

with a 60× magnification water immersion objective. Digital images

(640 × 480 pixels) were captured with a Cooke Sensecam CCD

camera, followed by image analysis using SlideBook 6 (Intelligent

Imaging Innovations). Exogenous Fura-2 AM labeled platelets for the

calcium experiments [12] or labeled antibodies for the intravital

confocal experiments [13] were infused into the circulation of an

anesthetized mouse. A vessel wall injury within the cremaster was

induced with a dye-based pulsed nitrogen laser (MicroPoint, Photonics

Instruments). Typically, 1 or 2 pulses were required to cause vessel

injury and thrombus formation, as reported in the literature [12–14].
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Multiple thrombi were studied in a single mouse for 1 hour with new

thrombi formed upstream of earlier thrombi to avoid any contribution

from thrombi generated earlier in the animal.
2.6 | SBF-SEM and platelet morphology analysis

SBF-SEM sample preparation was performed, as previously described

[15]. Briefly, platelet thrombi were fixed using glutaraldehyde,

ferrocyanide-reduced osmium tetroxide for postfixation, thio-

carbohydrazide, and osmium tetroxide, followed by uranyl acetate and

lead aspartate. The samples were dehydrated in a graded series of

ethanol to absolute ethanol and acetone and embedded in Durcupan

resin. Ultrathin sections (90 nm) were obtained with an ultramicro-

tome for morphologic examination using a transmission electron mi-

croscope (Tecnai G2, Thermo Fisher Scientific). Cremaster muscles

with thrombi were mounted on an SBF pin, and the acquisition was

performed upstream of the blood flow. The samples were visualized

with a scanning electron microscope equipped with a VolumeScope

SBF module (Teneo VS, ThermoFisher Scientific). The acquisition was

performed at a thickness of 100 nm and a pixel size of 10 nm. For the

morphology analysis, we systematically observed and counted

approximately 1000 platelets at the site of injury in the thrombi. Each

platelet was assigned a numerical identifier “1-1000.” The data set was

randomized, and approximately 100 platelets were chosen to be

segmented. Once segmented, the sphericity value of each platelet was

calculated according to the following formula: S =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

36πV23
√

A
(V: volume;

A: area) and platelet distribution depending on the activation state

was established.
2.7 | Statistical analysis

Data are representative of at least 3 experiments for all the in vivo

experiments.

For the intravital experiments, the significance of the fibrin gen-

eration was demonstrated using a one-way analysis of variance with

Mann–Whitney U-test at 95% CI (GraphPad software). Regarding the

colocalization statistics, an unpaired Student’s t-test was performed.

For the electron microscopy experiments, statistics were performed

with one-way analysis of variance with Tukey’s multiple comparisons

test at 95% CI (GraphPad software). ** P value of <.01.
3 | RESULTS

3.1 | Characteristics of the platelet calcium

mobilization in vivo

We previously described the intracellular calcium mobilization into

platelets participating in a growing thrombus following a laser-induced

injury [15]. To study the calcium flow, 250 × 106 Fura-2 AM loaded
platelets were infused into a recipient mouse [12–15]. To determine

the characteristics of calcium mobilization in single-bound platelets

in vivo, we also performed experiments with lower ratios of labeled

platelets to unlabeled platelets by injecting 1 × 106 Fura-2 AM loaded

platelets into mice. Under these conditions, we could follow individual

platelets’ accumulation and calcium mobilization into a growing

thrombus (Figure 1A). Only one spike of calcium was observed in

single platelets. In the absence of calcium mobilization, platelets

adhere but do not bind tightly enough in shear conditions (shear rate =

�1500 s-1). Of the total number of labeled platelets detaching from

the developing thrombus, 72% showed no evidence of calcium

mobilization (Supplementary Video S1).

Nonetheless, some platelets (28%) that had undergone calcium

mobilization detached from the thrombus and returned to circulation

(Figure 1B). Most of these platelets were associated with platelet

emboli, including unlabeled platelets and platelets that had undergone

calcium mobilization. The time interval from adhesion to calcium

mobilization for each platelet varied from 1.0 to 12 seconds, with a

median of 3.5 seconds (Figure 1C), suggesting that a platelet could

reversibly incorporate into a growing thrombus without any calcium

mobilization. However, >90% of platelets that underwent calcium

mobilization did so within 5 seconds of adhesion. In vivo, a mean

duration of 20 seconds for calcium mobilization was calculated from

multiple observations (n = 17), ranging from 7 to 165 sec (Figure 1E).

Platelets that continued to mobilize calcium remain incorporated within

the growing thrombus for a greater period (median of 35 seconds) than

platelets that did not mobilize calcium (median of 11 seconds) or

platelets treated with BAPTA-AM to inhibit calcium mobilization (me-

dian of 9 sec) (Figure 1D). However, it remains likely that specific

signaling processes initiated by high levels of intracellular calcium

remain active even after calcium concentrations return to resting

levels. The return to resting levels of calcium in the platelet resulted in

decreased attachment from thrombi. There was a close correlation

between calcium mobilization in an individual platelet and the duration

associated with the developing thrombus, R2 = 0.9174 (Figure 1E).

To determine if platelets get differentially activated depending on

their spatial orientation within the thrombus, we next performed

LSCIM of Fura-2 AM loaded platelets accumulating at the site of

injury (Figure 2A). We observed calcium mobilization in platelets

present in the traditional “core and shell” of the thrombus (Figure 2A).

To better analyze the activation of platelets according to their spatial

orientation in the thrombus, we divided it into the following 3

different regions: (1) the first region was defined as close to the site of

laser-induced injury, representing approximately 25% of the thrombus

surface and corresponds to the core part of the thrombus. (2) The

second region is the intermediate zone. (3) The third region, repre-

senting 50% of the thrombus surface, is at the periphery of the injury

site (Figure 2B).

When comparing the accumulation of platelets over time in the

different regions, we observed that in the first region, only some

platelets stayed attached up to 350 seconds postinjury. On the con-

trary, close to 90% of the platelets in the third region were detached

at 100 seconds postinjury (Figure 2C). These results correlate with the
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F I GUR E 1 Intraplatelet calcium mobilization is responsible for the time-dependent incorporation of platelets in thrombi. (A) Representative

images of the course of platelet calcium flux over time. Wild-type platelets were purified, labeled with Fura-2 AM, and reinjected into a recipient

mouse through the jugular vein (1% of the total platelets were injected). Platelets are labeled in green, and the calcium flow inside the platelets

is depicted in yellow. the width of the artery was typically 20 μm. (B) Quantitative analysis of the relationship between the calcium flux

mobilization in platelets and their detachment from the thrombus (n = 18 events, 14 thrombi, 3 mice). (C) Quantitative analysis of the time for

platelets to mobilize calcium in the thrombus (n = 22 events, 14 thrombi, 3 mice). (D) Graph represents the duration of the platelets inside the

thrombus according to their calcium mobilization state (n = 17 events, 14 thrombi, 3 mice). Data are shown as medians, and statistics were

performed using a one-way analysis of variance with Mann–Whitney U-test at 95% CI (E) Graph represents the correlation between the

duration of platelets in the growing thrombus depending on the duration of the calcium mobilization (n = 17 events, 14 thrombi, 3 mice).

** P <.01.
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activation status of the platelets in the different regions. Whereas

platelets still mobilized calcium in the first 2 regions, calcium flow into

platelets was rapidly reversed in the third region and remained low

after 100 seconds postinjury (Figure 2D). These results indicate that
the intensity of calcium mobilization into platelets, which corresponds

to the degree of platelet activation, may control the duration of

platelet attachment in a growing thrombus. Activated platelets are

present in the different parts of the thrombus.
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calcium flux over time in real-time laser scanning intravital confocal microscopy. Wild-type platelets were purified, labeled with Fura-2 AM, and
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the second region is intermediate, and the third region is defined as the thrombus periphery. The site of laser injury is indicated by an asterisk.

(C, D) Kinetics of platelet accumulation (C) and the ratio of calcium flow per platelet (D) over time for each previously described region. Dots

represent the median of fluorescent signals (n = 8). Data are shown as medians, and statistics were performed using a one-way analysis of

variance with Mann–Whitney U-test at 95% CI. ** P <.01.
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3.2 | A radial gradient of platelet activation is

observed by computational biology within a thrombus

We next performed, first in vitro, a control scanning electron micro-

scopy experiment using human PRP to observe the change of platelet

morphology during an aggregation test (Supplementary Figure S1A).

Under basal conditions (Supplementary Figure 1A), platelets remain

quiescent in their resting state and are discoid. Following ADP stim-

ulation (12 μM), platelets progressively change their morphology,

become partially activated with few filopodia (Supplementary
Figure S1A), and then form additional filopodia (fully activated)

(Supplementary Figure S1A). Using segmentation and bioinformatic

analysis, these results identify 3 different shapes and 3 activation

states of platelets within the same platelet sample.

To investigate this further, we investigated the activation of

platelets participating in a growing thrombus in vivo using volume

SBF-SEM. This technique, coupled with segmentation and bio-

informatic analysis, allowed us to study the cellular morphology of

platelets within the thrombus. Briefly, we systematically annotated

1000 platelets at the site of injury in the thrombi. Each platelet was
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assigned a numerical identifier “1-1000.” The data set was random-

ized, and more than one hundred platelets were segmented

(Supplementary Figure S1B). As expected, discoid (solid arrows) and

filopodia-presenting (dotted arrows) platelets were present in a

thrombus (Figure 3A). We were able to distinguish by computational

biology the 3 subpopulations of platelets detected in vitro: inactivated

or “resting” platelets that remained discoid (Figure 3B), activated

platelets with several filopodia (Figure 3B), and intermediate or

“partially activated” platelets with a morphology that we categorize

between fully activated and resting platelets (Figure 3B). The “partially

activated” platelets display a lower number of filopodia compared with

the fully activated platelets and are not discoid, such as resting

platelets. Next, we calculated the sphericity values S of each

segmented platelet according to the formula: S =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

36πV23
√

A
(V: volume;

A: area). This geometric parameter varies between 0 and 1, with the

value of 1 corresponding to a sphere. The calculation of the

sphericity values of the platelets confirms our previous

observations. Three subpopulations of platelets could be defined

(Figure 3C): resting platelets with sphericity values between 0.86

and 0.57 (48/115 = 42%), partially activated platelets between 0.56

and 0.54 (15/115 = 13%), and fully activated platelets with a value

between 0.53 and 0.33 (52/115 = 45%). We next investigated the

presence of the 3 subpopulations of platelets in the 3 previously

defined regions of the thrombus (Figure 3C–D). The “Injury” first

region, containing the injured endothelium, comprised almost 87%

of activated platelets. Of note, this region also contains a minority

of partially activated and resting platelets (approximately 7% of

each category). The intermediate region comprises 67% fully

activated platelets, 10% partially activated platelets, and 23%

resting platelets. Lastly, in the peripheral region, most of the

platelets were not activated (57%). However, we also observed

partially and fully activated platelets in this region (Figure 3E).

Taken together, these results indicate the existence of a transverse

gradient of activation from the wound-injured endothelium to the

periphery of the vessel, with most of the activated platelets being

found closest to the site of injury with resting platelets at the

periphery of the thrombi.

We next studied the activation state of platelets in the longitu-

dinal direction (Figure 4A). We continued to find the 3 previously

described regions: the site of injury “Injury” (Figure 4B), the middle

region “Middle” (Figure 4B), and the tail of the thrombus “Tail”

(Figure 4B). The thrombus compactness values (Figure 4C) and the

average distance between 2 neighboring platelets (Figure 4D) were

calculated. Briefly, compactness is a geometric parameter calculated

by a ratio between the area of the studied object and the total area of

the field in which this object is located. Its value varies between 0 and

1, with 1 corresponding to a compact object with few empty spaces.

The distance between platelets was also calculated.

The value corresponding to the compactness decreases from the

injury (0.76), the middle (0.50) to the tail of the thrombus (0.20)

(Figure 4C). Conversely, the distance between 2 neighboring platelets

increases from the injury to the tail region. On average, in the injury
section, there are 240 nanometers between any 2 platelets in the

injury part, 630 nanometers in the middle, and 1100 nanometers in

the tail of the thrombus (Figure 4D). These 2 parameters indicate the

presence of a very dense and compact platelet network at the site of

laser injury. At the tail of the thrombus, platelets are more distant, and

the thrombus is extended. These results indicate, in addition to a

transversal gradient of activation, a longitudinal gradient of activation

of platelets from the injury to the tail of the thrombus. Our results

show that platelets are distributed in a radial fashion emanating from

the thrombus core, and their activation state determines this. To

confirm that activated platelets are distributed following a spatial

gradient rather than a core and a shell, we next performed intravital

experiments using an antibody directed against Trem-Like Transcript

1 (TLT-1) to detect activated platelets without using Fura-2. We

observed, as previously published [16], that TLT-1 is more rapidly

translocated to the surface of activated platelets than P-selectin

during thrombus formation in vivo (data not shown). In addition, using

this antibody, activated platelets (in white) were detected both in the

core of the thrombus but also at the periphery (Figure 4E), confirming

our results obtained with the calcium flux (Fura-2) and analysis by

computational biology.
3.3 | Fibrin is generated independently of the

presence and activation of platelets at the site of the

injured endothelium

Our results indicate that most platelets at the injury site (in the first or

core region) are activated and form filopodia. Fibrin is mainly gener-

ated at this region [17,18], suggesting that platelets present in the

core of the thrombus may be procoagulant. Previous results demon-

strated that fibrin generation is not affected in PAR4 null mice in the

Furie model [19]. Using LSCIM, we observed that fibrin is mainly

colocalized with the injured endothelium and not platelets (Figure 5A).

Only 6% of the fluorescent signal corresponding to platelets colo-

calized with the fluorescent signal corresponding to fibrin, versus 70%

of colocalization for fibrin and the injured endothelium (Figure 5B),

suggesting that platelets are not involved in fibrin generation in this

model of thromboinflammation. We next used the R300 antibody in

the conditions in which we previously demonstrated that >95% of

circulating platelets were depleted following its infusion in the

bloodstream but not following the infusion of the isotype control [18].

We compared the kinetics of fibrin generation in P2Y12 KO mice (in

which platelet activation is strongly inhibited [17,20]) and WT control

(Figure 5C). As expected, platelet accumulation was strongly and

significantly reduced in P2Y12 KO mice compared with the control

mice (Figure 5D). However, fibrin generation was unchanged

(Figure 5D), indicating that the presence and activation of platelets

are not required for fibrin generation in this model of thrombosis.

To identify the presence of a procoagulant and negatively charged

phospholipid surface at the site of injury, we infused Annexin-V in

mice before carrying out a laser-induced injury with a confocal

intravital microscope (Figure 6). Following the laser-induced injury,
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the fluorescent signal corresponding to the presence of negative

phospholipids was detected at the injury site and colocalized with the

endothelium (Figure 6A). The depletion of circulating platelets using

R300 antibody did not affect Annexin-V accumulation on the injured

endothelium (Figure 6A, B). We concluded that following a laser-

induced injury, the endothelium, but not platelets, constitutes the

catalytic surface necessary for activating the blood coagulation

cascade leading to thrombosis.

Altogether, our results show that platelets are distributed in a

radial fashion emanating from the thrombus core, and their activation

state determines this. However, resting platelets could be present at

the injury site, such as fully activated platelets, may be present in the

periphery area. The state of platelet activation correlates with the

duration of a platelet in a thrombus. Finally, in this model of throm-

boinflammation, the injured endothelium but not platelets constitute

the primary source of negative phospholipids needed to activate the

TF-dependent coagulation cascade.
4 | DISCUSSION

The concept of immunothrombosis was coined 10 years ago when our

team, using the Furie model [18], and the Massberg et al. [21], using the

deep vein thrombosis model [22,23], showed that granulocytes, and in

particular neutrophils, play a role in thrombus formation in models in

which collagen is not exposed to the bloodstream. Since then, different

studies have confirmed the critical role played by neutrophils (and

monocytes) in thrombosis [23–25]. Neutrophil extracellular traps

(NETs) in the deep vein thrombosis model were also described to

activate both platelets and the blood coagulation cascade. However,

our previous results demonstrate that DNAse-I also has ATPase and

ADPase activities resulting in the inhibition of platelet and neutrophil

activation, which challenges this concept [26]. Here, we confirmed that,

although needed for the initiation of thrombus formation, neutrophils

are not present in the thrombus since we could not observe them by

electron microscopy. Initially, in the deep vein thrombosis model, NETs

were detected in the red part of the thrombus [26] but not with

platelets. It will be essential to determine the spatial distribution of

neutrophils, NETs, and platelets in this model to determine if NETs

interact with and activate platelets or, as observed in the Furie model,

are primarily involved in the generation of thrombin.

Different studies have dissected the molecular and cellular mech-

anisms involved in thrombus formation in the Furie model of throm-

bosis. The dye-based pulsed nitrogen laser activates the endothelium

[27], independently of the interaction of collagen with platelets [13].
region were obtained after a laser-induced injury. (B) Representative pictu

enlargements for each region. (C) Quantitative analysis of thrombus compa

each region. The mean ± SEM is represented. Significance was determine

comparisons test at 95% CI. (D) Quantitative analysis of the distances betw

regions. More than 100 distance measurements between platelets were ana

the tail). The mean ± SEM is shown. Significance was determined using one

Representative projection image from 25 thrombi analyzed in 3 different

Like Transcript 1 (TLT-1) (in white) in thrombi following infusion of anti-G
ATP-activated neutrophils [28] play a role in this model, leading to the

TF-dependent – and factor XII-independent generation of thrombin

[18]. We recently confirmed the presence of the endothelium and

activated neutrophils (but no NETs) at the injury site using electron

microscopy [29]. When investigating the activation state of platelets

participating in a growing thrombus, we previously described that

thrombin is a key agonist involved in intracellular calcium mobilization

in platelets [12,13]. Considering the condensation of platelets and their

colocalization with P-selectin and fibrin, Stalker et al. [8] proposed a

model inwhich the thrombus is divided into 2 distinct regions: one close

to the wound, called the “core” with highly condensed, activated and

procoagulant platelets and a region in the periphery called the “shell”

composed of less activated (P-selectin negative) platelets. This hy-

pothesis was rechallenged in 2019 in a model of hemostatic plug for-

mation within the large veins [28]. The authors proposed that thrombin

generated at the injury site remains in the core and only activates

platelets in this region. In this study, we focused on the analysis of

platelet activation in thrombus formation following an injury induced by

a dye laser using computational biology (the “Furie” model of throm-

bosis [29]).Weobserved a rapid expression of negative phospholipids at

the surface of the injured endothelium. Platelets accumulating at the

site of thrombosis may be resting, partially activated, forming pseudo-

pods but not procoagulant. The degree of platelet activation correlates

with the time a platelet spends in the growing thrombus.We concluded

that rather than 2 distinctive regions, a core and a shell, a thrombus is

composed of a dynamic gradient of activated platelets from the injured

endothelium to the vessel’s lumen.

Activated platelets released ADP and TxA2. These small sec-

ondary agonists could diffuse through the core, thus allowing the

recruitment of new platelets into the shell. Conversely, we observed

that ATP, ADP, and adenosine played a vital role in the activation of

neutrophils and platelets at the site of injury—in the core. Kinetics of

neutrophil and platelet accumulation were drastically reduced in mice

deficient for P2X1 [30], P2Y12 [17], and when apyrase was infused in

the bloodstream of a WT mice [31]. Here, by computational analysis

quantifying the sphericity values of platelets and with 3-dimensional

analysis of Fura-2 AM loaded platelets, “fully” activated platelets

were also detected in the periphery—the shell—of the thrombus.

Taken together, our results support a model in which the architecture

of a thrombus and its composition respond to a complex and dynamic

organization that appears to be organized in a radial gradient of

activation instead of in 2 distinct sections, such as a core and shell.

Several research groups are focusing on the cellular composition

of thrombi. A better understanding of the histopathologic character-

istics of thrombi is essential to lead to future advancements in
res of platelets by serial block-face scanning electron microscopy

ctness values in the 3 studied regions. Thirteen fields were studied in

d using one-way analysis of variance with Tukey’s multiple

een closest neighbors’ platelets from the thrombus in the 3 studied

lyzed in each region (155 in the injury, 203 in the middle, and 106 in

-way analysis of variance with Tukey’s multiple comparisons test. (E)

mice of platelets (glycoprotein Ib [GPIb]β, in green) and Trem-

PIbβ and anti–TLT-1 antibodies.
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F I GUR E 5 Platelets are not necessary for the activation of the coagulation cascade and the generation of fibrin in vivo. (A) Representative

images of the colocalization between platelets and fibrin (left panel) and fibrin and endothelium (right panel) in real-time laser scanning

intravital confocal microscopy after laser-induced injury over time in wild-type mice. Left and right panels are independent experiments. Left

panel: platelets (in red) are revealed by an antibody against the glycoprotein Ib (GPIb)β protein directly coupled to DyLight 649 (0.25 μg/g of the
mouse), and the fibrin (in green) is visualized by an antibody directed against the fibrin labeled with a DyLight 488 (0.25 μg/g of the mouse).

Right panel: the endothelium (in blue) is detected using an antibody against CD31 coupled to an AlexaFluor 647 (0.25 μg/g of the mouse) and

the fibrin (in green) is visualized by an antibody directed against the fibrin labeled with a DyLight 488 (0.25 μg/g of the mouse). Antibodies are

injected intravenously before performing the laser-induced injury and the thrombi are followed every 3 minutes for a total duration of 15

minutes. The colocalization of the 2 partners (platelet/fibrin or endothelium/fibrin) is shown in white. Scale bars: 10μm. (B) Quantitative analysis

of colocalizations between fibrin and platelets and fibrin and endothelium. The graph represents the mean ± SEM of the percentages of
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F I GUR E 6 The activated endothelium is the catalytic surface rich in negative phospholipids on which the activation of the coagulation

cascade occurs. (A) Representative images of the expression of negative phospholipids by real-time laser scanning intravital confocal

microscopy after a laser-induced injury over time in wild-type mice in the presence of platelets (NaCl, top panel) and the absence of platelets,

deleted with R300 antibody (R300, bottom panel). Platelets (in red) are localized using an antibody against the glycoprotein Ib (GPIb)β protein

directly coupled to DyLight 649 (0.25 μg/g of the mouse). The endothelium (in blue) is detected using Isolectine-GS IB4 directly conjugated to an

Alexa Fluor 568 (0.25 μg/g of the mouse). Phosphatidylserines (in yellow) are visualized using fluorescent Annexin-V directly labeled with Pe-

Cy5. Antibodies are injected intravenously through the jugular vein before performing the laser-induced injuries and the thrombi are followed

every 70 seconds over several minutes. Scale bars: 5μm. (B) Statistical analysis of the areas under the curve of integrated fluorescence

intensities over times corresponding to the expression of negative phospholipids. Data are shown as median, and the significance was
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cardiovascular disease treatment. The dynamic nature of thrombus

composition changes over time, increasing the complexity of

answering this question. Indeed, the local environment is the main
colocalized pixels under these 2 conditions (fibrin/platelets or fibrin/endot

were analyzed and the significance was determined using an unpaired two

fibrin generation by intravital microscopy in wild-type mice in the presenc

express P2Y12 receptor (ADP receptor) (P2Y12 KO, middle panel), and w

(R300, right panel). Fibrin represented in green was labeled with an anti-fi

Platelets were labeled with an anti-GPIbβ antibody coupled to a DyLight 6

bars: 10μm. (D) Statistical analysis of the areas under the curve of integra

accumulation (top panel) and fibrin generation (bottom panel). Data are sh

analysis of variance with Mann–Whitney U-test at 95% CI. (NaCl: 45 throm

in 3 mice).
contributor to any thrombus. Hathcock [30] assessed that local he-

modynamic forces regulate thrombus formation pathways, such as

blood flow, shear stress, and turbulence. Platelet-rich thrombi are
helium at the final time point 15 minutes). Four mice per condition

-tailed Student’s t-test. (C) Representative images of the kinetics of

e of platelets (NaCl, left panel), in mice with platelets that do not

ild-type mice depleted in platelets with the antibody anti-GP1bα
brin antibody coupled to a DyLight 488 (0.25 μg/g of the mouse).

49 and administered in an amount of 0.25 μg/g of the mouse. Scale

ted fluorescence intensities corresponding to the platelet

own as medians, and statistics were performed using a one-way

bi in 4 mice; P2Y12 KO: 38 thrombi in 3 mice; and R300: 25 thrombi
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usually associated with arterial beds (high-shear stress), whereas

venous thrombi, formed at low-shear stress, are platelet-poor but

fibrin- and red blood cells-rich. The second element to take into

consideration is the thrombus age. It is now known that the life of a

thrombus goes through 3 different stages: initiation, extension, and

perpetuation. The adhesion of the platelets defines the initiation to

the endothelium and the extracellular matrix: von Willebrand factor

expressed by the endothelium and the glycoprotein Ib (GPIb) by the

platelets are the main drivers of platelet adhesion and thrombus

initiation. The extension phase is mainly made up of homophilic in-

teractions between platelets, activated by ADP and TxA2, ATP, Gas6,

serotonin, and cytokines are present in gradients. Finally, during the

perpetuation, clot contraction by platelets applies forces on the fibrin

network [31]. The clot contraction process forms compressed-red

blood cells called polyhedrocytes [32]. These specific red blood cells

regulate thrombus rigidity, permeability, and fibrinolysis resistance to

the thrombus. This has been confirmed by Maly et al. [33] in 2022.

Their study revealed the composition of thrombi aspirated from

myocardial infarction patients depending on the age of the thrombi.

Here, we observed different morphology of platelets participating in a

growing thrombus. It will be interesting to consider the phenomenon

of contraction in the morphologic analysis of platelets.

Numerous studies have identified platelets as an essential cellular

partner for the activation of the coagulation cascade, ultimately

leading to the generation of fibrin. This was mainly the result of in vitro

aggregation experiments where, in the presence of potent agonists,

such as collagen and thrombin, platelets rapidly aggregate, express

negative phospholipids at their surface, and form a fibrin-rich

thrombus [34]. These procoagulant platelets were coined “COllagen

And Thrombin activated” platelets in reference to the agonists that

induce them in vitro and were more recently studied in vivo in different

animal models. Procoagulant platelets were also observed by inducing

the exposure of collagen to circulating blood in vivo [35]. These pro-

coagulant platelets were localized at the surface of thrombi caused by

the topical application of ferric chloride. More precisely, Nechipur-

enko et al. [36] described that procoagulant platelets, initially formed

at the injury site, could move during thrombus formation and end up

at the periphery in a process named thrombus contraction. Then, in

contact with circulating thrombin, procoagulant platelets will promote

the generation of fibrin and ensure the stability of the residual

thrombus.

The Furie model does not expose the subendothelial matrix to

blood circulation. We now confirm that fibrin does not colocalize with

the platelet-rich thrombus, and that fibrin generation is unaffected by

a lack of platelets. Our results indicate that platelets are not involved

in activating the blood coagulation cascade. These results agree with

what was observed by Hua et al. [35] in 2015, who studied the role of

platelets in the activation of the blood coagulation cascade when

thrombosis is induced independently of subendothelial matrix expo-

sure. Additionally, in the Furie model, Ivanciu et al. [37] have previ-

ously shown that prothrombinase is distributed away from platelets

and is largely found on activated endothelium. Therefore, based on

these results, we hypothesize that the activated endothelium and not
platelets play a vital role in fibrin generation and the activation of the

blood coagulation cascade. Although it might not be surprising that, in

the absence of collagen exposure, platelets are not procoagulant, it is

important to consider that fibrin could be formed independently of

platelets. This may be relevant in the case of immunothrombosis and

thromboinflammation.

Altogether our results indicate that a thrombus is a dynamic

structure formed by resting, partially, and fully activated platelets. The

degree of activation correlates with the participation of the platelets

in the thrombus. Fibrin may develop independently of this activation

gradient. Comparing these results with other thrombosis models will

be essential to better understand the dynamics of platelet activation

in a growing thrombus.
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