Skip to main content
. 2023 Dec 7;23:203. doi: 10.1186/s12880-023-01160-w

Table 3.

Mean±STD of our GAN method and the deep learning methods are summarized. CNN-Fuse, FusionGAN, and SESF-Fuse will be excluded from the quantitative comparisons as they did not generated fusion images that contain CT bone structures. Bold indicates the best results. Underline indicate a better result than ours that was excluded because it did not satisfy the fusion criteria

Method ENT STD PSNR QXY/F MG SF NCC MI SSIM
CNN-Fuse 2.06± 0.5 0.24± 0.03 46.5± 6.49 0.51± 0.07 0.08± 0.02 0.36± 0.06 0.9± 0.09* 0.87± 0.56 0.66± 0.31
SESF-Fuse 2.06± 0.51 0.23± 0.03 43.04 ± 8.41 0.46± 0.04 0.08± 0.02 0.38± 0.06 0.7± 0.15 0.47± 0.33* 0.58± 0.25*
SwinFusion 2.05± 0.46 0.28± 0.03 22.65± 1.78* 0.6± 0.04 0.07± 0.02 0.34± 0.06 0.89± 0.04 0.23± 0.09 0.67± 0.16
IFCNN 2.11± 0.48 0.24± 0.03 21.54± 1.96 0.6± 0.05 0.08± 0.02 0.36± 0.06 0.9± 0.04 0.03± 0.05 0.78±0.04
U2Fusion 2.14± 0.49 0.18± 0.03 18.11± 0.95 0.54± 0.07 0.06± 0.02 0.27± 0.05 0.91±0.04* 0.24± 0.07 0.15± 0.06
DSAGAN 2.19± 0.39 0.27± 0.01 28.5±3.33 0.4± 0.05 0.13± 0.02 0.58± 0.07 0.86± 0.07 0.66±0.54 0.11± 0.05
CU-Net 2.83 ± 0.55 0.19 ± 0.02 21.07 ± 1.84 0.31 ± 0.04 0.04 ± 0.01 0.17 ± 0.03 0.88 ± 0.04 0.29 ± 0.07 0.4 ± 0.09
FusionGAN 1.64± 0.3 0.21± 0.03 25.89± 2.88 0.35± 0.03 0.1± 0.03 0.31± 0.03 0.69± 0.16 1.0± 0.14 0.59± 0.18
Ours 5.2±0.38 0.44±0.05 23.02±3.5 0.64±0.1 0.20±0.05 0.67±0.14 0.91±0.04 0.42±0.29 0.62±0.22

* is not statistically different (p-value >0.05) from our proposed MedFusionGAN method

Abbreviations: ENT entropy, STD standard deviation, PSNR peak signal-to-noise ratio, MG mean gradient, SF spatial frequency, NCC normalized cross-correlation, MI mutual information, SSIM structural similarity index