Table 3.
Mean±STD of our GAN method and the deep learning methods are summarized. CNN-Fuse, FusionGAN, and SESF-Fuse will be excluded from the quantitative comparisons as they did not generated fusion images that contain CT bone structures. Bold indicates the best results. Underline indicate a better result than ours that was excluded because it did not satisfy the fusion criteria
Method | ENT | STD | PSNR | MG | SF | NCC | MI | SSIM | |
---|---|---|---|---|---|---|---|---|---|
CNN-Fuse | 2.06± 0.5 | 0.24± 0.03 | 46.5± 6.49 | 0.51± 0.07 | 0.08± 0.02 | 0.36± 0.06 | 0.9± 0.09* | 0.87± 0.56 | 0.66± 0.31 |
SESF-Fuse | 2.06± 0.51 | 0.23± 0.03 | 43.04 ± 8.41 | 0.46± 0.04 | 0.08± 0.02 | 0.38± 0.06 | 0.7± 0.15 | 0.47± 0.33* | 0.58± 0.25* |
SwinFusion | 2.05± 0.46 | 0.28± 0.03 | 22.65± 1.78* | 0.6± 0.04 | 0.07± 0.02 | 0.34± 0.06 | 0.89± 0.04 | 0.23± 0.09 | 0.67± 0.16 |
IFCNN | 2.11± 0.48 | 0.24± 0.03 | 21.54± 1.96 | 0.6± 0.05 | 0.08± 0.02 | 0.36± 0.06 | 0.9± 0.04 | 0.03± 0.05 | 0.780.04 |
U2Fusion | 2.14± 0.49 | 0.18± 0.03 | 18.11± 0.95 | 0.54± 0.07 | 0.06± 0.02 | 0.27± 0.05 | 0.910.04* | 0.24± 0.07 | 0.15± 0.06 |
DSAGAN | 2.19± 0.39 | 0.27± 0.01 | 28.53.33 | 0.4± 0.05 | 0.13± 0.02 | 0.58± 0.07 | 0.86± 0.07 | 0.660.54 | 0.11± 0.05 |
CU-Net | 2.83 ± 0.55 | 0.19 ± 0.02 | 21.07 ± 1.84 | 0.31 ± 0.04 | 0.04 ± 0.01 | 0.17 ± 0.03 | 0.88 ± 0.04 | 0.29 ± 0.07 | 0.4 ± 0.09 |
FusionGAN | 1.64± 0.3 | 0.21± 0.03 | 25.89± 2.88 | 0.35± 0.03 | 0.1± 0.03 | 0.31± 0.03 | 0.69± 0.16 | 1.0± 0.14 | 0.59± 0.18 |
Ours | 5.20.38 | 0.440.05 | 23.023.5 | 0.640.1 | 0.200.05 | 0.670.14 | 0.910.04 | 0.420.29 | 0.620.22 |
* is not statistically different (p-value ) from our proposed MedFusionGAN method
Abbreviations: ENT entropy, STD standard deviation, PSNR peak signal-to-noise ratio, MG mean gradient, SF spatial frequency, NCC normalized cross-correlation, MI mutual information, SSIM structural similarity index