Table 2.
Comparative table of object-detection CNN models’ performance.
| CNN model | Validation dataset | Test dataset | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Precision | Recall | F-score | mAP 0.5 | Precision | Recall | F-score | mAP0.5 | p-value | |
| YOLOv5x | 0.8975 | 0.9197 | 0.9085 | 0.9490 | 0.9210 | 0.9350 | 0.9279 | 0.9440 | 0.157 |
| Faster R-CNN | 0.8753 | 0.9331 | 0.9033 | 0.9194 | 0.8913 | 0.9638 | 0.9261 | 0.9412 | 0.144 |
| SSD | 0.9501 | 0.4789 | 0.6368 | 0.8491 | 0.9562 | 0.5599 | 0.7063 | 0.9133 | 0.354 |
| RetinaNet | 0.9369 | 0.8155 | 0.8720 | 0.9180 | 0.9407 | 0.8719 | 0.9050 | 0.9489 | 0.187 |
Descriptive parameter values of Precision, Recall, F-score, and Mean Average Precision (mAP0.5) are represented for Validation and Test datasets. YOLOv5x: You Only Look Once version 5 model x, Faster R-CNN: Faster R-Convolutional Neural Network, SSD: Single Shot Detector. Statistical analysis (t-test) to compare the performance of CNN models with validation and test data subsets (p < 0.05). Bold values represent the higher values of each parameter, in validation and test datasets.