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Abstract

Artificial intelligence for graphs has achieved remarkable success in modeling complex systems, 

ranging from dynamic networks in biology to interacting particle systems in physics. However, the 

increasingly heterogeneous graph datasets call for multimodal methods that can combine different 

inductive biases—the set of assumptions that algorithms use to make predictions for inputs they 

have not encountered during training. Learning on multimodal datasets presents fundamental 

challenges because the inductive biases can vary by data modality and graphs might not be 

explicitly given in the input. To address these challenges, multimodal graph AI methods combine 

different modalities while leveraging cross-modal dependencies using graphs. Diverse datasets 

are combined using graphs and fed into sophisticated multimodal architectures, specified as 

image-intensive, knowledge-grounded and language-intensive models. Using this categorization, 

we introduce a blueprint for multimodal graph learning, use it to study existing methods and 

provide guidelines to design new models.

1 Introduction

Deep learning on graphs has contributed to breakthroughs in biology [1, 2], chemistry [3, 4], 

physics [5, 6], and the social sciences [7]. The predominant use of graph neural networks [8] 

is to learn representations of various graph components—such as nodes, edges, subgraphs, 

and entire graphs—based on neural message passing strategies. The learned representations 

are used for downstream tasks, including label prediction via semi-supervised learning [9], 

self-supervised learning [10], and graph design and generation [11, 12]. In most existing 
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applications, datasets explicitly describe graphs in the form of nodes, edges, and additional 

information representing contextual knowledge, such as node, edge, and graph attributes.

Modeling complex systems requires measurements that describe the same objects from 

different perspectives, at different scales, or through multiple modalities, such as images, 

sensor readings, language sequences, and compact mathematical statements. Multimodal 

learning [13] studies how such heterogeneous, complex descriptors can be optimized to 

create learning systems that are broadly generalizable, robust to changes in the underlying 

data distributions, and can train more with less labeled data. While multimodal learning has 

been successfully used in settings where unimodal methods fail [14, 15, 16], it presents 

several challenges that must be overcome to enable its broad use in AI [13, 17]. These 

challenges include finding representations optimized for machine learning analyses and 

fusing combined information from various modalities to create predictive models [18, 19, 

20]. These challenges have proven difficult. For example, multimodal methods tend to focus 

on only a subset of modalities that are most helpful during model training while ignoring 

modalities that might be informative for model implementation—a pitfall known as modality 
collapse [21]. Moreover, in contrast to the frequent assumption that every object must exist 

in all modalities, the complete set of modalities is rarely available due to limitations of 

data collection and measurement technologies—a challenge known as missing modalities 
[22, 23]. Because different modalities can lead to intricate relational dependencies, simple 

modality fusion cannot fully leverage multimodal datasets [24]. Graph learning models such 

data systems [25, 26, 27] by connecting data points in different modalities as edges in 

optimally defined graphs [28, 29, 30] and building learning systems for a wide range of 

tasks [31, 32].

We introduce a blueprint for multimodal graph learning (MGL). The MGL blueprint 

provides a framework that can express existing algorithms and help develop new methods 

for multimodal learning leveraging graphs. This framework allows for learning fused 

graph representations and studying the aforementioned challenges of modality collapse and 

missing modalities [18, 13]. We apply this formulation across a broad spectrum of domains, 

ranging from computer vision and language processing to the natural sciences (Figure 

1). We consider image-intensive graphs (IIG) for image and video reasoning (Section 3), 

language-intensive graphs (LIG) for processing natural and biological sequences (Section 4), 

and knowledge-intensive graphs (KIG) used to aid in scientific discovery (Section 5).

2 Graph Neural Networks for Multimodal Learning

Deep learning has created a wide range of fusion approaches for multimodal learning [33, 

34]. For example, recurrent neural network (RNN) and convolutional neural network (CNN) 

architectures have successfully been combined to fuse sound and image representations 

in video description problems [35, 36]. More recently, generative models have also 

proven very accurate for both language-dependent [37] and physics-based multimodal 

data [38]. Such models are based on an encoder-decoder framework, where in the 

encoder, the combined architectures are trained simultaneously (each one specialized for 

a modality), while the decoder aggregates information from individual architectures. When 

complex relations between modalities produce a network structure, graph neural networks 
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(GNNs, Supplementary Note 1) provide an expressive and flexible strategy to leverage 

interdependencies in multimodal datasets.

2.1 Blueprint for Graph-Centric Multimodal Learning

The use of GNNs for multimodal learning is attractive because of their flexibility to 

model interactions both within and across different data types. However, data fusion 

through graph learning requires the construction of network topology and the application 

of inference algorithms over graphs. We present a methodology that, given a collection 

of multimodal input data, yields output representations that are used in downstream tasks. 

We refer to this methodology as multimodal graph learning (MGL). MGL can be seen 

as a blueprint consisting of four learning components that are connected in an end-to-end 

fashion. In Figure 2a,b, we highlight the difference between a conventional combination of 

unimodal architectures for treating multimodal data and the suggested all-in-one multimodal 

architecture.

The first two components of MGL, identifying entities and uncovering topology, can be 

grouped as the structure learning (SL) phase (Figure 2c) :

Component 1: Identifying Entities.—The first component identifies relevant entities 

in various data modalities and projects them into a shared namespace. For example, in 

precision medicine, the state of a patient might be described by matched pathology slides 

and clinical notes, giving rise to patient nodes with the combined image and language 

information. In another example from computer vision (Figure 3), entity identification 

entails defining superpixels in an image.

Component 2: Uncovering Topology.—With the entities of our problem defined, the 

second component discovers the interactions and interaction types among the nodes across 

the modalities. Interactions are often explicitly provided, so the graph is given, and this 

component is responsible for the combination of the already existing graph structure with 

the rest of modalities (e.g., in Figure 5c, the Uncovering Topology component corresponds 

to combining protein surface information with the protein structure itself). When the data 

does not have an a priori network structure, the uncovering topology component explores 

possible adjacency matrices based on explicit (e.g., spatial and visual characteristics) or 

implicit (e.g., similarities in representations) features. For the latter case, examples from the 

natural language processing field consider the construction of graphs from text input that 

express relations among words (Figure 4b).

After graphs are specified or adaptively optimized (SL phase in MGL; Figure 2c), various 

strategies can be used to learn on the graphs. The last two MGL components, known 

together as the learning on structure (LoS) phase (Figure 2c), capture these strategies.

Component 3: Propagating Information.—The third component employs 

convolutional or message-passing steps to learn node representations based on graph 

adjacencies (Supplementary Note 1 for more details on graph convolutions and message 

passing). In the case of multiple adjacency matrices, methods use independent propagation 
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models or assume a hypergraph formulation that fuses adjacency matrices with a single 

propagation model.

Component 4: Mixing Representations.—The last component transforms learned 

node-level representations depending on downstream tasks. The propagation models output 

representations over the nodes that can be combined and mixed depending on the final 

representation level (e.g., a graph-level or a subgraph-level label). Popular mixing strategies 

include simple aggregation operators (e.g., summation or averaging) or more sophisticated 

functions that incorporate neural network architectures.

Figure 2c shows all MGL components, going from multimodal input data to optimized 

representations used for downstream tasks. Mathematical formulations are in Box 1 and 

summaries of multimodal graph learning methods are in Supplementary Note 2.

3 Multimodal Graph Learning for Images

Image-intensive graphs (IIGs) are multimodal graphs where nodes represent visual features 

and edges represent spatial connections between image features. Structure image learning 

entails creating IIGs to encode geometric priors relevant to images, such as translational 

invariance and scale separation [42]. Translational invariance describes how the output 

of a CNN must not change depending on shifts in the input image and is achieved by 

convolutional filters with shared weights. In contrast, scale separation specifies how to 

decompose long-range interactions between features across scales, focusing on localized 

interactions that can be propagated to coarser scales. For example, pooling layers follow 

convolution layers in CNNs to achieve scale separation [42]. In addition, GNNs can model 

long-range dependencies of arbitrary shape that are important for image-related tasks [43] 

such as image segmentation [44, 45], image restoration [46, 47], or human object interaction 

[48, 49].

Visual Comprehension

Visual comprehension remains a cornerstone of visual analyses, where multimodal graph 

learning has proven helpful in classifying, segmenting, and enhancing images. Image 

classification identifies the set of object categories present in an image [51]. In contrast, 

image segmentation divides an image into segments and assigns each segment into a 

category [52, 44, 45]. Finally, image restoration and denoising transform low-quality images 

into high-resolution counterparts [53]. The information required for these tasks lies in 

objects, segments, and image patches, as well as in the long-range context surrounding them 

[52].

IIG construction (corresponding to MGL Components 1 and 2) begins with a segmentation 

algorithm such as simple linear iterative clustering (SLIC) [54] to identify meaningful 

regions [55, 56, 44] (Figure 3a). These regions define nodes used to extract feature maps and 

summary visual features for each region [45, 52], whose attributes are initialized from CNNs 

like FCN-16 [57] or VGG19 [58]. Moreover, the nodes are connected to their k nearest 

neighbors in the CNN learned feature space [55, 45, 46, 47] (Figure 3b), to spatially adjacent 
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regions [51, 59, 44, 56], or to an arbitrary number of neighbors based on a previously 

defined similarity threshold between nodes [47, 56].

Once the SL phase of MGL is completed, propagation models (MGL Component 3) based 

on graph convolutions [52, 59, 56, 45] and graph attention [60] (GAT) are used to weigh 

node neighbors in the graph based on learned attention scores [51, 47]. In addition, methods 

such as graph denoiser networks (GCDNs) [61], internal graph neural networks (IGNNs) 

[46], and residualGCNs [62, 44] consider edge similarities to indicate the relative distance 

between image regions.

Visual Reasoning—Visual reasoning goes beyond recognizing visual elements by asking 

questions about the relationships between entities in images. These relationships can involve 

humans and objects as in human-object interaction [48] (HOI) or, more broadly, visual, 

semantic, and numeric entities as in visual question answering [63, 64, 65] (VQA).

In HOI, the MGL methods identify two entities, human body parts (e.g., hands, face, 

etc.) and objects (e.g., surfboard, bike, etc.) [48, 50], that interact in fully connected 

[48, 49], bipartite [50, 66], or partially connected topologies [67, 68]. MGL methods 

for VQA construct a new topology [69] that spans interconnected visual, semantic, and 

numeric graphs. Entities represent visual objects identified by an extractor, such as Faster 

R-CNN [70], scene text identified by optical character recognition, and number-type 

texts. Interactions between these entities are defined based on spatial localization: entities 

occurring near each other are connected by edges.

To learn about these structures (MGL Component 3), methods distinguish between 

propagating information between entities of the same type and entities of different types. 

In HOI, knowledge about entities of the same kind (i.e., intra-class neural messages) 

is exchanged by following edges and applying transformations defined by a GAT [60], 

which weighs neural messages by the similarity of latent vectors of nodes. In contrast, 

information between different entities (i.e., inter-class neural messages) is propagated using 

a GPNN [48] where the weights are adaptively learned [49]. Models can have multiple 

channels that reason over entities of the same class and share information across classes. 

For example, in HOI, relation parsing neural networks [68] use a two-channel model where 

human and object-centric message passing is performed before mixing these representations 

for the final prediction (Figure 3c). The same occurs in VQA, where visual, semantic, 

and numeric channels perform independent message passing before sharing information 

via visual-semantic aggregation and semantic-numeric aggregation [69, 71]. Other neural 

architectures can serve as drop-in replacements to graph-based channels [66, 67].

4 Multimodal Graph Learning for Language

With the ability to generate contextual language embeddings, language models have broadly 

reshaped analyses of natural language [7]. However, beyond words, structure in language 

exists at the level of sentences (syntax trees, dependency parsing), paragraphs (sentence-

to-sentence relations), and documents (paragraph-to-paragraph links) [72]. Transformers, 

a prevailing class of language models [73], can capture such structure but have strict 
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computational and data requirements. MGL methods mitigate these issues by infusing 

language structure into models. Specifically, these methods rely on language-intensive 

graphs (LIGs), explicit or implicit graphs where nodes represent semantic features linked 

by language dependencies.

Creating Language-Intensive Graphs

At the highest level, a language dataset can be seen as a corpus of documents, then a 

single document, a group of sentences, a group of mentions, a group of entities, and finally, 

single words (Figure 4a). Multimodal graph learning can consider these different levels of 

contextual information by constructing LIGs. The choice of context to include and how 

to create a LIG to represent this context is task specific. We describe these steps for text 

classification and relation extraction as these tasks underlie most language analyses.

In text classification, the model is asked to assign a label to a span of text [74] based on 

the usage and meaning of words (tokens). Graph structure involving words is given by the 

relative position of words in a document [75, 74] or document cooccurrence [76]. Relation 

extraction seeks to identify relations between words in a text, a capability important for 

other language tasks, such as question answering, summarization, and knowledge graph 

reasoning [77, 78]. To capture sentence meaning, the structure among word entities is based 

on the underlying dependency tree [79]. Beyond words, other entities are included to capture 

cross-sentence topology [77, 80] (Figure 4a–b).

Learning on Language-Intensive Graphs

Once a LIG is constructed, a model must be designed to learn on the LIG while 

incorporating inductive biases relevant to the language task. We illustrate strategies for 

learning on LIGs using aspect-based sentiment analysis (ABSA) as a downstream language 

task [81]. ABSA assigns a sentiment (positive, negative) of a text to a word/words or an 

aspect [81]. Models must reason over syntactic structure and long-range relations between 

aspects and other words in the text to perform ABSA [82, 83]. To propagate information 

between distant words, aspect-specific GNNs mask non-aspect words in LIGs for long-range 

message passing [82]. They also gate or perform element-wise multiplication between latent 

representations of query and aspect words [84]. To include information about the syntactic 

structure, GNNs distinguish between the different types of relations in the dependency tree 

via type-specific message passing [82, 83, 84] (Figure 4c).

The sentiment of neighboring or similar sentences is essential to determine the aspect-based 

sentiment of the document [81]. Cooperative graph attention networks (CoGAN) incorporate 

this via the cooperation between two graph-based modeling blocks: the inter- and intra-

aspect modeling blocks (Figure 4d) [81]. These blocks capture the relation of sentences 

to other sentences with the same aspect (intra-aspect) and to neighboring sentences in 

the document that contain different aspects (inter-aspect). The outputs of the intra- and 

inter-aspect blocks are mixed in an interaction block, passing through a series of hidden 

layers. Finally, the intermediate representations between each hidden layer are fused via 

learned attention weights to create a final sentence representation (MGL Component 4).
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5 Multimodal Graph Learning in Natural Sciences

In addition to computer vision and language modeling, graphs are increasingly employed 

in the natural sciences. We call these graphs knowledge-intensive graphs (KIGs) as they 

incorporate inductive biases relevant to a specific task or encode scientific knowledge in 

their structure.

Multimodal Graph Learning in Physics

In particle physics, GNNs have been used to identify progenitor particles causing particle 

jets, sprays of particles that fly out from high-energy particle collisions [85]. In these graphs, 

nodes are particles connected to their k-nearest neighbors. After rounds of message passing, 

aggregated node representations are used to identify progenitor particles [86, 87, 88, 89].

Physics-informed GNNs have emerged as a promising approach for simulating physical 

systems governed by multiscale processes for which conventional methods fail [90]. A 

typical goal is to discover hidden physics from available experimental data. GNNs are 

trained from available experimental data and information obtained by employing the 

physical laws and are then evaluated at points in the space-time domain. Such physics-

informed architectures integrate multimodal data with mathematical models. For example, 

GNNs can express differential operators of the underlying dynamics as functions on nodes 

and edges [91]. GNNs can also represent physical interactions between objects, such as 

particles in a fluid [6], joints in a robot [5], and points in a power grid [92]. Initial 

node representations describe the initial state of these particles and global constants like 

gravity [6] with edges indicating relative particle velocity [5]. Message passing updates edge 

representations first to calculate the effect of relative forces in the system. It then uses the 

updated edge representation to update node representations and calculate the new state of 

particles as a result of the forces [93] (Figure 5a). This message-passing strategy advances 

the MGL’s third component (Section 2) and has also been employed to solve combinatorial 

algorithms (Bellman-Ford and Prim’s algorithms) [94, 95] and chip floorplanning to design 

the physical layout of computer chips [96].

Multimodal Graph Learning in Chemistry

In chemistry, MGL methods can predict intra- and inter-molecular properties from the 

primary molecular structure by performing message passing on molecular graphs of atoms 

linked by bonds [4, 97, 98, 99, 100, 101]. Present efforts incorporate 3D spatial molecular 

information in addition to 2D molecular details. When this information is unavailable, 

the MGL methods [97, 99, 100] consider stereo-chemistry to aggregate neural messages 

[102] and model molecules as sets of chemical substructures in addition to granular atom 

representations [103].

Stereoisomers are molecules with the same graph connectivity but different spatial 

arrangements [102]. Aggregation functions in molecular graphs aggregate the same 

regardless of the orientation of atoms in three-dimensional space. This can lead to 

poor performance, as stereoisomers can have different properties [104]. To mitigate this 

issue, permutation (PERM) and permutation-concatenation (PERM-CAT) aggregation [102] 
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update every atom in a chiral group via a weighted sum of every permutation of its 

respective chiral group. Though the identity of the neighbors is the same in every 

permutation, the spatial arrangement varies. By weighing each permutation, PERM and 

PERM-CAT encode this inductive bias by modifying how information is propagated in the 

underlying graph (MGL Component 3).

Moreover, MGL can help identify chemical products produced by molecules through 

reactions [105, 106, 107, 108]. For example, to predict whether two molecules react, 

QM-GNN [105], a quantum chemistry-augmented GNN represents each reactant by its 

molecular graph with chemistry-informed initial representations for every atom and bond. 

After rounds of message passing, the atom representations are updated through a global 

attention mechanism (Figure 5b). The attention mechanism uncovers a novel topology 

where atoms can interact with atoms on other molecules. It incorporates a principle from 

chemistry that intermolecular interactions between particles inform reactivity. The final 

representations are combined with descriptors, such as atomic charges and bond lengths, and 

used for prediction. Such an approach integrates structural knowledge about molecules in a 

GNN with relevant chemistry knowledge, allowing for accurate prediction on small training 

datasets [105]. The inclusion of domain knowledge by fusing GNN outputs illustrates 

the Mix module in MGL (Section 2, Box 1). Graph learning on molecules created new 

opportunities for virtual drug screening [109], molecule generation and design [110, 111, 

27], and drug target identification [112, 113].

Multimodal Graph Learning in Biology

Beyond individual molecules, MGL can help understand the properties of complex 

structures across multiple scales, the most pertinent of these structures being proteins. 

At the primary amino acid sequence scale, the hallmark task predicts the 3D structure 

from the amino acid sequence. AlphaFold constructs a KIG where nodes are amino acids 

with representations derived from sequence homology [25]. To propagate information in 

this KIG, AlphaFold introduces a triangle multiplicative update and triangle self-attention 

update. These triangle modifications integrate the inductive bias that learned representations 

must abide by the triangle inequality on distances to represent 3D structures. Multimodal 

graph learning, among other innovations, enabled AlphaFold to predict 3D protein structure 

from amino acid sequence [25].

Beyond 3D structure, molecular protein surfaces mediate critical roles in cellular function 

and disease, and thus modeling geometric and physical protein properties is essential [1, 

114, 115]. For example, MaSIF [114] trains a GNN on molecular surfaces described as 

multimodal graphs to predict protein interactions. The initial representation of the nodes 

is based on geometric and chemical features. Next, Gaussian kernels are defined on every 

node to propagate information, encoding complex geometric shapes of molecular surfaces 

and extending the notion of a convolution. The final representations can be used to predict 

protein-protein interactions [114], structural configurations of protein complexes [116], and 

protein-ligand binding [26].

Ektefaie et al. Page 8

Nat Mach Intell. Author manuscript; available in PMC 2023 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6 Outlook

Multimodal graph learning is an emerging field with applications across natural sciences, 

vision and language domains. We anticipate the growth in MGL be driven by fully 

multimodal graph architectures and new uses in the natural sciences and medicine. We 

also outline applications to understand when MGL is valuable or unhelpful and needs 

improvements to resolve challenges represented by multimodal inductive biases or a lack of 

explicit graphs.

Fully Multimodal Graph Architectures

Prevailing approaches use domain-specialized architectures tailored to each data modality. 

However, advances in general-purpose architectures provide an expressive strategy to 

consider dependencies between modalities irrespective of whether they are given as images, 

language sequences, graphs, or tabular datasets. Moreover, the MGL blueprint supports 

more complex graph structures, such as hypergraphs [117, 118, 119] and heterogeneous 

graphs [120, 121].

The blueprint can also pave the way for novel uses of graph-centric multimodal learning. For 

example, knowledge distillation (KD) aims to transfer knowledge from a teacher model to 

a smaller student model in a way that preserves performance while using fewer resources. 

Knowledge-intensive graphs [122, 123, 124] can be used to design more efficient KD loss 

functions [125, 126]. In another example, visible neural networks specify the architecture 

such that nodes correspond to concepts (e.g., molecules, pathways) at different scales of 

the cellular system, ranging from small complexes to extensive signal pathways [2, 127], 

connected based on biological relationships, used in forward- and back-propagation. By 

incorporating such inductive biases, models can be trained in a data-efficient manner as they 

do not have to invent relevant fundamental principles but can know these from the start and 

thus need fewer data for training. Harmonizing algorithm design with domain knowledge 

can also improve model interpretability.

Algorithmic Improvements to Resolve Multimodal Challenges

Existing methods are limited in areas without prior knowledge or relational structure. 

For example, in tasks such as chemical reaction prediction [105], progenitor particle 

classification [85], physical interaction simulation [6], and protein-ligand modeling [114], 

interactions relevant for the task are not a priori given, meaning that the methods must 

automatically capture novel, unspecified, and relevant interactions. Some applications use 

node feature similarity to dynamically construct local adjacencies after each layer to 

discover new interactions [85]. However, this cannot capture novel interactions among 

distant nodes since information is only passed among closely connected nodes in message 

passing. Methods address this limitation by incorporating attention layers with induced 

sparsity to discover these interactions [105]. In applications without strong relational 

structure, such as molecular property prediction [99, 100, 101], particle classification [85], 

and text classification [74], node features often have more predictive value than any encoded 

structure. As a result, other methods have been shown to lead to better performance than 

graph-based methods [129, 130].
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Groundbreaking Applications in Natural Sciences and Medicine

Using deep learning in natural sciences revealed the power of graph representations 

for modeling small and large molecular structures. Combining different types of data 

can create bridges between the molecular and organism levels for modeling physical, 

chemical, or biological phenomena on a large scale. Recent knowledge graph applications 

have been introduced to enable precision medicine and make predictions across genomic, 

pharmaceutical, and clinical applications [121, 128]. Multi-scale learning systems are 

becoming valuable tools for protein structure prediction [25], protein property prediction 

[26], and biomolecular interaction modeling [77]. These methods can incorporate 

mathematical statements of physical relationships, knowledge graphs, prior distributions, 

and constraints by modeling predefined graph structures or modifying message-passing 

algorithms. When such information exists, multimodal learning can enhance image 

denoising [53], image restoration [53], and human-object interaction [48] in vision systems.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1:

The blueprint for multimodal graph learning.

The blueprint for graph-centric multimodal learning has four components.

1. Identifying Entities: Information from different sources is combined and 

projected into a shared namespace. Nodes are identified independently as set 

elements, and no interactions are given yet. Let there be k modalities  = 

{C1, …,Ck}, where Ci is an information matrix of i-th modality that describes 

every entity by an information vector. We define Identifyi module for every 

modality i as:

Xi  Identifyi Ci , (1)

that maps information of all modalities into the same namespace. If k = 1, we 

get a reduced unimodal variant of MGL.

2. Uncovering Topology: Let there be data modalities  = {X1, …, Xk}. We 

define Connectj modules, j = 1, …, m, to specify connections between entities 

in  based on m distance measures as:

Aj Connectj(X) . (2)

If Xi is already given as an adjacency matrix, the associated Connectj modules 

specify predefined neighborhoods.

3. Propagating Information: Neural messages are exchanged along edges in the 

adjacency matrices  = {A1, …, Am} to produce node representations:

H Propagate(X, A) . (3)

When multiple adjacency matrices are given, the Propagate module can 

specify multiple independent propagation models (Supplementary Note 1) or 

operate on a combined adjacency matrix.

4. Mixing Representations: Representations are mixed and transformed into 

latent representations optimized for a downstream task:

Z Mix(H, A) . (4)

The mixing module Mix transforms node representations into final 

representations of entities Z on which downstream tasks are defined on. 

Established strategies to mix representations include aggregation operators, 

such as summation [39], averaging [40], multi-hop aggregation [41], and 

methods using adjacency information .
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Fig. 1. Graph-centric multimodal learning.
Shown on the left are the different data modalities. Shown on the right are machine 

learning tasks for which multimodal graph learning has proved valuable. We introduce 

the multimodal graph learning (MGL) blueprint that serves as a unifying framework for 

multimodal graph neural architectures realized through learning systems in computer vision, 

natural language processing, and natural sciences.
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Fig. 2. Overview of multimodal graph learning (MGL) blueprint.
a, A standard approach to multimodal learning involves combining different unimodal 

architectures, each optimized for a distinct data modality. b, In contrast, an all-in-one 

multimodal architecture considers inductive biases specialized for each data modality and 

optimizes model parameters in an end-to-end manner, enabling expressive data fusion. c, 
The MGL blueprint comprises four components: identifying entities, uncovering topology, 

propagating information, and mixing representations. These components are grouped into 

two phases: structure learning and learning on the structure.
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Fig. 3. Application of multimodal graph learning blueprint to images.
a, Modality identification for image comprehension where nodes represent aggregated 

regions of interest, or superpixels, generated by the SLIC segmentation algorithm. b, 
Topology uncovering for image denoising where image patches (nodes) are connected 

to other non-local similar patches. c, Topology uncovering in human-object interaction 

where two graphs are created. A human-centric graph maps body parts to their anatomical 

neighbors, and an interaction connects body parts relative to the distance to other objects 

in the image. d, Information propagation in human-object interaction where spatially 

conditioned graphs modify message passing to incorporate edge features that enforce the 

relative direction of objects in an image [50].
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Fig. 4. Application of multimodal graph learning blueprint to language.
a, The different levels of context in text inputs from sentences to documents and 

the individual units identified at each context level. This is an example of modality 

identification’s first component of the MGL blueprint. b, The simplified construction of 

a language-intensive graph from text input, an application of the topology uncovering 

component of the MGL blueprint. c, and d, visualize examples of learning on LIGs 

for aspect-based sentiment analysis (ABSA), which aims to assign a sentiment (positive, 

negative, or neutral) to a sentence with regards to a given aspect. By grouping by relation 

type from within a sentence (shown in c) or modeling relations between sentences and 

aspects (shown in d), these methods integrate inductive biases relevant to ABSA and 

innovate in MGL’s third component, information propagation.
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Fig. 5. Applications of multimodal graph learning to natural sciences.
a, Information propagation in physical interactions where physics-informed neural message 

passing is used to update the states of particles in a system due to inter-particle interactions 

and other forces. b, Information propagation in molecular reasoning where a global attention 

mechanism is used to model the potential interaction between atoms in two molecules 

to predict whether two molecules will react. c, Topology uncovering in protein modeling 

where a multiscale graph representation is used to integrate primary, secondary, and tertiary 

structures of a protein with higher-level protein motifs summarized in molecular superpixels 

to represent a protein [26]. This robust topology provides a better prediction on tasks such as 

protein-ligand binding affinity prediction.
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