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Abstract 

Polygenic risk score (PRS) has become increasingly popular for predicting the value of complex 

traits. In many settings, PRS is used as a covariate in regression analysis to study the 

association between different phenotypes. However, measurement error in PRS causes 

attenuation bias in the estimation of regression coefficients. In this paper, we employ a 

Bayesian approach to accounting for the measurement error of PRS and correcting the 

attenuation bias in linear and logistic regression. Through simulation, we show that our 

approach is able to obtain approximately unbiased estimation of coefficients and credible 

intervals with correct coverage probability. We also empirically compare our Bayesian 

measurement error model to the conventional regression model by analyzing real traits in the 

UK Biobank. The results demonstrate the effectiveness of our approach as it significantly 

reduces the error in coefficient estimates. 
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Introduction 

Genome-wide association studies (GWAS) have generated a wealth of data over the last two 

decades (1). A common practice of extracting information from GWAS data is to construct the 

polygenic risk score (PRS) by aggregating the number of risk alleles weighted by the effect size 

for each single nucleotide polymorphism (SNP) across the genome. PRS can be viewed as the 

genetic prediction of complex traits and has great promise in precision medicine for identifying 

individuals with higher disease risk (2). With the development of large-scale biobanks, another 

important application of PRS is to explore the relationship between different phenotypes (3, 4). 

In this setting, because covariates may not be directly observed for some individuals, 

researchers sometimes first use PRS as the predicted value of the covariate and then perform 

regression to estimate the coefficient with other observed outcomes. For example, studies have 

found that PRS of lipid traits are associated with coronary artery diseases (CAD) (5, 6).  

 

PRS is often regarded as a noisy predictor of true phenotypes due to the finite sample size of 

GWAS and the complexity of genetic architecture. Currently the prediction accuracy of PRS is 

moderate for most traits, explaining only 5 to 30 percent of phenotypic variance (7, 8). It is well 

known that measurement error in one or more covariates results in the attenuation bias (i.e. bias 

towards 0) when estimating the regression coefficients (9). Hence, as we will show, employing 

PRS as a replacement of the actual covariate may lead to a diminished estimate of the 

regression coefficient.  

 

The study of measurement error in the regression setting has been an interest to statisticians for 

many decades (9). In the linear regression setting, the expected value of the least squares 

estimate subject to the measurement error is the true value multiplied by the reliability ratio, 

which is defined as the variance of the observed covariate divided by the variance of the true 

covariate (9). If the reliability ratio is known, a consistent estimator of the coefficient would be 

the least squares estimate divided by the reliability ratio. The setting of PRS slightly differs from 

this traditional setting of measurement error model from two aspects. First, the slope of the PRS 

regressing on the actual phenotype is typically not equal to 1 (7). Second, the logistic regression 

model may be used when the outcome is binary. Consequently, we took a Bayesian approach 

instead to handle the measurement error of PRS in the regression model due to its ability to 

accommodate more flexible assumptions (10).  

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.11.27.568907doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.27.568907
http://creativecommons.org/licenses/by/4.0/


In this work, we first describe our setting of the Bayesian measurement error model for PRS. 

We performed simulation to investigate whether our approach is able to reduce the bias in linear 

and logistic regression. Finally, we apply our approach to eight pairs of observed traits in the UK 

Biobank (UKBB) to show that our method is able to reduce the attenuation bias. 

 

Methods 

Outcome Model 

We assume that testing data of outcome 𝑌" are available for N individuals, where 𝑖 = 1, . . . , 𝑁. 

For individual 𝑖, let 𝑍" denote the covariate of interest subject to measurement error and 𝑊" 

denote the matrix of error-free covariates (e.g. age and sex). Both outcome and covariates are 

assumed to be standardized to have mean 0 and variance 1 unless they are binary. We 

consider two types of outcome models for 𝑌"— linear and logistic regression. For a linear 

regression model, we have 

𝑌" = 𝑊"𝛼 + 𝑍"𝛾 + 𝜖"	, (1) 

where 𝛼 is the vector of effect size corresponding to covariates 𝑊", 𝛾 is the effect size of the 

covariate of interest, and 𝜖" ∼ 𝑁(0, 𝜎5) is the random error. 

 

Similarly, for a logistic regression model we have  

𝑙𝑜𝑔
𝑃[𝑌" = 1|𝑊", 𝑍"]

1 − 𝑃[𝑌" = 1|𝑊", 𝑍"]
= 𝑊"𝛼 + 𝑍"	. (2) 

 

Measurement Error in PRS 

We assume that the covariate of interest 𝑍" is not observed for 𝑖 = 1, . . . , 𝑁 individuals. Instead, 

we have access to 𝑍?"— the PRS of the covariate of interest. For each individual, PRS is 

constructed by  

𝑍?" = ∑ 𝑋"B𝛽DBE
BFG 	 , (3)  

where 𝑀 is the total number of SNPs, 𝑋"B	and 𝛽DB	are the genotype and estimated effect size of 

SNP 𝑗. We then fit the regression model using 𝑍? instead to obtain the estimate of the 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.11.27.568907doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.27.568907
http://creativecommons.org/licenses/by/4.0/


coefficient 𝛾. Due to the complexity of genetic architecture and finite sample size of GWAS, 𝑍?" 

is often a noisy proxy for 𝑍". 

 

To allow for the correction of the measurement error, we assume the existence of a small 

validation dataset where PRS and true value of phenotype are available for 𝑗 = 1,… , 𝑆 

individuals. The measurement error can be modeled as: 
𝑍?B = 𝑎𝑍B +	𝑒B	, (4) 

where 𝑎 is the calibration slope of 𝑌?B regressing on 𝑌B and 𝑒B 	∼ 𝑁(0, 𝜏5) is the residual error.  

The equation above is closely related to the prediction accuracy of PRS. A slope close to 1 

indicates PRS is perfectly calibrated and often associated with high prediction accuracy. Since 

the accuracy of PRS and the calibration slope are influenced by genetic ancestry and many 

other factors, the validation dataset should have the same ancestry composition as the training 

dataset used to derive PRS and the testing dataset used to perform the regression.  

 

Bayesian Approach 

Here we describe the full Bayesian model to account for the measurement error of PRS by 

specifying the distribution 𝑝(𝑍", 𝛾	|	𝑍?", 𝑌") given the observed value of 𝑍?" and 𝑌". The joint 

distribution can be decomposed as  
𝑝(𝑍", 𝛾	|	𝑍?", 𝑌") 	∝ 	𝑝(𝑍?"|	𝑍")	𝑝(𝑍")	𝑝(𝑌"	|𝑍", 𝛾)𝑝(𝛾). (5) 

 

The first component is the measurement error model as formulated below 

𝑍?"|𝑍", 𝜏5 ∼ 𝑁(𝑎𝑍", 𝜏5), 

𝑍" ∼ 𝑁(0, 1), (6) 

where the slope 𝑎 and the residual variance 𝜏5 are estimated based on the validation dataset.  

The second component is the outcome model. For linear regression, we specify the hierarchical 

model as:  

𝑌"|𝑍", 𝛼, 𝛾, 𝜎 ∼ 𝑁(𝑊"𝛼 + 𝑍"𝛾, 𝜎5), 

𝛼	 ∼ 𝑁(0, 10), 

𝛾	 ∼ 𝑁(0, 10), 

𝜎 ∼ 𝐶𝑎𝑢𝑐ℎ𝑦(5), (7) 
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where 𝛼 and 𝛾 are regression coefficients. We further assign a non-informative Gaussian prior 

on 𝛼 and 𝛾. We use a weakly informative normal distribution as the prior for 𝛼 and 𝛾. The prior 

for parameter 𝜎, representing the standard deviation, is defined by a Cauchy distribution. 

  

Similarly, for logistic regression model, we modeled the binary outcome 𝑍" in relation to the 

covariates as below: 

𝑌"|𝑍", 𝛼 ∼ 𝐵𝑒𝑟(𝑊"𝛼 + 𝑍"𝛾), 

𝛼	 ∼ 𝑁(0, 10), 

𝛾	 ∼ 𝑁(0, 10). (8) 

 
We harnessed Stan, a probabilistic programming language that employs full Bayesian statistical 

inference through Markov Chain Monte Carlo (MCMC) methods, to fit the above Bayesian 

model (11). The Stan Model is configured with a total of 2000 iterations per chain. This 

cumulative 8000-iteration process is preceded by a warm-up phase of 1000 iterations for each 

chain. This warm-up phase is pivotal in ensuring that the chains achieve a state of convergence, 

thus establishing a stable foundation for generating meaningful samples for inference. We 

obtain the posterior mean 𝐸[𝛾	|	𝑍?", 𝑌"] as the corrected value for the effect size. The credible 

interval was constructed by picking 2.5% and 97.5% quantile of posterior samples. 

 

Simulations  

In this section, we outline the simulation setup used to generate synthetic data for our analysis. 

The purpose of simulation is to investigate the performance of our models in recovering inherent 

relationships among variables and effectively handling measurement errors. We first simulated 

covariates based on genotypes and derived PRS. We then simulated outcomes based on the 

linear and logistic regression model. 

 

We used genotypes from the UK Biobank (UKBB) to simulate the covariate of interest (12). A 

subset of participants from the UKBB were divided into training, validation, and testing datasets 

each, consisting of 10,000 individuals of European ancestry in each set. We then performed 

quality control to select 681,828 SNPs for simulation (13). The effect size of each SNP 𝑗 was 

simulated from a spike and slab prior 𝛽B ∼ 𝜋𝑁(0, `
a

Eb
) + (1 − 𝜋)𝛿d, where ℎ5 = 0.5, 𝑀 = 681,828 

and 𝜋 = 0.01. The covariate of each individual 𝑖 was then generated from the linear model 𝑍" 	=
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	∑ 𝑋"B𝛽BE
BFG + 𝜖" using GCTA-simu with heritability set as 0.5 (14). GWAS summary statistics 

were then generated for the covariate in the training dataset to construct PRS.  

 

For continuous outcome, we used the linear model to relate 𝑌" to 𝑍": 

𝑌" 	= 	 𝑍"	𝛾 + 𝜖",                

where 𝛾 is the coefficient of interest, and 𝜖" is the random error following a standard normal 

distribution.  
 

For binary outcome, we used the logit function to represent the relationship between 𝑌" and the 

covariate 𝑍": 

𝑙𝑜𝑔	
𝑝"

1 − 𝑝"
= 𝑍"𝛾, 

where 𝑝" is the probability of 𝑌" being 1. 𝑌" was then sampled from the Bernoulli distribution: 

𝑌" ∼ 𝐵𝑒𝑟(𝑝"). 

 

These simulation scenarios provide us with a robust foundation for exploring the performance of 

our models under different regression settings while considering the presence of measurement 

errors. For both continuous and binary outcomes, we generated a diverse range of 𝑌" by varying 

𝛾 from -0.5 to 0.5.  

 

We constructed PRS for the covariate in the testing dataset as 𝑍?" = ∑ 𝑋"B	𝛽DBE
BFG , where 𝛽DB is the 

effect size of SNP 𝑗 estimated by SDPR based on the generated GWAS summary statistics 

(13). Subsequently, we employed three strategies to estimate the coefficient 𝛾 (Figure 1). First, 

we regressed 𝑌 on 𝑍 to obtain the ground truth estimate. Second, we regressed 𝑌? on Z to 

obtain the estimate in the presence of measurement error. Third, we applied our Bayesian 

model to estimate 𝛾 after accounting for measurement error. We compared the performance of 

these three strategies in terms of the bias and Bayesian credible intervals of the estimate. 
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Figure 1. Diagram of three approaches to estimating regression coefficients. 

Real Data Applications 

We obtained public GWAS summary statistics and trained the PRS model to predict eight traits 

in the UK biobank (15-20). UK biobank participants with eight traits were selected based on 

relevant data fields (13). Quality control was performed on summary statistics to remove strand 

ambiguous (A/T and G/C) SNPs, insertions and deletions (INDELs), SNPs with an effective 

sample size less than 0.67 times the 90th percentile of sample size. We applied SDPR, a 

Bayesian nonparametric method that does not rely on specific parametric assumptions on the 

distribution of effect size, to construct PRS. 

 

For each pair of eight traits, we treated one of them as the covariate and the other one as the 

outcome. We regressed the outcome on the covariate, adjusting for the additional factor age, to 

obtain the ground truth estimate of the coefficient. Similar to simulation, we also regressed the 

outcome on the PRS of the covariate to investigate the impact of measurement error on the 

estimation. Finally, we applied our Bayesian method to estimate the regression coefficients 

based on the PRS of the covariate. 
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Results 

To thoroughly evaluate the efficacy of our Bayesian approach in mitigating measurement error 

effects within covariates and accurately estimating the inherent relationship between different 

phenotypes, we conducted comprehensive comparisons of model performance. These 

assessments involved our Bayesian measurement error model for PRS versus conventional 

regression models, applied to both synthetic and real-world data in both linear and logistic 

regression settings. 

 

Simulation 

We first evaluated the performance of the Bayesian measurement error model for PRS on 50 

equally sized synthetic datasets. Following the methodology outlined in the Simulation section, 

we considered both continuous outcome for linear regression models and binary outcome for 

logistic regression models, by varying the ground truth coefficient 𝛾 from -0.5 to 0.5, excluding 0 

(maintaining equal intervals between consecutive values).  

 

For each dataset, we performed regression of 𝑌 on 𝑍, followed by regressing 𝑌 on 𝑍? to obtain 

coefficient estimates affected by measurement error. As an illustrative example, we set 𝛾 as 0.1 

and the estimated coefficient was 0.106 (95% CI: 0.087-0.125) when regressing 𝑌 on 𝑍. 

However, when we fit the model using PRS 𝑍? as the covariate, we got an estimate of 0.06 

(95% CI: 0.036-0.075). This simple example demonstrated that performing regression with PRS 

as covariate may have downward bias and incorrect CI. Subsequently, we applied the Bayesian 

measurement error model to regress 𝑌 on 𝑍? and derived corrected coefficient estimates and 

CIs for further comparison.  

 

Table 1 presents the results of coefficient estimations and their corresponding 95% Bayesian 

credible intervals (CIs) for the three regression models in the linear regression setting. When we 

employed the Bayesian measurement error model, we observed an 87.9% reduction in the 

average absolute point estimate error, decreasing from 0.113 to 0.014 compared with 

regressing 𝑌 on 𝑍?. At the same time, the probability of 95% CIs covered the true 𝛾 increased 

pronouncedly and became the same as the coverage probability for regressing 𝑍 on 𝑌. 
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Similar to the observations in the linear regression case, the results obtained from logistic 

regression also showed the efficacy of the Bayesian measurement error model: a 76.5% 

decrease in the average point estimate error from 0.118 to 0.028 and the 95% CI notably 

expanded to achieve a 98% coverage of the true 𝛾 value.  

 

Additionally, as evident from the relatively stable fitted error curve across various 𝛾 values, 

when compared to the other fitted curve, whose slope is roughly associated with 𝛾, the 

Bayesian measurement error model successfully resolved the problem of growing absolute error 

as the magnitude of the ground truth 𝛾 increased (Figure 1a and Figure1b). 

 
 

Linear Regression Logistic Regression 

 
No 
measurement 
error 

No 
correction 

Correction 
with 
measurement 
error 

No 
measurement 
error 

No 
correction 

Correction 
with 
measurement 
error 

average 
point 
estimate 
error 

0.009 0.113 0.014 0.016 0.118 0.028 

CI 
containing 
true 𝛄 

94% 8% 94% 98% 14% 98% 

  
 

Table 1. Simulation results for linear and logistic regression. Average point estimate errors 

and the coverage probability of 95% (Bayesian) credible intervals for three regression 

scenarios: using the true covariate 𝑍 (No measurement error), using the PRS 𝑍? of the covariate 

(No correction), and using the Bayesian measurement error model to regress on the PRS 𝑍? of 

the covariate (Correction with measurement error). The results are based on 50 simulations with 

a range of ground truth 𝛾 values ranging from -0.5 to 0.5, excluding 0. 
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Figure 2. Comparisons of point estimate errors for different simulation scenarios. a 

Continuous outcome simulation results. b Binary outcome simulation results. Data are 

presented as the point estimate error when using the PRS 𝑌? as the covariate, for the 

conventional regression models (No correction) and the Bayesian measurement error model 

(Correction with measurement error) across 50 ground truth 𝛾 values ranging from -0.5 to 0.5, 

excluding 0. Both types of outcomes, continuous and binary, are simulated from the models 

specified in the Simulation section. 

 

Real Datasets 

Linear Regression Analysis 

In this section, we first evaluated the performance of the Bayesian measurement error model 

using datasets for five pairs of continuous traits: Body mass index (BMI), high-density 

lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), total cholesterol (TC), 

and triglycerides (TG) from UK Biobank. In each of the twelve distinct cases of linear regression 

analysis, we considered one of the four lipid traits as the outcome variable and utilized one of 

the remaining three as the covariate variable.  

 

To establish a performance benchmark, we first employed the estimates generated by the built-

in linear model in R when regressing the outcome on the covariate as our reference estimator. 

This reference point allowed us to quantitatively assess the improvements in coefficient 

estimate accuracy achieved by our approach in each regression case. Subsequently, we 

conducted a regression of the outcome on the PRS of the covariate with or without using the 

Bayesian measurement error correction model.  
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We randomly selected a dataset of size N = 1500 to investigate the linear relationship between 

height and BMI. In the same manner, we repeated this procedure with a dataset comprising N = 

2000 samples to examine the relationships among the four lipid traits (HDL, LDL, TC, and TG).  

 

Supplementary Table  1 and Figure 3(a) present the average point estimate error in coefficient 

estimates between the conventional linear regression model and the Bayesian measurement 

error model. The effectiveness of the Bayesian measurement error model in mitigating 

attenuation bias was evident by the significant decrease in the absolute error for nearly all real 

trait pairs. However, for one specific trait pair of HDL and LDL, the Bayesian measurement error 

model did not enhance the estimation accuracy, and using the PRS of the covariate introduced 

only minimal attenuation bias. This was due to the very small reference coefficient (𝛾 = 0.015). 

For all the other trait pairs, we observed that the Bayesian measurement error model caused a 

reduction of 48.2% in the absolute error of coefficient estimates on average.  

 

 
Figure3. Regression coefficient error comparison among regression cases by traits. a 

Linear regression analysis. b Logistic regression analysis. Data are presented as the absolute 

error in estimated coefficients when using two methods: the conventional regression model (no 

correction) and the Bayesian measurement error model (correction with measurement error). 

Errors are computed as the difference between the estimated coefficients when using the PRS 

and the true value of the covariate. 
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Logistic Regression Analysis 

In this section, we evaluated the performance of the Bayesian measurement error model on 

datasets with binary outcomes. We considered three distinct binary disease outcomes: coronary 

artery disease (CAD), atrial fibrillation (AF), and type 2 Diabetes (DIA). For each disease 

outcome, we performed logistic regression on one of the lipid traits as the covariate. 

 

Given that the number of controls is large in UK Biobank, we created a subset of the dataset 

consisting of all cases and an equal number of controls for more efficient evaluation of different 

methods. For each dataset, we used both the Bayesian measurement error model and the 

conventional logistic regression model in Stan to perform regressions of disease outcomes on 

the PRS of covariates. To obtain the ground truth for model performance evaluation, we utilized 

the estimates given by the built-in logistic regression model in R by regressing binary outcomes 

directly on covariates. 

 

Supplementary Table 2 and Figure 3(b) show the results of regressions for all cases, and we 

observed a significant decrease in absolute errors when using the Bayesian measurement error 

model. Specifically, across all the eleven regression cases with the underlying true coefficient 

greater than 0.1, the Bayesian measurement error model achieved a 62.3% reduction in 

absolute error.  

 

Discussion 

Building on the success of GWAS and the availability of large-scale biobank data, it is 

increasingly popular to study the relationship across phenotypes using PRS as a surrogate. As 

we have shown, the use of PRS as the predicted value of the covariate can lead to a downward 

bias in coefficient estimates for regression models and incorrect construction of the 

confidence/credible interval. To address this problem, we employed a Bayesian approach to 

account for the measurement error of PRS and mitigate the attenuation bias in regression 

models. Our model allows flexible assumptions and can be applied to both continuous and 

binary outcomes. Through simulations and real data analysis, we showed that our model is 

effective to reduce the error in coefficient estimates and create the correct credible interval.  
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Another interpretation for regressing outcome on the PRS of the covariate is to estimate the 

effect of genetic component of the covariate on the outcome, which has been widely adopted in 

transcriptome-wide association studies (TWAS) and investigation of gene-environment (G×E) 

interaction (21-23). In this paper, we did not focus on this interpretation as it would be difficult to 

establish the ground truth for comparison in the real data analysis. Instead, we treated the 

coefficient of regressing outcome on the covariate as the ground truth and aimed to recover this 

true coefficient using PRS as the covariate.  

 

While our method is effective in reducing the attenuation bias, we do note that there are several 

limitations. First, there is not much improvement for our method when the true regression 

coefficient is close to 0. Second, the predictive power of PRS cannot be too low, otherwise it is 

questionable to use it as a covariate in the first place. Third, our method is not able to recover 

the loss of power due to the noise in PRS. Despite these limitations, our approach has 

potentially wide applicability in the era of biobank. For example, when the covariate of interest 

has many missing values, one can first compute the PRS of the covariate, estimate the 

relationship between PRS and the covariate based on a small dataset, and then apply our 

approach to correctly obtain the regression coefficient.   

 

Code availability 
Our approach is freely available as an open-source R package available at 

https://github.com/xinyueq/BayesMEModel. 
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Supplementary materials 

 

  No correction Correction with measurement error 

HDL~LDL 0.011 0.052 

HDL~TC 0.142 0.015 

HDL~log(TG) 0.335 0.012 

LDL~HDL 0.053 0.208 

LDL~TC 0.571 0.006 

LDL~log(TG) 0.209 0.170 

TC~HDL 0.206 0.197 

TC~LDL 0.606 0.049 

TC~log(TG) 0.226 0.154 

TG~HDL 0.296 0.031 

TG~LDL 0.225 0.086 

TG~TC 0.244 0.016 

Height~BMI 0.030 0.019 

 

Supplementary Table 1. Linear regression coefficients for pairs of continuous traits.    

 

 

 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.11.27.568907doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.27.568907
http://creativecommons.org/licenses/by/4.0/


  No correction Correction with measurement error 

CAD~HDL 0.146 0.132 

CAD~LDL 0.232 0.085 

CAD~TC 0.193 0.089 

CAD~log(TG) 0.181 0.074 

AF~HDL 0.006 0.085 

AF~LDL 0.074 0.006 

AF~TC 0.101 0.026 

AF~log(TG) 0.126 0.012 

DIA~HDL 0.502 0.135 

DIA~LDL 0.092 0.020 

DIA~TC 0.137 0.114 

DIA~log(TG) 0.446 0.116 

 

Supplementary Table 2. Logistic regression coefficients for binary outcomes.    
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