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Abstract:

Purpose

To develop an extension to locally low rank (LLR) denoising techniques based on transform
domain processing that reduces the number of images required in the MR image series for high-
guality denoising.

Theory and Methods

LLR methods with random matrix theory-based thresholds are successfully used in the
denoising of MR image series in a number of applications. The performance of these methods
depend on how well the LLR assumption is satisfied, which deteriorates with few numbers of
images, as is commonly encountered in quantitative MRI applications. We propose a transform-
domain approach for denoising of MR image series to represent the underlying signal with
higher fidelity when using a locally low rank approximation. The efficacy of the method is
demonstrated for fully-sampled k-space, undersampled k-space, DICOM images, and complex-
valued SENSE-1 images in quantitative MRI applications with as few as 4 images.

Results

For both MSK and brain applications, the transform domain denoising preserves local subtle
variability, whereas the quantitative maps based on image domain LLR methods tend to be
locally more homogeneous.

Conclusion

A transform domain extension to LLR denoising produces high quality images and is compatible
with both raw k-space data and vendor reconstructed data. This allows for improved imaging
and more accurate quantitative analyses and parameters obtained therefrom.
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Introduction

Signal to noise ratio (SNR) in MRI is proportional to the voxel size and the square root
of the acquisition time. Thus, with technological advances that strive towards improved
spatial resolutions and faster imaging, many scans end up in a depleted SNR regime.
The need for higher resolutions and faster imaging is even more pronounced in
applications where multiple MR images are acquired across time or different contrasts,
including functional MRI (fMRI)[1], MR relaxometry[2], diffusion MRI (dMRI)[3], arterial
spin labeling (ASL)[4], and dynamic contrast-enhanced MRI[5].

To improve SNR, numerous techniques have been proposed for denoising of MR image
series, including those based on low-rank approaches[6-13], block matching self-
similarity[14], and nonlocal means[15]. Low-rank techniques are either applied globally
to the whole image series or in a local manner to image patches[12]. The latter
technique, referred to as locally low-rank (LLR) regularization, has been widely used for
MR image series such as dMRI[7-9, 11], fMRI[10], and ASL[16], while also being used
for cardiac imaging[12], multiparametric mapping[17], and relaxometry[18, 19]. More
recently, a line of work that utilizes ideas from random matrix theory has established
parameter-free denoising for removing signals that cannot be distinguished from
independent and identically distributed (i.i.d.) Gaussian noise[9]. Current LLR
techniques for post-reconstruction improvements utilize an approach where a local
patch of size NxN or NxNxN voxels is extracted from each of M time-points. Noise
components are suppressed by hard or soft thresholding of the singular values based
on the singular value decomposition (SVD) of the N>xM or N®xM Casorati matrix. In one
particular LLR technique, referred to as noise reduction with distribution corrected
(NORDIC) principal component analysis (PCA) denoising, the threshold is chosen
based on a non-asymptotic random matrix characterization of the thermal noise[16].
Note that for all these LLR denoising techniques, the goodness of such representations
depends on the rank of the underlying matrix, where lower rank enhances the likelihood
of retaining all relevant image components after thresholding [8].

In this paper, we propose a new transform-domain approach for LLR denoising of MR
image series that aims to represent the underlying signal with high fidelity using a lower
rank approximation. While a unitary transformation of the images in an MRI series
would not affect the global rank, this is not the case for LLR processing. When the
images are spatially transformed using a unitary transformation, then the underlying
Casorati matrices of the transform domain image series may be represented with lower
ranks. Furthermore, unitary transformations ensure that the independent and identically
distributed nature of additive Gaussian noise is preserved, thus leaving the random
matrix theory framework for parameter-free thresholding unchanged. In this work, we
motivate and use this new transform domain approach in the spatial Fourier transform
domain of the image series. The lower rank nature of the signal representation in the
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transform domain is used to enable the denoising of MR image series with as few as 4
volumes, using either complex raw data, complex image data, or magnitude DICOM
data and different random-matrix-theory-based approaches to automatically determine
the singular value thresholding parameter. Our results show that the proposed
transform-domain LLR denoising approach leads to high-quality denoising in MR
relaxometry applications with 4 to 12 contrast volumes, improving upon existing image
domain based LLR methods[17] that typically require a higher number of volumes in the
image series.

Methods

Denoising with LLR Models

Let m(r,t) € C'»*2*IsXT he a complex-valued MR image series, where r denotes the
location in 3D space, and 7 € {1, ...,T} denotes a particular image in the series across
different contrasts or time points. LLR approaches consider k; X k, X k; patches across
the image in a sliding window manner. For a given point t in the image series, this patch
is vectorized to y,. These are then concatenated to generate a Casorati matrix Y =
[V, ¥, ¥n] € CT with M = k,k,k;. LLR denoising then aims to recover the
corresponding underlying data matrix X, based on the additive noise model

Y=X+N,
where N € CM*T js Gaussian noise.

LLR models assume that for a given patch across the volume, the data matrix X has a
low-rank representation; that is, X can be well-represented, with a low Frobenius norm
error, using the sum of a small number of rank-1 matrices.

Based on this assumption, LLR methods perform singular value thresholding using
either hard or soft thresholding approaches. Singular values below threshold A(j) < A,
are replaced by A(j)=0. Those above the threshold either remain unchanged (in hard
thresholding) or are reduced by A,,, (in soft thresholding). For recent works that use
random matrix theory (RMT) to characterize the singular value distribution of Y or N, the
threshold 4., iIs chosen automatically in a parameterless manner based on different
criteria, such as matching the tail of a Marchenko-Pastur distribution (as in MPPCA[8])
or ensuring i.i.d. Gaussian noise in N by pre-processing and then using the largest
expected singular value of a finite Gaussian matrix (as in NORDIC[9]).

While these recent RMT-based LLR denoising methods tackle a major issue in singular
value thresholding by allowing parameter-free selection of the threshold without
empirical trial-and-error, they still inherently assume that the signal components of the
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data matrix X only have corresponding singular values above the threshold A,;,, and
thus they are assumed to not be conflated with noise and are not removed during
processing. This assumption largely relies on the quality of the low-rank representation,
which is the focus of this paper.

Transform domain denoising: A numerical motivating example

As a motivating example consider an image series with 4 volume/images. As a first
example, of a full rank series with simple structure, let each image have the same
spatial structure (implying no motion), and let each image be constructed from 4 regular
partitions with different constant value, and let the relative change from volume to
volume be different from partition to partition (Figure 1, row 1). As further examples
consider the first example but where the spatial partitioning is unstructured (Figure 1,
row 2), and consider a reverse example, where a series of 4 images is created from a
guantitative map, using relaxation curves sampled at 4 unique times (Figure 1, row 3).

In Figure 1, in addition to the illustrated images in column one, their Fourier transform
representations are shown in the third column as an example of a unitary transform. In
the second and fourth column, the singular values for the Casorati matrix construction
extracted as part of the LLR processing are shown. For reference, the singular values
for the Casorati matrix from an i.i.d Gaussian noise image are plotted and scaled
relative to an image peak SNR (PSNR) value of 100. For the case of using the LLR
denoising techniques directly on the images, the singular values are largely similar to
those observed for the center in the transform domain, but are one order lower in
magnitude and are thus less distinguishable relative to the noise floor (compared to
those in the transform domain). This is in-line with the intuition that the center of the
Fourier domain contains most of the contrast information, and LLR characterization in
this region corresponds to a global rank constraint on low-resolution images in image
domain. For the case of a regular division of homogeneous compartments (top row), in
the transform domain, the center is captured by 3 components (with a fourth below the
noise floor), whereas for the periphery the signal can be fully represented by 1 to 2
components (the others are orders lower, representing numerical accuracy). For a
random division into disjoint compartments (second row), the periphery has more
unique components that should be preserved, while for the case of the quantitative map
(third row) the periphery, as compared with the center, has more components that will
fall below the noise floor and where in the image domain all patches have similar
singular values. This example illustrates how, for a case of 4 regular discrete
components, the transform space is compressible — largely similar to what would be
observed for either of the homogeneous regions (Figure 1, row 1) but not their
intersection. For the more conventional applications with structure (Figure 1, row 3), the
periphery (high frequency components) also has fewer components to accurately model
the underlying signal.
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Figure 1: Numerical example of transform domain LLR properties. The left column shows simulated
images, the third column shows the Fourier transform of these images, and the second and fourth
columns show the singular values for a patch at the center and periphery along with a corresponding
noise threshold. The top row is a case of 4 non-interleaved and in time otherwise identical sections, the
second row is when the 4 sections are intermixed in a random order, and the third row is when the signal
is based on a measured quantitative map. The y-axis for the singular values is plotted logarithmically
showing, for the center, an order of magnitude difference between the image domain and the transform
domain.

Transform domain NORDIC (T-NORDIC)

Based on the numerical illustrative example (Figure 1) and the previous results on
NORDIC, we propose Transform domain NOise reduction with Dlistribution Corrected
PCA denoising (T-NORDIC), as illustrated in Figure 2.
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Figure 2: Flow diagram for T-NORDIC. The series of images (@) is processed with a unitary transform Ts.
From the transform processed series (b), the same types of transform coefficients are used from each
volume (c). For each patch a Cassorati matrix is constructed, SVD is applied, and a hard singular value
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threshold adapted. Each patch is then averaged together to form a denoised transform domain series (d),
and the denoised imaging series is obtained with the inverse unitary transform (e). The zoomed sections
in (&) and (e) show the patches used for image-based MPPCA and NORDIC LLR techniques, whereas
the zoomed section in (b) show the patches used for T-NORDIC.

Following our previous notation, now we consider a spatially transformed version of the
image series m(r, 1) € Cl»*1=2*1s*T given as
m(r,t) = Tym(r, 1)

where T, is a spatial linear unitary transform, acting on r for each point in the image
series. Now consider the Casorati matrix Y € CM*T formed by the same process as
earlier, but now on m(r, t). The denoising problem for this Casorati matrix is to recover
the transform data matrix X from

Y=X+N,

where N € CM*T js Gaussian noise. Note that if the noise in m(r,t) is i.i.d. Gaussian, so
is the noise in m(r, 1), since the transform is unitary, allowing the use of RMT-based
selection of the threshold parameter. After singular value thresholding on Y, the
denoised image patches can be combined to generate an approximation, z(r,t), to the
spatially transformed MR image series m(r,t). This can then be transformed back to
image domain z(r,t) = T5'Z(r, 1), as the final denoised estimate.

For the remainder of this paper, we will consider a spatial discrete Fourier transform
(DFT) for T,. This is a natural choice in MRI as data are acquired in the Fourier domain,
and most vendor-supplied filters in MRI are convolutional in nature, and thus
implemented as pointwise multiplication in the Fourier domain. Most features related to
sampling (e.qg., partial Fourier, elliptical, and non-uniform sub-Nyquist sampling) may all
be naturally preserved when the DFT is used as a sparsifying transform. While other
unitary transforms (such as wavelet transforms) appear equally suited for our purpose,
we focus our experiments on the DFT, where the images are processed in the ky-ky-t
domain instead of the x-y-t domain, where t broadly refers to the image series
dimension. While local patches in the original x-y-t domain exploit similarities across
image series (e.g., based on an exponential decay for quantitative MRI), the local
patches in the k.-ky,-t domain behave differently. A small patch in the center of this
domain captures most of the energy and the underlying contrast information in the
image series, which effectively acts like a global singular value decomposition on a very
low-resolution image. In contrast, a small patch in outer parts of the ky-k, domain
through t captures high-frequency or edge information. For most applications (e.g., fMRI
or quantitative MRI), the edge information remains consistent across the image series,
thus this representation is able to model the underlying signal with very few
components, improving the underlying rank.
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Denoising Experiments

To test the T-NORDIC implementation of transform domain LLR denoising, we
compared the denoised results to the standard reconstruction (no denoising), MPPCA
(image domain LLR denoising), and NORDIC (image domain LLR denoising) for several
relaxation time mapping acquisitions as described below. We considered several
different processing cases to highlight the versatility of our approach: (1) single-channel
Nyquist-sampled k-space; (2) DICOM images from a Nyquist-sampled acquisition; (3)
multi-channel sub-sampled k-space; and (4) publicly available complex-valued multi-
channel images.

Case #1: T2 mapping using a multi-slice_multi-echo (MSME) spin_echo sequence
(Nyquist -sampled k-space): First, a fully sampled MSME spin echo T2 relaxation time
mapping acquisition was chosen to demonstrate T-NORDIC under Gaussian i.i.d.
thermal noise. This acquisition is of a knee joint (i.e., stifle) of a 10-week-old piglet,
imaged ex vivo at 3T MRI. Sequence parameters were: FOV=120x120 mm?; sampling
matrix=512x512; in-plane resolution=0.23x0.23 mm? slices=15; slice
thickness/gap=2.0/0 mm; TR=1880 ms; TE=13, 26, 39, 52, 65, 78, 91, and 104 ms;
partial Fourier=5/8; BW=250 Hz/px; fat saturation; and scan time=10 min.

Case #2: T2 mapping using a MSME spin echo sequence (DICOM images): Second,
another a fully-sampled MSME spin echo T2 mapping acquisition was chosen to
demonstrate T-NORDIC using the vendor-generated DICOM images. This acquisition is
of the knee joint (i.e., stifle) of a four-week-old piglet, imaged in vivo at 3T MRI.
Sequences parameters were: FOV=128x128 mm?; sampling matrix=384x384; in-plane
resolution=0.33x0.33 mm?; slices=25; slice thickness/gap=2.0/0 mm; TR=4000 ms;
TE=11.5, 23.0, 34.5, 46.0, 57.5, 69.0, 80.5, and 92.0 ms; BW=250 Hz/px; fat saturation;
and scan-time=16 min.

Case #3: T2 mapping using a magnetization-prepared 3D SPACE sequence (sub-
sampled multi-channel k-space): To demonstrate the utility of T-NORDIC for
undersampled acquisitions, the 3D SPACE sequence[20] was chosen with its variable
flip angle, fast spin echo scheme. This acquisition is of the femoral heads of a 6-week-
old piglet, imaged in vivo at 3T MRI. Sequence parameters were: FOV=200x100x40
mm?; sampling matrix=384x192x40; resolution=0.52x0.52x1.0 mm? TR/TE=2500/217
ms; k-space averaging factor=1.4; partial Fourier; elliptical sampling; BW=501 Hz/px; T2
preparation times=0, 20, 40, and 60 ms; and scan time=11 min.

Case #4: T2* multi-echo brain_imaging (complex-valued multi-channel images): To
demonstrate the utility of T-NORDIC on anatomical high resolution brain imaging data, a
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publicly available dataset[21] was chosen. This dataset comprised a 6-echo 3D GRE
axial image slab (104 slices) at 0.35mm isotropic (TR. 35ms, TEs: 3.83, 8.2, 12.57,
16.94, 21.31, 25.68, FA 12 degrees, no partial Fourier, 576 x 576 matrix). Whereas the
original manuscript combined 4 runs of data (~1 hour), we selected a single run from the
first subject to examine the benefits of T-NORDIC. For both the original data and the
data after T-NORDIC, we used the t2smap function from the tedana software[22] to
estimate the T2* using a log-linear fit for each voxel in the brain. This T2* estimate was
then used to perform a weighted combination of the data to produce a single volume for
viewing purposes.

Implementation details

MPPCA, NORDIC, and T-NORDIC were implemented using a patch size of 5x5x5. This
choice was made based on an 11:1 ratio as a good balance between denoising and
accurate signal representation[9]. Patch averaging was used with a stride of 2, to
ensure at least 8 averages for each denoised value. For MPPCA the threshold selection
was implemented on the asymptotic decay of the singular values[8]. For T-NORDIC and
NORDIC[9], the threshold selection was implemented as the highest singular value from
a Cassorati matrix with i.i.d. entries with a variance estimated from the data[10]. For
DICOM data, the noise is estimated from the spectral properties of all Casorati matrices
in the data[23].

Results

Case #1: MSME spin-echo T2 mapping (Nyquist-sampled k-space)

For an MSME spin-echo acquisition, the impact of the proposed transform domain
denoising is shown in Figure 2, where the first (high SNR) and the last echo (low SNR)
are displayed. In this case, the SNR reduced on average 90% between the first and the
last echo images. The impact on the multi-contrast signal for a single channel fully-
sampled k-space is shown for both the image-space and the k-space data. Additionally,
the ratio of the low and high SNR images is shown, highlighting the preservation of
contrast in T-NORDIC. The effects of edge blurring seen in Figure 2 for MPPCA and
NORDIC translates to blurring of the resultant quantitative T2 maps. The ratio of the low
SNR to the high SNR image also highlights the challenge of sharing image content
between images using a low-rank constraint. The T-NORDIC k-space for the low SNR
image illustrates how denoising in the transform domain preserves the magnitude of
high spatial resolution features, whereas these are more suppressed with the image
space based denoising.
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Figure 3. Denoising on single channel data from a MSME T2 map acquisition with 8 echoes and FFT. The
first column shows the k-space and image space of the first and last echo, respectively. The second
column shows the ratio between the image from the last echo to the first echo. The third column shows
the T2 map. The first row shows the acquired data, the second when processed with MPPCA, the third
when processed with NORDIC, and the fourth when processed with the proposed T-NORDIC approach.

Case #2: MSME spin-echo T2 mapping (DICOM images)

As a second example of denoising of a MSME spin-echo acquisition, T-NORDIC was
applied to standard DICOM data of a piglet knee as shown in Figure 4. The resultant T2
map appears consistently denoised, and from the zoomed insert finer details, consistent
with the underlying anatomy, are revealed while subtle heterogenous signal variations
are preserved.
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Figure 4. T2 map of a piglet knee generated from DICOM images from an 8-echo MSME spin-echo
acquisition. MPPCA, NORDIC, and T-NORDIC were applied to the DICOM images and representative
zoomed images of the resultant T2 maps are shown for each of the 4 approaches.

Case #3: Magnetization-prepared 3D SPACE T2 mapping (sub-sampled
multi-channel k-space)

To show the impact of denoising on a multi-channel acquisition sequence, Figure 4
shows the effect of denoising before image reconstruction on T2 mapping of a piglet
femoral head using a SPACE sequence with T2 preparation. The denoising was applied
on the undersampled k-space for each channel independently, and the images were
combined with a sensitivity-weighted combination (SENSE-1). The quantitative maps
illustrate how all three denoising methods remove noise, but that T-NORDIC most
accurately preserves detailed structures and their quantification (such as the relatively
long T2 relaxation times of the growth plate and the cartilage overlying the femoral
head).
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Figure 5 T2 mapping of the hips of piglet with the SPACE sequence and 4 preparation times. The
zoomed images show a proximal femur (femoral head and neck) for the standard image reconstruction,
MPPCA, NORDIC and T-NORDIC respectively, where the denoising is applied to each of the channels
and sampling schemes separately.

Case #4: T2* multi-echo brain imaging (complex-valued multi-channel
images)

To show the impact of denoising on existing acquired images, the impact of applying T-
NORDIC to very high-resolution brain data is shown in Figure 6. As seen in the top row,
the estimate of the T2* fit is substantially improved. In the original data, there is a poor
fit, with noisy estimates that do not reflect the underlying anatomy (Top Left). This is
improved after T-NORDIC (Top Middle), similar to what is obtained by averaging the 4
runs (Top Right). Subsequently, a minimum intensity projection is used over 8 slices to
highlight putative venous areas, which can show fine-scale detail. In the original data,
this detail is completely lost, with only large veins visible, and overall poor image
contrast. After T-NORDIC, however, this detail is recovered and overall image contrast
is improved and approaches that of the averaged dataset.
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Figure 6. T2* mapping for high resolution brain imaging. Top: Estimate of T2* fit on one run of the original
data (Left), on the same data after T-NORDIC (Middle) and on the average of 4 runs (Right). Zoomed in
area shows improvement in area with high noise levels. Bottom: A minimum intensity projection of 8 slices
of the combined data for the original data (Left), data after T-NORDIC (Middle) and the average of 4 runs
(Right). Images show better contrast and zoom-ins show the recovery of fine scale details which match
what is seen in the averaged data.

Discussion

In this study, we proposed the use of spatial unitary transforms for improving the
underlying low-rank of Casorati matrices in LLR denoising methods. We further
combined this approach with RMT-based parameter-free threshold determination, owing
to the preservation of i.i.d. Gaussianity with unitary transforms. Results showed visible
improvements over image-domain LLR denoising counterparts in preserving local signal
changes when there are large differences in the quantitative values.

The use of LLR techniques have typically required a larger number of images than what
is acquired for common parametric mapping protocols. For most parametric protocols, 4
to 8 images are acquired to adequately capture the underlying properties, whereas for
most LLR applications, tens of images[17] are needed to adequately preserve the
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underlying properties. For the MSK applications in areas of more subtle local variability,
the transform domain denoising appears to preserve local nuances, whereas the
guantitative maps based on image domain methods tend to be locally more
homogeneous. For the application of quantitative mapping to low SNR applications,
such as high-resolution imaging, the proposed approach will support using fewer
averages, thereby reducing scan time and facilitating the integration of quantitative MRI
protocols. The ability of the proposed processing to reduce the number of low-rank
components for reliable approximation is favorable for quantitative mapping scenarios,
and is consistent with the assumption that edges of the image are consistent across
frames with varying contrasts.

The theoretical assumption for threshold selection in RMT-based LLR denoising is that
the noise is i.i.d. Gaussian, which is consistent with thermal noise in the acquired data.
Most MRI images are represented as DICOM images, in which case the noise is either
Rician or non-central Chi*2 and may also be spatially varying. The theoretical equations
for the thermal noise of these in the transform domain is complicated, yet from the
central limit theorem[24] the transform of these distributions may be Gaussian[25]. In
such situations, the threshold selection applies and by extension that the denoising in
transform domains is more compatible with Gaussian based approaches. Secondarily,
since parallel imaging reconstructions, either SENSE[26, 27] or GRAPPA[27], are part
of most routine acquisitions, the noise of the interpolated frequencies in k-space is
different (normally lower and correlated) from the noise of the acquired data. In such
case, the denoising can be performed on the undersampled data before reconstruction,
or, if needed, be applied on the post-reconstruction images where the noise in the
transform domain should be adequately be accounted for. For GRAPPA based
reconstructions, the higher uncorrelated noise of the acquired data is typically preserved
and is a better target for noise reduction than the lower correlated noise in the
interpolated measurements, but this warrants further investigation

The proposed method has been demonstrated qualitatively for different applications and
techniques, for a limited set of images and for an empirically selected set of hyper-
parameters. A quantification of the improvement is hard to perform without multiple-
averaged data that can be used as a baseline, since measures such as spatial
variability that are often used in quantitative MRI applications as a surrogate for SNR
improvements inherently favor piecewise smooth denoised outputs, which may also
indicate blurring. Future studies with application-specific comparisons to multiple
averages are warranted. In this study, we focused on Fourier transform domain
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processing, and it is worth investigating what other unitary transforms may provide
additional benefits. The qualitative investigations were all restricted to a single
relaxation mechanism whereas in practice often multiple contrasts, such as T1rho,
T2rho are desired or obtained, and the joint integration of these may further compound
acquisition time savings. The interaction between the proposed denoising and more
complex signal modelling such as DTI or multi-component relaxation[28] also warrants
further investigations. We note that both the NORDIC and MPPCA frameworks were
introduced for dMRI[7-9, 11, 23] and have been applied to fMRI[10], and in both
scenarios the MR image series is sufficiently long to have powerful LLR representations
in image domain. Nonetheless, what benefits T-NORDIC over image domain LLR may
provide in such scenarios is worth further studies. Some low SNR studies have
identified cases where image domain LLR methods lead to biases in functional
activation, and the added benefit from T-NORDIC for such scenarios warrants further
investigations.

Conclusion

A transform domain denoising approach that utilizes spatial-temporal properties of noise
in a transform domain was proposed to improve denoising quality, especially in
scenarios where there are only a few images in the MR image series. Results show that
the proposed approach produces high image SNR without deteriorating resolution in a
number of quantitative MRI applications, improving upon existing image domain LLR
methods. Notably, the proposed approach was applied to different data types, from
standard vendor-generated DICOM images to complex multi-channel k-space data,
highlighting its potential for widespread use.

CODE Availability
Code and data to reproduce the figures in this paper will be available at
https://github.com/SteenMoeller/ and also via https://www.cmrr.umn.edu/downloads/
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