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Abstract: In the mid-1950s, a groundbreaking discovery revealed the fascinating presence of caveolae,
referred to as flask-shaped invaginations of the plasma membrane, sparking renewed excitement in
the field of cell biology. Caveolae are small, flask-shaped invaginations in the cell membrane that
play crucial roles in diverse cellular processes, including endocytosis, lipid homeostasis, and signal
transduction. The structural stability and functionality of these specialized membrane microdomains
are attributed to the coordinated activity of scaffolding proteins, including caveolins and cavins.
While caveolae and caveolins have been long appreciated for their integral roles in cellular physiology,
the accumulating scientific evidence throughout the years reaffirms their association with a broad
spectrum of human disorders. This review article aims to offer a thorough account of the historical
advancements in caveolae research, spanning from their initial discovery to the recognition of caveolin
family proteins and their intricate contributions to cellular functions. Furthermore, it will examine
the consequences of a dysfunctional caveolar network in the development of human diseases.

Keywords: calcium signaling; caveolae; caveolin-1; cell senescence; ECs; eNOS; endocytosis; lipid
rafts; signal transduction

1. Introduction

Caveolae are small, flask-shaped invaginations in the cell membrane that belong to a
specialized subgroup of non-planar (invaginated) lipid rafts in the cell plasma membrane
of eukaryotic cells, involved in various cellular processes. Lipid rafts and caveolae are
both specialized cell membrane microdomains, but they have distinct characteristics and
functions. Both structures are enriched in specific lipid components, particularly choles-
terol and sphingolipids, that make these membrane regions more ordered compared to
the surrounding lipid bilayer. Lipid rafts are flat, smaller, less organized, and more fluid
in nature compared to caveolae [1]. They serve as central hubs for bringing together sig-
naling molecules, which are essential for facilitating favorable interactions required for
signal transduction. Conversely, caveolae have a well-defined, stable, and rigid structure,
owing to the presence of distinct scaffolding proteins that grant them their characteristic
omega-shaped appearance [2]. According to electron microscopy studies, caveolae have a
diameter ranging from 60 to 80 nm, with a narrow neck of 10 to 50 nm. These microscopic
structures serve crucial roles in numerous physiological functions, including the regulation
of lipid metabolism, intricate intracellular signaling adjustments, and participation in vi-
tal processes such as membrane repair, mechanosensation, and cellular trafficking [3–6].
Furthermore, their involvement in a variety of pathologies, such as cancer, cardiovascu-
lar disorders, and neurodegenerative conditions, offers intriguing prospects for future
research [7–9]. This article seeks to provide a concise overview of pivotal discoveries in
the caveolae field, highlighting their profound significance in cellular biology and their
potential as promising therapeutic targets for a spectrum of human diseases.
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2. Historical Milestones in Caveolae Research

The study of caveolae has seen several significant milestones since their discovery, en-
hancing our comprehension of these unique membrane features (Figure 1). In the mid-1950s,
early electron microscopy investigations into cell membranes in continuous endothelium
by George Emil Palade unveiled characteristic striated flask-shaped structures, which he
referred to as “plasmalemmal vesicles” [10]. In 1953, Eichi Yamada found similar features in
the gall bladder epithelium and named them “caveolae intracellulares” due to their resem-
blance to “little caves” [11]. From the time they were first identified, increasing numbers of
studies have consistently detected caveolae-like structures in many cell types, including
adipocytes, endothelial cells (ECs), fibroblasts, muscle cells, and epithelial cells [12–15]. ECs
show a high prevalence of caveolae, and in adipocytes, they can make up 30 to 50% of the
cell surface [16]. However, some eukaryotic cells, including red blood cells (erythrocytes),
lymphocytes [17], and some epithelial cells [18], do not possess these structures. In the
nervous system, the presence of caveolin proteins had remained elusive for a long time,
contributing to the prevailing notion that caveolin proteins were absent in brain tissue
and neurons. The perspective shifted in the late 1990s with the discovery of caveolins in
different types of brain cells, including brain ECs, glial cells, and neurons [19–21]. It is
noteworthy that neurons seemingly express all three caveolins, although certain authors
concur that they might be devoid of caveolae, thus implying a potential function for these
proteins beyond the confines of the plasma membrane caveolae [22,23]. These hypotheses
find support in studies, indicating that caveolins can be found in both buoyant and heavy
fractions resulting from density gradient centrifugation, implying a more extensive distri-
bution than solely within caveolae. While not the focus of this review, it is important to
note that non-caveolar caveolins act as versatile regulators of cellular functions by facili-
tating interactions with proteins excluded from typical caveolae and influencing various
cellular processes [24]. For instance, these caveolins are believed to play a crucial role in
determining intracellular lipid fluxes, including cholesterol and sphingolipids, thereby
directly or indirectly modulating lipid-dependent processes. Insights from invertebrate
systems underscore that the loss of function in these caveolins is associated with common
phenotypes and pathologies observed in caveolin-deficient cells and animals [25]. The
consideration of these findings is imperative when conducting investigations focused on
endogenous caveolin protein expression, such as through RNA interference (RNAi). In such
scenarios, it becomes challenging to distinguish between the effects of caveolins localized
within caveolae and those found outside, i.e., in cells that exhibit caveolar structures. In the
ever-evolving landscape of cellular biology, the continuous investigation of the caveolar
network promises to reveal new insights into the complex mechanisms that govern cell
function and has significant implications for our understanding of human diseases and
their treatment.
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Figure 1. Timeline of caveolae research. The diagram depicts significant observations in caveolae 
biology from their discovery to the present, emphasizing their suggested participation in diverse 
cellular processes. It is important to highlight that the “caveolae signaling hypothesis” and the par-
ticipation of caveolin domains in protein–protein interactions should be re-evaluated in light of re-
cent cryoEM studies on caveolin, as discussed in this review article. 
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3.1. Caveolin-1 

The first recognized protein marker of caveolae, called caveolin-1, was not discovered 
until the early 1990s (Figure 1). This finding offered valuable insights into the structural 
and functional characteristics of caveolae [13]. The same year Glenney cloned and se-
quenced a human cDNA encoding the caveolin-1 (CAV1) gene [26], translating a full-
length protein of 178 amino acids that was expressed on the surface and in the cytoplasm 
of ECs of pulmonary arteries [27]. This was a pivotal discovery, as this monotopic mem-
brane protein was found to be a major structural coat protein playing a crucial role in 
caveolae biogenesis [28]. Each caveolin monomer consists of distinct regions, which in-
clude: (i) a cytosolic N-terminal domain that faces the cytoplasm; (ii) a C-terminal domain, 
encompassing residues 135 to 178; (iii) a transmembrane domain (TMD) spanning resi-
dues 102 to 134; and (iv) an oligomerization domain (OD), spanning residues 61 to 101, 
that incorporates both the highly conserved “FEDVIAEP” caveolin signature motif (CSM, 
residues 68 to 75) and the caveolin scaffolding domain (CSD, residues 82 to 101) [29–32] 
(Figure 2). Notably, a cholesterol recognition/interaction amino acid consensus (CRAC) 
“VTKYWFYR”, which spans residues 94–101 within the CSD [33], allows caveolin-1 to in-
teract with cholesterol molecules. A more recent study, employing cryo-electron micros-
copy, has significantly enhanced our understanding of the tridimensional organization of 
caveolin-1. The study unveils that the human caveolin-1 complex comprises 11 protomers, 
which are intricately arranged to construct a densely packed disc. This disc encompasses 
an outer portion, a central β-barrel domain, and 11 curved α-helical domains. These struc-
tural insights offer a fresh perspective on the involvement of crucial regions in human 
caveolin-1, including scaffolding, oligomerization, and intramembrane domains, in the 
process of membrane remodeling [34]. Two isoforms of caveolin-1 have been elucidated, 
referred to as caveolin-1α (including residues 1–178) and caveolin-1β (spanning residues 
32–178). While the precise role of these two protein variants in caveolae formation is still 
largely obscure, it appears that the α isoform demonstrates greater efficacy in driving the 
genesis of caveolae compared to the β isoform [35]. Caveolin-1 undergoes post-transla-
tional modification (PTM) through palmitoylation, which involves the covalent aĴach-
ment of palmitic acid to three distinct cysteine residues within the TMD domain (Figure 
2). The palmitoylation of proteins by palmitoyl transferases is generally a reversible pro-
cess, playing a crucial role in regulating various cellular functions. This includes the 

Figure 1. Timeline of caveolae research. The diagram depicts significant observations in caveolae
biology from their discovery to the present, emphasizing their suggested participation in diverse
cellular processes. It is important to highlight that the “caveolae signaling hypothesis” and the
participation of caveolin domains in protein–protein interactions should be re-evaluated in light of
recent cryoEM studies on caveolin, as discussed in this review article.

3. Caveolins and Cavins: Synthesis and Post-Translational Modifications
3.1. Caveolin-1

The first recognized protein marker of caveolae, called caveolin-1, was not discovered
until the early 1990s (Figure 1). This finding offered valuable insights into the structural and
functional characteristics of caveolae [13]. The same year Glenney cloned and sequenced a
human cDNA encoding the caveolin-1 (CAV1) gene [26], translating a full-length protein of
178 amino acids that was expressed on the surface and in the cytoplasm of ECs of pulmonary
arteries [27]. This was a pivotal discovery, as this monotopic membrane protein was found
to be a major structural coat protein playing a crucial role in caveolae biogenesis [28]. Each
caveolin monomer consists of distinct regions, which include: (i) a cytosolic N-terminal
domain that faces the cytoplasm; (ii) a C-terminal domain, encompassing residues 135
to 178; (iii) a transmembrane domain (TMD) spanning residues 102 to 134; and (iv) an
oligomerization domain (OD), spanning residues 61 to 101, that incorporates both the
highly conserved “FEDVIAEP” caveolin signature motif (CSM, residues 68 to 75) and
the caveolin scaffolding domain (CSD, residues 82 to 101) [29–32] (Figure 2). Notably, a
cholesterol recognition/interaction amino acid consensus (CRAC) “VTKYWFYR”, which
spans residues 94–101 within the CSD [33], allows caveolin-1 to interact with cholesterol
molecules. A more recent study, employing cryo-electron microscopy, has significantly
enhanced our understanding of the tridimensional organization of caveolin-1. The study
unveils that the human caveolin-1 complex comprises 11 protomers, which are intricately
arranged to construct a densely packed disc. This disc encompasses an outer portion, a
central β-barrel domain, and 11 curved α-helical domains. These structural insights offer
a fresh perspective on the involvement of crucial regions in human caveolin-1, including
scaffolding, oligomerization, and intramembrane domains, in the process of membrane
remodeling [34]. Two isoforms of caveolin-1 have been elucidated, referred to as caveolin-
1α (including residues 1–178) and caveolin-1β (spanning residues 32–178). While the
precise role of these two protein variants in caveolae formation is still largely obscure, it
appears that the α isoform demonstrates greater efficacy in driving the genesis of caveolae
compared to the β isoform [35]. Caveolin-1 undergoes post-translational modification
(PTM) through palmitoylation, which involves the covalent attachment of palmitic acid to
three distinct cysteine residues within the TMD domain (Figure 2). The palmitoylation of
proteins by palmitoyl transferases is generally a reversible process, playing a crucial role
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in regulating various cellular functions. This includes the control of protein localization,
membrane organization, and signal transduction processes, ultimately contributing to
the overall stability and functionality of the cell. Studies involving a palmitate-deficient
mutant of caveolin-1 have revealed that the palmitoylation of caveolin-1 is not essential
for its localization to caveolae [36] and is irreversible in ECs [37]. Caveolin-1 can also
undergo phosphorylation [38], occurring both at tyrosine 14 and at serine 80 (Figure 2).
Although the functional implications of caveolin-1 phosphorylation have been relatively
understudied, the two phosphorylation sites seem to serve distinct purposes. The tyrosine
phosphorylation of caveolin-1 can be facilitated by various kinases, including those in the
Src family, and it can influence the response to oxidative stress, promote cell senescence
in chondrocytes, and modulate autophagy [39–41]. In contrast, the phosphorylation of
the serine residue in caveolin-1 influences its cellular localization within the endoplasmic
reticulum, directing it towards the secretory pathway [42]. Ubiquitination can also regulate
the expression of caveolin-1. When caveolae assembly is dysfunctional or the caveolin-1
levels increase, it can be ubiquitinated and subsequently degraded within lysosomes [43].
More recently, it has been shown that the degradation of caveolin-1 by the E3 ubiquitin
ligase ZNRF1 is vital for the regulation of the TLR4-mediated inflammatory pathway [44].
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Figure 2. Schematic illustration of caveolin-1. CRAC sequence “VTKYWFYR” spanning residues
94–101; CSD, caveolin scaffolding domain; CSM, caveolin signature motif “FEDVIAEP”; OD,
oligomerization domain; TDM, transmembrane domain. Two phosphorylation sites at tyrosine
14 (Y14) and serine 80 (S80) are indicated. Cavin proteins directly interact with caveolins, forming
a stable complex that is critical for the formation of caveolae and their localization in the plasma
membrane.

3.2. Caveolin-2

In 1996, caveolin-2, the second member of the caveolin family, was identified and
cloned by Scherer and collaborators [30]. Caveolin-2 forms hetero-oligomers with caveolin-
1 [2], and both proteins are found typically co-expressed in the same cells [30,45]. Unlike
caveolin-1, the lack of caveolin-2 does not affect the formation of caveolae. However,
in specific cell types, the concurrent presence of both proteins appears to enhance cave-
olae formation more effectively than caveolin-1 alone [35]. Like caveolin-1, caveolin-2
shows multiple isoforms characterized by distinct but partially overlapping subcellular
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distributions [46]. These include the full-length caveolin-2α and two truncated variants
known as caveolin-2β and caveolin-2γ. Nonetheless, the functional significance of these
caveolin-2 isoforms remains largely unknown [47]. Like caveolin-1, caveolin-2 undergoes
post-translational modifications, including myristoylation at a single glycine residue and
palmitoylation at cysteine 109, 122, and 145, which mainly control protein localization
in the plasma membrane (Figure 3). Recently, it has been revealed that the acylation of
caveolin-2 directs the protein to be phosphorylated by the insulin receptor tyrosine kinase,
emphasizing its potential role in regulating insulin signaling [48]. Caveolin-2 can be also
phosphorylated at serine 23 and 36, and this modification is crucial to sustain caveolin-1
activity during caveolae biogenesis [49]. Two additional sites of phosphorylation, namely
tyrosine 19 and 27, have been identified within caveolin-2 that play crucial function in reg-
ulating cell signaling by promoting protein interaction with SH2 bearing domains [50,51]
and are involved in adipocyte hypertrophy [52].
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3.3. Caveolin-3

The third member of the caveolin gene family, termed caveolin-3, was discovered in
1996 by Tang and colleagues [31]. Caveolin-3 is predominantly expressed in mature smooth,
cardiac, and skeletal muscle cells [53]. Like caveolin-1, caveolin-3 shows distinct structural
domains, including (i) an N-terminal domain, spanning residues 1–54, which includes
the FEDVIAEP CSM (residues 41–48); (ii) a CSD spanning residues 55–74; (iii) a TMD
(residues 75–106); and (iv) a C-terminal domain (residues 107–151, facing the cytoplasm)
(Figure 3) [54]. Caveolin-3 is also subjected to post translation palmitoylation at three dif-
ferent cysteine residues [55]. While caveolin-3 is shorter in length compared to caveolin-1,
it exhibits significant structural and functional similarities to caveolin-1 and possesses the
ability to independently form caveolae [30]. The caveolin-3 (CAV3) gene encodes an open
reading frame of 151 amino acids that is 65% identical and 85% similar to caveolin-1. In
addition to palmitoylation, caveolin-3 undergoes post-translational modification through
SUMOylation, which is a process involving the attachment of small ubiquitin-like modifier
(SUMO) to its N-terminus. This modification of caveolin-3 plays a crucial role in regulating
the expression of β-adrenergic receptors [56]. Mutations in CAV3 gene lead to a series of a
family genetic disorders known as caveolinopathies [57], leading to rare forms of muscle
dysfunction, such as muscular dystrophies, myopathies, and arrhythmias. Four different
caveolinopathies have been identified, including limb–girdle muscular dystrophy (LGMD)
1C, rippling muscle disease (RMD), isolated hyperCKemia, and distal myopathy [57,58].
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Within skeletal myofibers caveolin-3 takes part in the dystrophin-glycoprotein complex
(DGC), serving as a link between the extracellular matrix and intracellular cytoskeletal ele-
ments. The connection between caveolin-3 and DGC within muscle cells plays a pivotal role
in upholding the structural integrity of the sarcolemma, enabling the normal functioning of
muscle cells [53]. Although the post-translational modifications of caveolin-3 have received
limited attention, there is evidence to suggest that mutations in the CAV3 gene, which
result in muscular dystrophy, are broken down through ubiquitination and proteasomal
pathways. Blocking proteasomal degradation could potentially restore normal caveolin-3,
which holds promise for the treatment of LGMD-1C from a clinical perspective [58].

3.4. The Cavin Family of Proteins

In the 2000s, the identification of novel structural constituents of caveolae, known as
caveolae-associated proteins (cavins), has augmented our comprehension of the intricate
architecture of caveolae [59–61] (Figure 1). Cavin proteins, including cavins 1–4, encoded by
the polymerase I and transcript release factor (PTRF), serum-deprivation-response protein
(SDPR), SDPR-related gene product that binds to C-kinase (SRBC), and muscle-related
coiled-coil protein (MURC) genes, respectively, assume a pivotal role in the biogenesis of
caveolae. Among cavin proteins, only cavin-1 appears crucial for the correct biogenesis
of caveolae [62], while the other three members of the family have been suggested to con-
tribute to caveolae stabilization [63–65] and appear to display tissue-specific distributions.
Their intricate interplay with caveolin proteins and their involvement in membrane dynam-
ics impart this family of proteins with essential significance in many cellular processes and
signal transduction mechanisms associated with the presence and functionality of caveo-
lae [66,67]. The structure and function of the cavin family of proteins have been reviewed
by Kovtun et al. [67]. Notably, aside from its involvement in caveolae formation, it has come
to light that patients with cavin-1 mutations manifest disorders, including lipodystrophy
and muscular dystrophy, affecting organs such as adipose tissue, skeletal muscle, heart,
and lungs. Nevertheless, the molecular mechanisms underlying the involvement of cavin-1
in these disorders remain largely unclear and necessitate thorough investigation [68].

4. Functional Roles of Caveolae and Caveolins
4.1. Caveolae and Caveolin in Endocytosis and Transcytosis

Endocytosis is a fundamental cellular process through which cells internalize molecules,
particles, or fluids from their external surroundings for various purposes, including nutrient
uptake, receptor internalization, and the removal of waste. This cellular uptake mecha-
nism encompasses three primary forms: phagocytosis (the engulfment of large particles),
pinocytosis (the taking up of small, dissolved molecules and fluids), and receptor-mediated
endocytosis [69]. In turn, transcytosis refers to the transport of materials from one side
of the cell to the other (e.g., from the apical to the basolateral membrane or vice versa),
thereby making them accessible to neighboring cells and different tissue compartments. It
is particularly involved in polarized epithelial cells that line body surfaces like endothelia
and intestinal epithelium. Functionally, transcytosis combines endocytosis (uptake at one
membrane) and exocytosis (release at the opposite membrane) [70,71].

The strategic positioning of caveolae in the plasma membrane, their unique shape
and composition, and the ability of their scaffolding proteins to interact with multiple
molecules all make them ideal for aiding in the uptake of substances into the cell. Therefore,
in addition to the well-known endocytic pathway mediated by clathrin-coated vesicles
(CCV) [72], caveolae-dependent endocytosis may stand for an alternative high specific
component of cellular uptake. Yet, to date, the contribution of plasma membrane caveolae
to endocytosis is still debated. In initial investigations pertaining to the participation of
caveolae in endocytosis, experiments utilizing a caveolin-1 construct tagged with green
fluorescent protein (GFP) indicated that caveolae anchored to the plasma membrane ex-
hibit relative immobility [73]. Furthermore, caveolin-1 has been postulated to function
in the stabilization of caveolae-like invaginations on the cell surface, thereby acting as a
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rate-limiting factor in the internalization process of these organelles [74]. In this context, the
localization of the dynamin-related EH domain-containing protein 2 (EHD2), situated in the
caveolar neck, may serve to enhance the stabilization of caveolae at the plasma membrane.
Indeed, its overexpression has been observed to result in an increased number of static
surface caveolae [75]. Like EDH, Pacsin2, a protein that regulates the morphogenesis and
endocytosis of caveolae, plays a crucial role in maintaining the proper functioning and
stability of caveolae on the cell membrane. Its loss or deletion may lead to the detachment
of caveolae from the cell surface [76]. On the contrary, akin to lipid rafts, caveolae exhibit
the capacity to translocate within the confines of the plasma membrane while preserving
the integrity of their caveolar coat [77]. It is imperative to clarify that, although caveolae
can detach from the plasma membrane, leading to their internalization and trafficking
to intracellular organelles, the underlying mechanism and the involved cargoes remain
unclear. This lack of clarity has given rise to controversy within the field. Therefore, while
clathrin-mediated endocytosis is a thoroughly characterized mechanism known for its
precise cargos and intracellular pathways, the involvement of caveolae in endocytosis
remains a challenging issue [75,78]. It has been suggested that detached caveolae have the
capacity to undergo fusion with the early endosome. Subsequently, the maturation process
ensues, progressing from early endosomes to late endosomes and multivesicular bodies,
culminating in the ultimate degradation of the caveolae contents within lysosomes. In
this context, empirical evidence indicates that caveolin-1 exhibits co-localization with both
early and late endosomal markers, notably Rab5 and Rab7 [43,78]. Furthermore, it has been
observed that the immunogold labeling of caveolin-1 accumulates in multivesicular bodies
after detachment from the plasma membrane [79]. Studies have proposed that the inter-
nalization of caveolae depends on the phosphorylation of caveolin-1 and caveolin-2. This
assertion is supported by experiments conducted in the presence of phosphatase inhibitors,
which markedly augment this process [80,81]. Caveolin-1-deficient mice cannot internalize
albumin compared to their wild-type counterparts, supplying further confirmation of the
integral role played by this protein in transcytosis [82]. Molecules that have suggested
to undergo internalization via caveolae include albumin, folic acid, alkaline phosphatase,
lipids, insulin, low-density lipoproteins (LDL), chemokines [83–87], and certain pathogens
such as toxins, viruses and bacteria [88–99]. In conclusion, the pivotal roles of the caveo-
lar network in cellular uptake suggest that targeting these components could hold great
promise for advancing therapies in drug delivery and disease treatment. In this context, it
is of paramount importance to identify molecules resident in caveolae that are exclusively
internalized through caveolae-mediated endocytosis.

4.2. Caveolins in Cell Signaling

The “caveolae signaling hypothesis” proposed in the mid-1990s (Figure 1) is a con-
cept related to the discovery of the caveolin family of proteins and their role in cellular
signaling [100]. The hypothesis relies upon the presumption that signaling proteins, pos-
sessing a distinctive peptide sequence referred to as the caveolin binding motif (CBM),
can establish interactions with the CSD. The hydrophobic consensus, rich in aromatic
residues, for CBM is βXXXXββ and βXβXXXXβ, where β represents aromatic amino
acids (Tryptophan, Phenylalanine, and Tyrosine) and X denotes any amino acid. It is
widely acknowledged that, following CSD–CBM interaction, caveolin can maintain the
signaling molecules in an inactive status, until the interaction is disrupted by specific
cues. Remarkably, although this mechanism has garnered broad acknowledgment as a
primary regulatory process for signaling proteins by caveolins, contemporary structural
and bioinformatic analyses calls it into question [101,102]. Consequently, certain authors
advocate for a re-evaluation of the functional significance of interactions dependent on
CBM/CSD in regulating the functions of signaling molecules. It has been suggested that
only a small amount, namely about 30%, of signaling molecules would express a CBM,
regardless of its cellular distribution [102]. Moreover, critiques have been raised concern-
ing experiments that entail the association of signaling proteins with caveolins through
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immunoprecipitation, primarily ascribed to the restricted solubility of caveolin-enriched
domains [2]. Notably, numerous studies have suggested that interactions between caveolin
and target proteins do not invariably require the participation of CSD and CBM [103]. In
certain instances, protein interactions may also encompass multiple domains of caveolin-1,
including the C-terminal domain [104,105]. Nevertheless, whether a direct or indirect
interaction exists between CSD and CBM, there is no doubt that it facilitates the spatial
regulation of various signaling pathways. Consequently, it can be anticipated that any
dysregulation of this mechanism, as well as the deletion or mutation of CSD and CBM,
may have implications for various physiopathological processes or disease states.

Caveolin-1 has been shown to interact with RTKs like the epidermal growth factor
receptor (EGFR) [106] and insulin receptor (IR) [107,108], thereby modulating their down-
stream signaling. These interactions have significant implications for cellular proliferation
and survival. Caveolins also influence G-protein-coupled receptors (GPCRs)-mediated
signaling [109]. The role of caveolin-1 in GPCR endocytosis and desensitization is well-
established, impacting processes ranging from neurotransmission to immune responses.
Additional signaling molecules can be regulated through their confinement within the cave-
olae network or interaction with caveolin-1 [110–117]. In the context of endothelial function,
caveolins play a crucial role in regulating nitric oxide (NO) signaling. Caveolin-1 physi-
cally interacts with endothelial NO synthase (eNOS), restricting its enzymatic activity and
preventing the untimely production of NO. In situations of physiological stimulation, such
as increased shear stress or specific agonists, caveolin-1 can dissociate from eNOS, allowing
the enzyme to become activated and generate NO. This dynamic interaction between
caveolin-1 and eNOS serves as a crucial mechanism for maintaining vascular homeostasis,
as NO serves as a potent vasodilator and regulator of blood pressure, impacting various
physiological and pathological processes, including cardiovascular health [118–120]. In
addition, the post-translation phosphorylation of caveolin-1 can affect downstream signal-
ing. Furthermore, it is noteworthy that the post-translation phosphorylation of caveolin-1
has the potential to influence downstream signaling. For instance, the phosphorylation
of caveolin-1 plays a crucial role in regulating autophagy under the conditions of oxida-
tive stress and cerebral ischemic injury, resulting in protecting against cellular damage
caused by oxidative stress, and potentially reducing cerebral infarct damage during is-
chemic events [40]. Moreover, the tyrosine phosphorylation of caveolin-1 in ECs exposed
to oxidative stress or alterations in flow conditions can govern both cell permeability and
mechanotransduction responses [121,122], and its inhibition hinders Rac1/Cdc42-mediated
axonal growth in human neuronal progenitor cells [123]. Like caveolin-1, caveolin-2 phos-
phorylation plays a critical role in the regulation of signal transduction, specifically in
the context of cellular communication and intracellular signaling. This post-translational
modification of caveolin-2 has been shown to impact its interactions with various signaling
molecules [124]. In summary, it is imperative to conduct a meticulous assessment of the
nature and significance of the “caveolae signaling hypothesis” by leveraging state-of-the-
art bioinformatic tools. The incorporation of these methodologies in conjunction with
biochemical investigations is certain to yield significant contributions to comprehending
the role of caveolins in the regulation of signal molecules.

4.3. Caveolins in Host Cell Response and Inflammation

Inflammation is the body’s response to infections and tissue damage in vascularized
tissues. The function of this process is to transfer cells and molecules responsible for host
defense from the circulation to the injured sites, ultimately leading to the elimination
of the offending agents. It is a complex and tightly regulated physiological response
triggered by the host immune system to combat various harmful stimuli. The typical
inflammatory reaction involves a series of coordinated steps, including the recognition of
harmful stimulus (e.g., injury, infection, or tissue damage); the recruitment of white blood
cells, particularly neutrophils and macrophages, to the site of inflammation; leukocyte
activation; and the resolution of inflammation. Interestingly, the caveolar network can take
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part in these events. First, pathogens like viruses and bacteria can use all the molecules
found in caveolae, which are essential for vesicle formation and fusion, to enter the host
cell [81,94,95,125–134]. Of note, since caveolae do not follow the typical path to lysosomes,
pathogens that enter through these structures can remain viable and avoid being broken
down in lysosomes [135]. A crucial aspect of inflammation involves leukocyte adhesion
to ECs [136]. During this process, leukocytes first interact with adhesion molecules on
EC surface, such as E- and P-selectin, and later with intercellular adhesion molecule-1
(ICAM-1) and vascular cell adhesion protein 1 (VCAM-1). Interestingly, there are reports
indicating that ICAM-1 plays a role in helping white blood cells exit the bloodstream by
moving to areas rich in caveolin-1 within the lateral portion of ECs. This relocation of
ICAM-1 is believed to promote the formation of pseudopodia by leukocytes, facilitating
their exit into the surrounding tissue [137,138]. A study by Michell et al. found that
exposure to high pressure led to increased leukocyte adhesion and that inflammation in rat
carotid arteries is triggered by the mechanosensory capability of caveolin-1. Consequently,
mice and ECs lacking caveolin-1 were protected from pressure-induced inflammation,
highlighting the significance of caveolin-1 in pressure-induced vascular inflammation [139].
Supporting the role of the caveolar network in recruiting white blood cells, it has been
shown that caveolin-1 reduces excessive NO-related permeability in blood vessels and
facilitates white blood cell adhesion through a specific mechanism involving ICAM-1 and
Src activation [140]. Besides caveolin-1, caveolin-2 has been also found to facilitate leukocyte
infiltration in brain ECs, contributing to the development of common neurodegenerative
diseases [141]. In addition, this protein has been suggested to play a protective role
in reducing postischemic tissue injury by dampening plasminogen activator inhibitor-1
(PAI-1) expression, leading to reduced leukocyte recruitment by ECs. Authors suggest that
targeting PAI-1 or enhancing caveolin-2 expression could be potential therapeutic strategies
to reduce tissue damage caused by ischemia/reperfusion injury [142]. These findings
highlight the intricate involvement of caveolae and caveolins in the inflammatory response
and underscore their vital role in regulating cellular signaling and immune processes.

4.4. Caveolin Proteins and Mechanotransduction

Mechanotransduction, the process by which cells sense and respond to mechanical
forces, plays a pivotal role in numerous physiological and pathological processes [143–145].
Caveolins not only modulate intracellular signaling cascades [146] but influence the me-
chanical properties of the plasma membrane itself [7]. These features make caveolins crucial
players in the ability of cells to sense and respond to mechanical cues, which is fundamental
to various physiological processes, including tissue development, vascular homeostasis,
and cancer metastasis [147]. Caveolin-1 is the most extensively studied isoform in this
context, thanks to its capability to regulate and organize signaling molecules in caveolae,
facilitating their rapid response to mechanical stimuli. Its involvement in mechanosensing
has been evidenced in several studies, such as one by Drab et al., that highlighted the role of
caveolin-1 in the activation of eNOS in ECs in response to shear stress [148]. Furthermore,
caveolins can regulate the activation of integrins and focal adhesion kinase, influencing cell
adhesion and migration in response to mechanical cues [149]. In ECs and muscle cells, cave-
olae can serve as a repository for membranes, which can undergo flattening when the cell
experiences mechanical stress [149]. Therefore, unstimulated cells have excess membrane
confined within invaginated caveolae, granting them the ability to alleviate plasma mem-
brane tension, thereby effectively counteracting mechanical stress. In such a scenario, the
reconfiguration of the plasma membrane after the breakdown of caveolae would thereby
facilitate the release/activation of mechanoreceptors that had been previously trapped
within the caveolae. More recently, Moreno-Vicente and colleagues have demonstrated
that caveolin-1 can regulate the activity of the YAP (Yes-associated protein) and TAZ (tran-
scriptional coactivator with PDZ-binding motif), two central components of the Hippo
signaling pathway, which governs cell proliferation, organ, and mechanosensing [150,151].
The recent identification of caveolin-1 invaginations, distinct from conventional caveolae,
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and devoid of cavins, referred to as “dolines”, has introduced a new layer of complexity
to our knowledge of mechanotransduction [152]. These structures denote distinct plasma
membrane invaginations regulated by caveolin-1 in the absence of caveolae, playing a
role in the perception of mechanical forces. The authors suggest that these structures are
capable of sensing forces within the low to medium range, thereby imparting consistent
mechanoadaptation and mechanoprotection to tissues lacking caveolae. Therefore, dolines,
alongside caveolae, function distinctly and complementarily to mediate the cell responses
to mechanical stimuli originating from the extracellular environment. In summary, elu-
cidating the precise mechanisms by which caveolins contribute to mechanotransduction
is a growing area of research, with implications for understanding cell biology, disease
pathogenesis, and potential therapeutic interventions.

4.5. Caveolae in the Regulation of Calcium Signal

Calcium ion (Ca2+) is perhaps the most prevalent and adaptable intracellular mes-
senger across various cell types [153]. Intracellular (Ca2+) signaling plays a pivotal role
in a multitude of cellular processes, ranging from muscle contraction and neurotransmis-
sion to cell proliferation and gene expression. The precise control of Ca2+ concentration
within various cellular compartments is essential for these diverse functions, and cells have
developed an intricate network of regulatory mechanisms, among which caveolae have
emerged as a critical component [2]. The first indications of the involvement of caveolae in
mobilizing intracellular Ca2+ come from studies conducted by Popescu et al. in the mid-
1970s [154]. The authors showed that following the treatment of smooth muscle cells with
calcium oxalate, the compound was found to be distributed in various cellular compart-
ments, including invaginated caveolae. Further studies have demonstrated the localization
of essential signaling molecules regulating Ca2+ mobilization, such as the inositol-1,4,5-
trisphosphate receptor (IP3R) and Ca2+-ATPase, within caveolae both in ECs and smooth
muscle cells [155]. In 1998, Isshiki demonstrated that caveolin-rich cell edges are involved
in the initiation of ATP-induced Ca2+ waves in bovine aortic ECs [156], and two years later,
the same group utilized a modified calcium sensor to illustrate the central function of cave-
olae in facilitating thapsigargin-induced Ca2+ entry [157]. They reported that interfering
with these domains using a cholesterol-extracting agent impeded this process. In ECs,
caveolin-1 expression is necessary for the relaxation associated with endothelium-derived
hyperpolarizing factor (EDHF), as it influences the membrane positioning and functioning
of transient receptor potential vanilloid (TRPV) channels and connexins, two crucial play-
ers in the EDHF-signaling pathway [158]. More recently, Medvedev et al. demonstrated
the role of caveolae in regulating Ca2+ signaling in atrial cardiomyocytes and that their
disruption leads to an increase in cAMP levels, which in turn enhances the phosphorylation
of Protein Kinase A (PKA)-mediated Ca2+ signaling [159]. The specific isoforms of protein
kinase C (PKC) are activated by calcium, thereby regulating diverse cellular functions,
including cell growth, differentiation, and apoptosis. Among the different isoforms of
PKC, PKCα has been shown to be mainly localized within caveolae [160,161]. In addition,
the scaffolding domain of both caveolin-1 and caveolin-3 (but not caveolin-2) binds to
PKC, regulating its kinase activity [162,163]. A broad family of proteins, which plays a
crucial role in determining how calcium ions are redistributed within cells, is represented
by GPCRs [164]. When ligands bind to GPCRs, they initiate a series of intracellular events
that ultimately lead to the production of inositol-1,4,5-trisphosphate (IP3). IP3 then binds
to its specific receptor within the endoplasmic (or sarcoplasmic) reticulum, causing a rapid
release of Ca2+ from these compartments. In this context, there is substantial evidence
supporting the involvement of caveolae as well as the caveolin-1 CSD in sequestering
various GPCR subtypes. Nicotinic acid adenine dinucleotide phosphate (NAADP) is a
pivotal signaling molecule, serving as a second messenger [165]. It initiates the release of
calcium from lysosomal reservoirs by binding to the calcium channels within the two-pore
channel (TPC) family, thereby inducing the efflux of Ca2+ into the cytoplasm. Our research
has illustrated the participation of caveolae and lipid rafts in mediating NAADP-induced
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calcium release via the endothelin receptor subtype B (ETB) in smooth muscle cells [113].
Therefore, the role of caveolae in calcium signaling is a fascinating area of research that has
provided valuable insights into the intricate mechanisms governing cellular communica-
tion. Ongoing research into the precise functions of caveolae, their dynamic interactions
with calcium signaling pathways, and their potential as drug targets is likely to yield
exciting discoveries.

5. Caveolin and Cardiovascular Diseases
5.1. Caveolins in Cardiac Function

The cardiovascular system is a complex network responsible for pumping blood
throughout the body, ensuring the delivery of essential nutrients and oxygen to various
tissues and organs. In recent years, caveolins, primarily caveolin-3, that are abundant in
cardiac myocytes, have emerged as a subject of significant interest in the field of cardiology.
These proteins have been implicated in various aspects of cardiac function, including the
regulation of contractile signaling pathways, ion channel function, and mechanosensory
processes within the heart [166]. Overall, the presence of caveolin-3 in cardiac tissue appears
essential to provide adequate cardiac protection [167]. It has been reported that increasing
caveolin expression in the heart, potentially through PI3K-related pathways, may offer a
protective mechanism against injury caused by ischemia and subsequent reperfusion. Mice
lacking caveolin-3, exhibiting a total absence of caveolae, display a cardiac dysfunction
pattern that closely resembles what is observed in mice lacking caveolin-1 [168,169]. Bryant
and collaborators have showed that the lack of caveolin-3 induces cardiac dysfunction
in vivo, as well as myocytes hypertrophy, defective t-tubule structure, and decreased t-
tubular L-type Ca2+ current density in vitro [170]. These findings are consistent with an
earlier study by Woodman and collaborators that links the expression of caveolin-3 to the
inhibition of the hypertrophic p42/44 MAPK pathway in the heart [168]. Interestingly,
although caveolin-3 is the predominant caveolin in cardiomyocytes, caveolin-1 knock-out
mice progressively develop a severe cardiomyopathy, show abnormal ventricular wall
thickness, hypertrophy, decreased contractility, increased activity of eNOS, and a severely
shortened lifespan [171–173]. Wright and colleagues conducted a study to explore the
role of caveolin-3 in regulating the T-tubular localization of the beta-2 adrenergic recep-
tor (β2AR) and its cAMP signaling, a disrupted pathway in heart failure. The research
showed that caveolin-3 selectively influences the spatial compartmentation of β2AR-cAMP
responses within the T-tubular compartment. Conversely, overexpressing caveolin-3 in
abnormal cardiomyocytes reversed the pathological redistribution of β2AR-cAMP sig-
naling [174]. In a more recent study, Markandeya and colleagues explored the effects
of cardiac-specific cavolin-3 loss in adult mouse hearts. While the mice did not display
structural remodeling or left ventricular dysfunction, they did exhibit a prolonged QT
interval, leading to an elevated risk of ventricular arrhythmia. This suggests that cavolin-3
plays a crucial role in regulating ventricular re-polarization, impacting arrhythmia risk in
both mouse and human cardiac cells [175]. Researchers also generated double knockouts
mice for caveolin-1 and caveolin-3 genes [176]. These mice are both viable and fertile and
exhibit a broader reduction in caveolae in various cell types, including ECs, adipocytes,
smooth muscle cells, and skeletal muscle fibers. Interestingly, despite this more extensive
depletion, the observed phenotype is like that of mice with single gene knockouts, although
more severe. The discovery that the ablation of caveolin protein in the heart is linked to
heart dysfunction supports the broader idea of caveolar network playing a crucial role
in cardiac protection. Future research on the role of caveolin proteins in heart functions
holds significant promise. With coronary artery disease (CAD) and ischemic heart disease
continuing to be the leading causes of mortality in industrialized countries, understand-
ing the molecular mechanisms that underlie ischemia-reperfusion injury (I/R injury) is
of paramount importance. Exploring how caveolin proteins and other molecular factors
contribute to cardiac protection in different contexts, like hypertension, hyperlipidemia,
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diabetes, aging, and heart failure, can provide valuable insights for the development of
targeted therapeutic interventions to mitigate heart-related diseases and complications.

5.2. Caveolin-1 and Hypertension

Hypertension, or high blood pressure, is a medical condition characterized by pro-
longed elevated blood pressure in arteries, posing a significant risk for cardiovascular
events. NO, a lipophilic, colorless, and odorless gas with a short half-life in biological
fluids, plays a crucial role in various physiological processes within the human body,
particularly in the cardiovascular system. One of its key functions is the regulation of
blood vessel tone and diameter. Caveolin-1 has been implicated in the pathophysiology
of hypertension, mainly through its influence on ECs and vascular smooth muscle cells.
Caveolin-1 is known to modulate NO signaling, a key vasodilator, by sequestering eNOS
and preventing its activation [177,178]. Elevated caveolin-1 expression in ECs can bind to
eNOS and inhibit its activity, resulting in reduced NO production, blood vessel constric-
tion, and increased blood pressure. Conversely, when caveolin-1 expression is low, eNOS
operates more efficiently, generating more NO, promoting vasodilation, reducing vascular
resistance, and aiding in blood pressure reduction. Consequently, any disruption in this
system can contribute to conditions such as hypertension and impaired blood flow, which
are known cardiovascular disease risk factors. Wang and colleagues established a hyperten-
sion model to elucidate the specific involvement of caveolin-1 in the control of hypertensive
vascular remodeling through its influence on the Notch pathway. Their findings suggest
that targeting the caveolin-1/Notch1 signaling pathways could offer promising therapeutic
avenues for hypertension management [179]. Moreover, a recent study has elucidated the
pivotal mechanosensory function of caveolin-1 in the regulation of inflammation induced
by pressure in vascular and renal systems [139]. It is worth highlighting how mutations in
the proximal portion of the C-terminal domain of caveolin-1 (crucial for the formation of
oligomers from monomers), have been observed in patients diagnosed with heritable and
idiopathic pulmonary arterial hypertension [27]. In conclusion, caveolin-1 plays a signifi-
cant role in the pathophysiology of hypertension, shedding light on potential therapeutic
targets for managing this complex cardiovascular condition.

6. Caveolae and Cellular Senescence

Researchers first noticed the limited lifespan of primary human cells in the 1960s,
which led to the development of the concept of senescence [180]. Cellular senescence is
a unique biological occurrence observed in somatic cells, marked by a range of distinct
features, including irreversible growth arrest, morphological changes, increased senescence-
associated β-Galactosidase (SA-β-gal) activity, DNA damage, telomere shortening, and
resistance to apoptosis [181–184]. It also serves as a critical mechanism to ensure proper
embryogenesis [185] and has been proposed as a possible therapeutic target in cardiovascu-
lar diseases [186]. Recent research has revealed that caveolin-1 regulates multiple pathways
involved in senescence, affecting cell signaling, oxidative stress, and the maintenance of
cellular structures [187]. Caveolin-1 expression can either promote or inhibit senescence, de-
pending on the cellular context and the signaling pathways involved. Studies have shown
that caveolin-1 overexpression has the remarkable ability to inhibit EGF-mediated signaling
in senescent fibroblasts. Conversely, the downregulation of caveolin-1 expression through
siRNA technology effectively restored EGF-signaling and reactivated cell cycle in senescent
fibroblasts [188,189]. Apart from fibroblasts, the influence of caveolin-1 expression on
replicative senescence has also been noted in other types of cells, such as human mes-
enchymal stem cells, macrophages, and chondrocyte [41,190–192]. Caveolin-1 has also been
associated with stress-induced premature senescence (SIPS). Volonte and colleagues have
presented empirical evidence illustrating the direct involvement of caveolin-1 in oxidative
stress-induced cellular senescence within human NIH 3T3 cells. This investigation proved
that the extent of caveolin-1 expression in NIH 3T3 cells plays a pivotal role in determining
whether oxidative stress-mediated senescence or apoptosis is induced [193]. Likewise,
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it has been reported that smoker patients that were diagnosed coronary atherosclerosis,
showed that elevated level of caveolin-1 expression correlated with the expression of the
oxidative stress marker 4-hydroxynonenal, resulting in oxidative stress-induced EC senes-
cence, compared with older nonsmokers [194]. From a molecular point of view, among the
major molecular pathways by which caveolin-1 mediates SIPS is the p53/p21 signaling
pathway [195]. This is due to the ability of caveolin-1 to regulate, directly or indirectly
p53 inhibitory molecules, including Mdm2, Ataxia telangiectasia-mutated (ATM), sirtuin 1,
nuclear erythroid 2 p45-related factor-2 (Nrf2), and others [187,196–198]. Of note, cavin-1, a
well-known caveolae associated protein, has been also found increased in senescent fibrob-
lasts, suggesting its role as an additional regulator of cellular senescence acting through the
p53/p21 and pathways [199]. Nevertheless, it should be noted that the role of caveolin-1 in
cellular senescence is a complex and debated topic. While earlier reported studies suggest
that the expression of caveolin-1 can induce cellular senescence, others propose that the
downregulation of caveolin-1 is responsible for promoting this process [200]. The mor-
phological and functional alterations seen in ECs when caveolin-1 is silenced by siRNA
align with the role of caveolin-1 in diminishing the senescence-like phenotype [201]. This
conflicting evidence underscores the intricate interplay between caveolin-1 and cellular
senescence, highlighting the need for further research to elucidate the precise mechanisms
and conditions under which caveolin-1 exerts its opposite effects on this process.

7. Caveolin in Tumor Progression and Stromal Cell Biology

The multifaceted involvement of caveolins in cancer encompasses both pro-tumorigenic
and anti-tumorigenic functions, depending on the specific context and type of cancer. On
one hand, caveolins can function as tumor suppressors by inhibiting cell proliferation,
promoting apoptosis, and regulating the activity of certain signaling pathways. Reasonably,
the tumor-suppressive function of caveolin-1 is associated with its ability to engage with
numerous proteins situated in the caveolae of the plasma membrane, for example, by
sequestering growth-inhibitory proteins, such as p53 and transforming growth factor-β
(TGF-β), within caveolae [202]. Nevertheless, a recent study uncovered that the expression
of caveolin-1 within the endoplasmic reticulum inhibits the unfolded protein response
(UPR) in both in vitro and solid tumors. This repression leads to a reduction in PERK and
IRE1α signaling while enhancing cellular vulnerability to endoplasmic reticulum stress and
hypoxia. Notably, this tumor-suppressive role relies on the phosphorylation of serine-80 in
caveolin-1 [203]. In a study conducted on different cancer cell lines, it has been established
that caveolin-1-dependent tumor suppression, especially in the absence of E-cadherin, is
linked to reduced HIF1α transcriptional activity via diminished NOS-mediated HIF1α
S-nitrosylation [204]. On the other hand, caveolin is known to promote tumor progression
by facilitating the activation of pro-oncogenic signaling pathways, such as those mediated
by receptor tyrosine kinases [205]. The first evidence highlighting the involvement of
caveolin-1 in cell proliferation and tumor cell survival was first observed in Rous sarcoma
virus (RSV)-transformed cells [206]. In these cells, the tyrosine phosphorylation of caveolin-
1 by protein tyrosine kinase v-SRC resulted in a reduction in both caveolin-1 expression and
caveolae [39,207], leading to the transformation process by disrupting normal cell signaling
and cellular homeostasis [208]. A similar effect of reduced caveolin-1 has been documented
in some tumor types [209–212]. Conversely, increased caveolin-1 expression has been seen
in melanoma cell lines, where caveolin-1 Y14 phosphorylation plays a role in promoting
tumor progression [213], or in Ewing’s sarcoma, where its increased expression triggers
MMPs-induced metastatic invasion [214,215]. A similar effect of caveolin-1 overexpression
on cell proliferation and invasion has been reported in hepatocarcinoma and lung adeno-
carcinoma [216–220]. This duality of caveolin’s function in cancer highlights its complex
nature, making it a subject of ongoing research aimed at better understanding its precise
contributions to tumor progression and metastasis.

It is worth mentioning that stromal cells have a crucial role in influencing the de-
velopment and control of cancer. Found within the tumor microenvironment, these non-
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cancerous cells, including fibroblasts, mesenchymal stem cells, macrophages, lymphocytes,
ECs, and pericytes, are not passive observers but actively engage in the cancer process.
Stromal cells can produce growth factors, cytokines, and extracellular matrix components
that fuel tumor growth and promote the invasion of cancer cells into surrounding tissues.
Within the tumor microenvironment, cancer-associated fibroblasts (CAFs) play a pivotal
role in advancing cancer by inhibiting cell apoptosis and promoting the proliferation of can-
cer cells, induce epithelial-mesenchymal transition, and foster neo angiogenesis [221–226].
Likewise, they can also influence immune responses, either suppressing or enhancing the
body’s ability to fight cancer [227]. Unlike what is seen in cancer cells, where caveolin-1 ex-
hibits varying effects across different transformed tissues, its expression in the stromal cells
in tumor microenvironment seems to follow a more consistent pattern in relation to tumor
progression. For instance, the reduced expression of caveolin-1 in CAFs is commonly asso-
ciated with adverse clinical outcomes, including tumor recurrence, metastasis formation,
and resistance to chemotherapy [221,222,228–232]. Sotgia and collaborators have reported
that stromal fibroblasts collected from mice lacking caveolin-1 display many resemblances
to human CAFs [233]. Overall, multiple research studies concur with the hypothesis that
the reduction in caveolin-1 in the stromal microenvironment of breast cancer indicates an
unfavorable clinical prognosis [232,234,235]. A diminished level of caveolin-1 expression
has also been shown in stromal cells across several types of cancers, such as prostate, gastric,
and melanoma [228,230,236,237]. The expression of caveolin proteins in tumor stromal
cells exerts profound effects on cancer development and therapeutic responses, making
them attractive targets for future research and potentially novel anti-cancer therapies.

8. Caveolin and Neurodegenerative Disorders

Neurodegenerative disorders (NDDs) represent a class of debilitating diseases charac-
terized by the progressive degeneration of neurons in the nervous system. These disorders,
which include Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral
sclerosis (ALS), have far-reaching implications for the affected individuals and their families,
making it imperative to decipher the intricate mechanisms underlying their pathogenesis.
Emerging research has suggested that caveolins play a pivotal role in the pathogenesis of
NDDs by influencing various cellular processes, including protein aggregation, oxidative
stress, and synaptic dysfunction. Studies conducted on rats have shown that caveolin-1
is extensively distributed across various brain compartments [238], and all three caveolin
proteins are expressed in brain ECs and astrocytes. This observation marks the first instance
of caveolin-3 expression occurring beyond the confines of the muscular system [21]. Wu
et al. showed that caveolae-like domains are prominently present in neuronal plasma
membranes and have a high concentration of signaling molecules, including tyrosine ki-
nases [239]. Consistent with these findings, a growing body of evidence has been gathered
to support the regulatory role of caveolins in intracellular signaling within neurons [240].
Biochemical analysis has uncovered the presence of both caveolin-1 and caveolin-2 in
dorsal root ganglion and pheochromocytoma PC12 cells, with their levels increasing fol-
lowing treatment with nerve growth factor (NGF) [241]. In more recent studies, Wang and
colleagues found that an increased expression of caveolin-1 in human neuronal progen-
itor cells promotes the growth of axons. Conversely, when caveolin-1 phosphorylation
is inhibited, it negatively affects both the differentiation of neuronal progenitor cells and
the growth of axons. An effect due to the blunting of caveolin-1 mediated Rac1/Cdc42
signaling, a crucial signal regulating filopodia and neurite outgrowth [123]. In a differ-
ent study, Koh et al. showed that caveolin-1 is found within lipid rafts situated at nerve
terminals in primary cultured hippocampal neurons and plays a vital role in presynaptic
processes. The authors proved that caveolin-1 silencing using siRNA significantly impairs
synaptic transmission as well as decrease the rate of both synaptic vesicle exocytosis and
endocytosis [242]. Caveolin-1 plays a crucial neuroprotective role in the brain, as shown by
studies conducted on caveolin-1 knockout mice. A study by Jasmin and collaborators [243]
revealed that the levels of caveolin-1 and 2 increased during cerebral ischemia. Conversely,
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when caveolin-1 was genetically removed, it was associated with larger areas of brain
tissue damage, impaired angiogenesis, and increased cell death in comparison to wild-type
mice. These findings support the idea that caveolin-1 serves a neuroprotective function.
Other studies have further highlighted the importance of this protein in maintaining and
regulating the permeability of the blood–brain barrier [244].

Cholesterol metabolism in the brain is crucial for supporting normal brain function,
and imbalances in this process can have significant implications for neurological health,
including the development of neurodegenerative diseases like AD. Due to their role in
maintaining cellular cholesterol balance and overall lipid homeostasis, caveolins and
caveolae are expected to play a significant role in cholesterol metabolism in the nervous
system. Scientific evidence suggest that the interaction between cholesterol levels and the
processing of the amyloid precursor protein (APP) plays a significant role in AD [245].
It is widely recognized that only about 25% of the cholesterol in the bloodstream can
penetrate the blood–brain barrier [246]. As a result, the brain is self-sustaining and capable
of producing the cholesterol it needs, thanks to a finely controlled cholesterol metabolism
and supporting glial cells, primarily astrocytes. One of the most relevant mechanisms that
is believed to contribute to the development of AD is the accumulation of the beta-amyloid
protein in the brain, resulting in the formation of plaques that disrupt communication
between nerve cells and trigger inflammation. Notably, beta-amyloid protein has been
found localized in a detergent-insoluble glycolipid-enriched membrane domain where it
is supposed to be processed from the cleavage of the larger amyloid precursor protein
(APP) [247,248]. Moreover, caveolin-1 is recognized for its physical interaction with APP
through its C-terminal tail, and when caveolin-1 is overexpressed, it reduces the proteolysis
of APP that is mediated by γ-secretase [247,249]. Beyond the role of caveolin-1, some studies
have shown that caveolin-2 may play roles in neurodegenerative diseases, particularly
AD. It is worth noting that the expression of caveolin-2 decreases when activated by the
Rac1b signaling pathway, resulting in the formation of neurofibrillary tangles (NFTs) in
neurons [250]. NFTs are considered a neuropathological hallmark of AD characterized by
a dysfunctional cytoskeleton, along with the loss of microtubules and tubulin-associated
proteins [251]. Like caveolin-1, caveolin-3 has been discovered to be physically linked with
APP, and it showed a notable increase in reactive astrocytes around senile plaques in tissue
derived from patients with AD [252]. These findings supply support for the involvement
of caveolin-1 and -3 in the regulation of amyloid production and open new avenues to
decipher the amyloid biogenesis in neurodegenerative disorders.

There is a growing body of evidence that shows a strong link between increased levels
of caveolin-1 and the key molecular aspects of PD. Caveolin-1 plays a pleiotropic role
in PD, showing both positive and negative impacts on its development. The analysis of
human neuroblastoma cells has shown that overexpressing α-Synuclein, a presynaptic
neuronal protein, disrupts the ERK signaling through an elevation in caveolin-1 levels
resulting in reduced neurite outgrowth and cell adhesion ultimately contributing to the
development of PD [253]. Moreover, the increase in α-Synuclein inhibits cell survival
by upregulating the caveolin-1 level [254]. However, neither of these studies was able
to pinpoint the exact molecular mechanisms through which α-Synuclein regulates the
expression of caveolin-1. A similar mechanism leading to caveolin-1 upregulation is seen
in the reduced expression of parkin, belonging to a group of genes whose mutations have
been clearly linked to PD [255]. This leads to the inhibition of caveolin-1 degradation via the
proteasome-dependent pathway, resulting in an imbalanced cholesterol level, the alteration
of membrane fluidity, and dysfunctional lipid raft-dependent endocytosis, which ultimately
contribute to PD [256]. Conversely, research by Cataldi et al. demonstrated that 1-Methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP), a common lipophilic substance used to induce
PD reduces caveolin-1 expression, thus contributing to PD development [257]. In addition,
a deficiency in DJ-1 (also known as Protein deglycase or PARK 7), a gene associated with
familial PD, induces the downregulation of caveolin-1 expression through its ability to
regulate flotillin-1, leading to dysfunctional cholesterol metabolism, lipid raft-mediated
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endocytosis, and the impairment of glutamate uptake into astrocytes [258]. Of note, a
comparable situation has also been seen by the same authors in DJ-1 knockout mouse
embryonic fibroblasts, showing that the mechanism through which DJ-1 regulates the
expression of caveolin-1 and flotillin-1 is not exclusively limited to astrocytes. Furthermore,
a diminished presence of caveolin proteins has been documented as diminishing the
protective benefits of natural tocotrienols, a member of the vitamin E family, and a natural
compound, which has shown its potential in averting neurodegeneration and lowering
the risk of PD [259,260]. The growing body of evidence linking caveolin proteins to the
fundamental aspects of nervous system function makes them promising candidates for
future research in the pathophysiology of neurodegenerative disorders. This research
has the potential to substantially illuminate the underlying mechanisms and, ultimately,
contribute to the development of innovative therapeutic approaches.

9. Conclusions

Targeting caveolins and caveolae holds great promise in the field of cell signaling
and disease management. Their pivotal roles in various diseases, from cardiovascular
conditions to cancer and neurodegenerative disorders, have opened new avenues for
innovative therapeutic approaches. Moreover, targeting caveolae, caveolin proteins, and
associated signaling molecules such as src kinase, cavins, lipid metabolism enzymes, eNOS,
and ion channels holds promise for addressing various human diseases. On the other hand,
the complex and multifaceted nature of the caveolar network poses challenges, from their
intricate biogenesis to their context-dependent effects on disease progression. Therefore,
future research should focus on uncovering the precise mechanisms behind these structures
and harnessing their potential as therapeutic targets, thereby advancing medical science.
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