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Abstract

The precise prediction of Major Histocompatibility Complex (MHC)-peptide complex structures is pivotal for
understanding cellular immune responses and advancing vaccine design. In this study, we enhanced AlphaFold’s
capabilities by fine-tuning it with a specialized dataset comprised by exclusively high-resolution MHC-peptide crystal
structures. This tailored approach aimed to address the generalist nature of AlphaFold’s original training, which, while
broad-ranging, lacked the granularity necessary for the high-precision demands of MHC-peptide interaction prediction. A
comparative analysis was conducted against the homology-modeling-based method Pandora [13], as well as the AlphaFold
multimer model [8]. Our results demonstrate that our fine-tuned model outperforms both in terms of RMSD (median
value is 0.65 Å) but also provides enhanced predicted lDDT scores, offering a more reliable assessment of the predicted
structures. These advances have substantial implications for computational immunology, potentially accelerating the
development of novel therapeutics and vaccines by providing a more precise computational lens through which to view
MHC-peptide interactions.
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Introduction

MHC Class I (MHC I) molecules play a crucial role in the

immune system and are found on the surface of most cells in the

body. They present intracellular specific antigens, such as viral,

bacterial, or cancerous peptides, to cytotoxic T cells, enabling

T cells to recognize and respond to these threats [19].

MHC I molecules are important to the functioning of the

immune system. By understanding how they bind and present

peptides, we can gain insights into disease mechanisms such

as autoimmunity [5]. This knowledge would also empower

us to prevent certain infectious diseases through MHC-based

vaccination [24]. In the context of cancer immunotherapy, this

understanding would allow the design of neoantigen vaccines

that enhance the immune system’s ability to selectively target

cancer cells [20].

To ensure that the immune system effectively detects and

responds to a wide range of infections, each MHC I molecule

presents a variety of peptides to T cells. To achieve this, each

MHC I has the capability to bind a broad class of different

peptide sequences. Although each person presents only a small

number of different MHC I molecules (two alleles for each of the

three MHC I genes), many different MHC I alleles are present in

the population [23], leading to individual differences in MHC

I specificity. The diversity of MHC I molecules and peptides

allows the immune system to respond effectively to different

threats and adapt to new challenges. However, this diversity

also poses a significant challenge when it comes to predicting

MHC-peptide complexes (pMHC I).

There are different approaches for predicting pMHC I

complex structures, including molecular docking [14], molecular

dynamics simulations [18, 9], homology modelling [1] and

machine learning methods [6, 15, 4]. Their accuracy of

predictions can vary.

One of the advanced tools for predicting pMHC I complex

structures is Peptide ANchoreD mOdelling fRAmework

(PANDORA) [13]. Pandora uses a database of known MHC

structures as templates with anchors-restrained loop modeling

for peptide conformation. However, Pandora has some

limitations: rare alleles may lack suitable MHC templates, low

sequence similarity in the peptide-binding groove can cause

alignment issues, accurate anchor residues are needed, and

ranking output models can be challenging due to different

scoring functions.

Transitioning from traditional homology-modeling techniques,

AlphaFold introduces a revolutionary approach to protein

structure prediction, utilizing deep learning to predict protein

structures with remarkable accuracy. Its approach leverages

a wealth of structure data to train its algorithm, enabling

it to predict protein structures even in the absence of

closely related known structures. However, despite AlphaFold’s

successes, its utility for MHC-peptide predictions has been

somewhat limited by its generalized training across diverse

protein types. This broad approach, while comprehensive,

may not always capture the intricate nuances necessary for
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high-fidelity predictions within specific domains such as MHC-

peptide interactions. Therefore, by fine-tuning AlphaFold with

a dataset curated explicitly from high-resolution MHC-peptide

crystal structures, we aim to enhance the model’s specificity

and accuracy in this critical area, thereby overcoming one of

the main limitations faced by practitioners utilizing this tool

for specialized applications in immunological research.

We present an approach that leverages the robust

capabilities of AlphaFold, fine-tuning it to significantly improve

the prediction accuracy for MHC-peptide complex structures.

Our model outperforms Pandora in terms of CA RMSD

(median value is 0.65 Å) and also provides enhanced predicted

lDDT scores, offering a more reliable assessment of the

predicted structures. Our model also does not require any input

information about the anchor residues.

Related Work

pMHC I Structural overview
MHC I is a transmembrane protein composed of two non-

covalently connected chains, α and β2 microglobulin [11]. The

α chain consists of three domains α1, α2, α3 followed by

transmembrane part and a cytoplasmic tail. Each α domain

is approximately 90 residues long.

α1 and α2 domains form a symmetric structure composed of

curved α-helices. Together they form a peptide-binding groove

between them. The most variability in MHC I sequence is found

in this groove region to create a variety for peptide specificity.

α3 and β2 microglobulin domains do not interact with the

peptide.

The number of different peptides that a particular MHC

I molecule can bind varies depending on the specific MHC

molecule. But in general peptide-binding groove geometry

can accommodate short peptides of length 8–11 residues

[16]. However, slightly longer peptides were also observed

[22, 25, 10]. Several peptide positions, typically at the N and C

termini of the peptide, contribute significantly to the binding.

These specific residues are known as anchors.

Homology modeling (Pandora)
One of the state-of-the-art tools for pMHC I complex

structure prediction is the homology-based Peptide ANchoreD

mOdelling fRAmework (PANDORA) [13]. Pandora uses

homology modeling for the MHC protein and performs anchor-

restrained peptide modelling using MODELLER.

For the homology modelling of MHC I, Pandora selects a

single template from the custom-made database of known MHC

structures. This approach requires proper template selection,

which depends on the availability of the same allele type, group

or gene within the database.

After selecting the template, the alignment between the

target MHC and the template is carried out. The sequence

similarity between the target and the template may be low in

the peptide-binding groove due to MHC sequence variability,

which can increase the likelihood of alignment issues. However,

this groove region is of utmost importance for modeling since

it is the area where peptide binds to MHC I.

One of the crucial requirements for Pandora is the

inclusion of peptide anchors. Pandora utilizes this information

for anchors-restrained loop modeling of the peptide. This

information can be provided by the user or predicted by

netMHCpan 4.1, although challenges may arise for non-

canonical anchors.

Pandora provides 20 models for a single peptide-MHC

pair and evaluates them using MODELLER’s internal scoring

functions: molpdf and DOPE. In some cases, the best-scored

DOPE and molpdf structures are different, which can present

a challenging decision for the user in selecting the best model.

The authors suggest using molpdf scoring ranking.

AlphaFold
AlphaFold has been a transformative force in computational

biology, redefining the landscape of protein structure prediction

with its transformer-based architecture. This architecture is

particularly well-suited to processing sequential biological data,

such as amino acid chains, due to its ability to capture

long-distance interactions between amino acids—a fundamental

factor in predicting how proteins fold.

The model’s capabilities were brought to the forefront

during the Critical Assessment of Structure Prediction (CASP)

competitions, with AlphaFold setting new benchmarks in

CASP13 and CASP14. Its exemplary performance highlighted

the model’s broad potential, which extends beyond structure

prediction to facilitating our understanding of disease

pathology, advancing drug discovery, and innovating enzyme

engineering.

However, the generalist nature of AlphaFold, while powerful,

reveals limitations when tasked with highly specialized

predictions, such as modeling the MHC-peptide complexes. The

complexity inherent to these biological structures, coupled with

their variability, calls for a tailored version of the model.

In the pursuit of enhancing AlphaFold’s predictions for

MHC-peptide complexes, researchers have embarked on a

variety of methodologies. One prominent approach involves

the development of an AlphaFold-based pipeline which involves

additional steps for MSA or template selection [15]. In addition,

efforts have been made to fine-tune AlphaFold’s parameters on

peptide-MHC Class I and II structural and binding data, with

the fine-tuned model achieving state-of-the-art classification

accuracy [17]. These advancements, while in some cases

requiring more complex pipelines, reflect the nuanced balance

between achieving broad predictive capabilities and the pursuit

of granular structural details.

Methodology

Implementation of AlphaFold in PyTorch
In our study, we faced the challenge of AlphaFold’s

unavailability for training code and its original implementation

in JAX [3], which presents complexities in modification and

testing. Inspired by the OpenFold model [2], we developed

a custom version of AlphaFold using PyTorch library [21].

This approach not only allowed us to utilize the pre-trained

weights of AlphaFold but also introduced significant flexibility

in modifying the code as per our research needs.

One of the primary enhancements in our PyTorch-based

AlphaFold implementation is the integration of checkpoints for

optimal memory management. Given the extensive size of the

AlphaFold network, these checkpoints are crucial for efficient

memory usage, ensuring stable and effective processing even on

large-scale data.

Furthermore, we leveraged the PyTorch-Lightning library

[7], which significantly streamlined our workflow. PyTorch-

Lightning abstracts and automates many routine tasks,

enabling us to focus on the core aspects of our model.

It facilitated effective training and easy distribution of
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computational workload across multiple GPUs and nodes.

PyTorch-Lightning also brought additional advantages, such as

simplified implementation of advanced optimization techniques

and streamlined model validation processes. It enhanced our

model’s reproducibility and scalability, allowing us to efficiently

experiment with various configurations and settings.

Dataset
We downloaded pMHC complex structures from the RCSB

Protein Data Bank, selecting X-ray structures with a resolution

finer than 3.5 Å. We excluded structures containing non-

standard amino acids or a significant number of unresolved

residues. Additionally, we limited our selection to samples

with peptide lengths ranging from 8 to 11 amino acids. From

each MHC protein only α1 and α2 domains were used. Our

final dataset consisted of 944 structures from various species,

including humans (Homo sapiens), mice (Mus musculus), and

other species. The majority belongs to Homo sapiens (76%)

and Mus musculus (mouse) (19%). We divided the dataset into

three parts based on the release date, approximately a 60/20/20

split for training, validation, and testing. The training set

(releases from 1992-10-15 to 2016-12-07) and the validation set

(releases from 2016-12-07 to 2020-06-17) were used for fine-

tuning and hyperparameter optimization, while the test set

(releases from 2020-06-17 to 2023-08-23) was reserved solely for

final comparison.

To prepare the necessary input for AlphaFold, we generated

Multiple Sequence Alignments (MSAs) using MMseqs2,

a software suite designed for fast and sensitive protein

sequence searching. Our searches were conducted against the

ColabFoldDB, which is a comprehensive and regularly updated

database tailored for such analyses.

Metrics
In protein structure prediction, the Root Mean Square

Deviation (RMSD) measures the average atomic distance

between a predicted protein structure and a reference, typically

comparing backbone atoms. A prediction is considered accurate

if the RMSD is below 2.0 Ångströms.

The Local Distance Difference Test (lDDT) [12] is another

metric that evaluates the quality of a protein model at the

local residue level. Unlike RMSD, lDDT is a superposition-free

metric, meaning it does not require alignment of the structures

and is insensitive to domain movements. It measures the local

conformational similarity of each residue’s environment by

comparing inter-atomic distances. The lDDT score ranges from

0 to 1, with higher values indicating better model quality.

AlphaFold’s predicted lDDT (plDDT) scores offer a valuable

confidence measure for the predicted positions of residues

within a protein structure. These scores are instrumental for

researchers to gauge the reliability of specific regions within

the predicted structural model, particularly when experimental

structures are absent for validation. In our study, we have

enhanced the original AlphaFold’s confidence predictions,

enabling a more precise estimation of structure reliability.

Evaluating plDDT against lDDT can be done through

comparison with known structures or through experimental

validation. High plDDT values in regions that align with high

lDDT scores from experimental data can indicate a successful

prediction. To measure the quality of predicted lDDT scores,

researchers often use statistical methods such as mean absolute

error and the Pearson correlation coefficient.

In protein structure prediction, it is often necessary to

focus on specific regions that are of functional significance.

Accordingly, in our study, we computed the RMSD, lDDT, and

plDDT scores with an emphasis on the peptide portions of the

MHC-peptide complexes.

Fine-tuning techniques
To refine the prediction capabilities of AlphaFold for MHC-

peptide complexes, we started with the foundational AlphaFold

multimer model v2.2. We explored several refinement

techniques, focusing on both architectural modifications and

training strategies.

Architectural Enhancements:

Our initial approach involved augmenting the existing

AlphaFold model by adding extra Evoformer blocks, ranging

from 1 to 10, to the pre-existing 48. The design of AlphaFold,

with its inherent residual connections, allows for such

integrations without compromising existing functionalities,

potentially enriching the model’s learning capacity.

Template Usage Optimization:

Another significant adjustment pertained to the use of

templates. While the standard AlphaFold architecture

processes protein chains individually, we innovated by

incorporating information regarding the interactions between

protein chains and peptides. This modification is crucial for

our focus on MHC-peptide interactions, aiming to capture the

subtleties of these complex molecular interplays.

Focused Loss Function:

Given our specific interest in the peptide structures, we

introduced a novel weighting system within the loss function.

This system assigns greater importance to the peptide residues

over the protein residues, thus directing the model’s learning

focus more towards the structural prediction of peptides.

Hyperparameter Tuning:

On the training front, we experimented with various

hyperparameters to optimize the model’s performance. This

included testing different learning rate schedulers, such as

CyclicLR, StepLR, and CosineAnnealingLR, with learning

rates spanning from 0.001 to 0.000001. We also employed

accumulate grad batches, serving as an analogue to batch size,

to manage the model’s learning process more effectively. This

broad range of hyperparameter experimentation allowed us to

finely calibrate the model for optimal performance in predicting

MHC-peptide structures.

The fine-tuning was conducted iteratively, evaluating

each alteration to ensure that the modifications contributed

positively to the model’s performance. The impact of these

changes was quantitatively assessed using RMSD and lDDT

scores as benchmarks for structural prediction accuracy.

Results

Optimal Parameter Settings: MHC-Fine Model
After extensive experimentation, we have identified an optimal

set of parameters for our AlphaFold-based model, now termed

’MHC-Fine’, tailored for predicting MHC-peptide complex

structures. These parameters were determined as the most

effective in balancing computational efficiency with predictive

accuracy:
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Additional Evoformer Blocks:

We integrated two additional Evoformer blocks into the model.

This choice was based on our observation that the structural

similarity across our sample set did not necessitate a large

increase in complexity. Two additional blocks provided the right

balance for capturing the nuances of MHC-peptide interactions.

Template Utilization:

The introduction of high-quality templates emerged as a

crucial factor. Although the model was capable of learning

independently of templates, their inclusion significantly

accelerated the training convergence, underscoring their value

in our fine-tuning process.

Hyperparameters

We employed the CosineAnnealingLR scheduler with a learning

rate of 0.0003. This configuration facilitated a more dynamic

adjustment of the learning rate, aiding in finer convergence.

We set accumulate grad batches to 1, with the model being

trained across 8 GPUs. This effectively meant a real batch size

of 8, allowing for a more precise gradient update, which proved

beneficial at this stage of the model’s training.

The MHC-Fine model, with these refined parameters, has

shown the capability to outperform established benchmarks. Its

single-model framework simplifies the prediction process while

maintaining high accuracy, marking a significant step forward

in computational immunology.

Benchmarking Baseline Performances
To assess the baseline performance of AlphaFold on our test

set prior to fine-tuning, we utilized all five multimer models

from AlphaFold version 2.2. For each sample in the test set, we

systematically evaluated the predicted structures generated by

each model. The best result for each sample was selected based

on the highest plDDT scores.

To ensure a comprehensive and fair comparison, we similarly

evaluated the performance of the Pandora. We meticulously

removed any instances where our test set overlapped with

Pandora’s template database to avoid any potential bias from

Pandora having prior knowledge of the structures in our test

set. For each sample, the most probable structure predicted by

Pandora was selected, using the molecular probability density

function (molpdf) as the scoring function.

Employing this approach allowed us to establish a robust

benchmark for the original performance of both AlphaFold and

Pandora. This benchmark serves as a critical reference point

against which we could measure the enhancements achieved

through our fine-tuning process.

Comparative Analysis
Our fine-tuning of AlphaFold led to a model with enhanced

predictive performance for MHC-peptide complexes, showing

a statistically significant reduction in median RMSD values

compared to both the original AlphaFold and the homology-

modeling-based Pandora approach. Figure 1 illustrates the

distribution of Root Mean Square Deviation (RMSD) values

for predicted MHC-peptide complex structures across three

different computational methods: the original AlphaFold

(median RMSD 1.44 Å), Pandora (1.27 Å) and our MHC-Fine

model (0.65 Å). MHC-Fine model shows not only lower median

RMSD but also a significantly narrower Interquartile Range

(IQR), indicating higher accuracy and consistency in structure

Fig. 1. Comparative Analysis of Prediction Accuracy for MHC-Peptide

Complexes

prediction. This suggests a closer approximation to the high-

resolution crystal structures in our test dataset and indicates

a marked improvement in the spatial accuracy of our model’s

predictions.

Our analysis is demonstrated through three case studies,

each with varying prediction accuracies. Figure 2 illustrates

these differences: (A) shows high accuracy with the fine-tuned

AlphaFold, (B) depicts moderate accuracy for both models, and

(C) highlights significant discrepancies in predictions.

In addition to RMSD improvements, the fine-tuned

model demonstrated enhanced lDDT scores, indicating higher

accuracy compared to the original model. The mean absolute

error was recorded at 3.0, and the Pearson correlation

coefficient between actual lDDT scores and predicted lDDT

values was 0.62, indicating a moderate positive relationship.

Figure 3 illustrates that the MHC-Fine model produces

a notably narrower error distribution for predicted lDDT

values when compared to the original model. This more

constrained spread signifies a higher consistency in the

predictions, indicating that our fine-tuning process yields a

more reliable and accurate measure of structural confidence

across the majority of samples, with substantial deviations

being considerably less frequent. Furthermore, Figure 4 shows

that within our test dataset, a plDDT score greater than 90

is associated with an RMSD of less than 1.5 Å, and a plDDT

score above 95 corresponds to an RMSD of less than 1.0 Å,

underscoring the precision of our fine-tuned model in structural

prediction.

Conclusion

In conclusion, our study presents a refined AlphaFold model

tailored for the intricate task of MHC-peptide complex

structure prediction. By fine-tuning with high-resolution

domain-specific data, we’ve achieved superior performance

compared to both the original AlphaFold and traditional

homology-modeling approaches. Our focused metrics on the

peptide regions have yielded RMSD values indicative of

high-precision predictions, while improvements in the plDDT

scores reflect an enhanced confidence in the structural

assessments provided by our model. These advancements

hold promising implications for computational immunology,

potentially expediting the discovery and design of novel

therapeutics and vaccines.
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A)

B)

C)

Fig. 2. Comparative Visualization of pMHC Complex Prediction

Accuracy. True peptide structure in red, Pandora model in orange, MHC-

Fine (fine-tuned AlphaFold) in blue. (A) High precision of MHC-Fine

(RMSD: 0.25 Å) versus Pandora (RMSD: 1.44 Å) for PDB ID: 6vb3;

(B) Moderate accuracy for both models (MHC-Fine RMSD: 1.23 Å;

Pandora RMSD: 1.19 Å) for PDB ID: 7n2o; (C) Significant deviations

in predictions (MHC-Fine RMSD: 3.73 Å; Pandora RMSD: 4.30 Å),

indicating areas for enhancement, for PDB ID: 7mj7.

Code and Data Availability

The inference code and datasets utilized in this study are

publicly available to facilitate further research via the following

link: https://bitbucket.org/abc-group/mhc-fine/src/main/

Fig. 3. Error Distribution for Predicted lDDT Values. The red

distribution represents the original AlphaFold model with a standard

deviation of 9.2, while the blue distribution showcases our fine-tuned

AlphaFold model with a reduced standard deviation of 4.6.

Fig. 4. Confidence Prediction: All samples are grouped by their predicted

Local Distance Difference Test (pLDDT) interval. The chart displays the

percentage of samples falling within each specific pLDDT range.
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Ian Fisk, Niccoló Zanichelli, Bo Zhang, Arkadiusz

Nowaczynski, Bei Wang, Marta M. Stepniewska-

Dziubinska, Shang Zhang, Adegoke A. Ojewole, Murat Efe

Guney, Stella Biderman, Andrew M. Watkins, Stephen Ra,

Pablo Ribalta Lorenzo, Lucas Nivon, Brian D. Weitzner,

Yih-En Andrew Ban, Peter K. Sorger, Emad Mostaque,

Zhao Zhang, Richard Bonneau, and Mohammed Alquraishi.

Openfold: Retraining alphafold2 yields new insights into

its learning mechanisms and capacity for generalization.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.11.29.569310doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.29.569310
http://creativecommons.org/licenses/by/4.0/


6

bioRxiv, 2023.

3. James Bradbury, Roy Frostig, Peter Hawkins,

Matthew James Johnson, Chris Leary, Dougal Maclaurin,

George Necula, Adam Paszke, Jake VanderPlas, Skye

Wanderman-Milne, and Qiao Zhang. JAX: composable

transformations of Python+NumPy programs, 2018.

4. Philip Bradley. Structure-based prediction of t cell

receptor:peptide-mhc interactions. eLife, 12:e82813, jan

2023.

5. Lu Deng and Roy A. Mariuzza. Recognition of self-

peptide–mhc complexes by autoimmune t-cell receptors.

Trends in Biochemical Sciences, 32(11):500–508, 2007.

6. Richard Evans, Michael O’Neill, Alexander Pritzel, Natasha

Antropova, Andrew Senior, Tim Green, Augustin Ž́ıdek,
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