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Abstract: Hydrogen sulfide (H2S) was recognized as a gaseous signaling molecule, similar to nitric
oxide (-NO) and carbon monoxide (CO). The aim of this review is to provide an overview of the
formation of hydrogen sulfide (H2S) in the human body. H2S is synthesized by enzymatic processes
involving cysteine and several enzymes, including cystathionine-β-synthase (CBS), cystathionine-
γ-lyase (CSE), cysteine aminotransferase (CAT), 3-mercaptopyruvate sulfurtransferase (3MST) and
D-amino acid oxidase (DAO). The physiological and pathological effects of hydrogen sulfide (H2S)
on various systems in the human body have led to extensive research efforts to develop appropriate
methods to deliver H2S under conditions that mimic physiological settings and respond to various
stimuli. These functions span a wide spectrum, ranging from effects on the endocrine system and
cellular lifespan to protection of liver and kidney function. The exact physiological and hazardous
thresholds of hydrogen sulfide (H2S) in the human body are currently not well understood and need
to be researched in depth. This article provides an overview of the physiological significance of H2S
in the human body. It highlights the various sources of H2S production in different situations and
examines existing techniques for detecting this gas.

Keywords: hydrogen sulfide; chemistry; gasotransmitter; physiology

1. Introduction

Hydrogen sulfide (H2S) [1] is currently considered a physiological modulator in mam-
mals. It can be formed in mammalian cells and is an important gasotransmitter that plays
important physiological and pathophysiological roles. H2S is the most recently discovered
endogenous gasotransmitter and, like •NO and CO, crosses cell membranes without a
specific transporter [2]. H2S can be generated by various processes and can undergo chem-
ical reactions with metal centers and oxidized thiol compounds, especially asymmetric
disulfides (R1SSR2). Initially considered a toxic molecule, it is now recognized that mam-
malian cells are endowed with enzymatic pathways for H2S production. The identification
of H2S as a gasotransmitter has led to a renewed interest during the last two decades,
focusing on (i) creating chemical tools for its physiological detection, (ii) determining its
signaling functions in various organs and systems in the plant and animal kingdoms and
(iii) exploiting its biological signaling capacity for therapeutic benefits.

In the late 20th century, H2S was discovered to be an endogenously produced gas in
tissues. It is synthesized from the amino acid L-cysteine, D-cysteine, homocysteine, cys-
tathione and 3-mercaptopyruvate by a series of enzymes whose expression and molecular
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regulation in various tissues have been characterized by several groups. It is an endogenous
mediator of inflammation [3] and a potential cytoprotective compound [4]. At that time,
H2S was found to be generated enzymatically, and it was included in the family of gaseous
transmitters (also due to its chemical properties). •NO, CO and H2S are part of the group
of gasotransmitters (Figure 1).
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Figure 1. •NO, CO and H2S are gaseous signaling molecules involved in biological functions.

The expression of H2S-catabolic catabolic enzymes varies in numerous physiological
systems, including the endocrine, neuronal, cardiovascular, respiratory, immunological,
reproductive, renal, hepatic and gastrointestinal systems. Various enzymes play a role in
modulating the activities of different systems by regulating the generation of H2S. Patholog-
ical conditions such as atherosclerosis, hypertension, heart failure, cirrhosis, inflammation,
asthma, sepsis, diabetes, erectile dysfunction and neurodegenerative diseases arise because
of alterations in H2S metabolism [5–7].

During the First World War, the British army used H2S as a chemical weapon. However,
its suitability as a combat gas was compromised by its flammability and unique odor, which
could serve as an indicator of the gas’s location to the enemy [8]. Today it is known to act
as a second messenger and is associated with important functions at the level of blood
vessel walls [9]. The properties attributed to it are antioxidant, anti-atherogenic, anti-
apoptosis and anti-inflammatory properties, as well as anti-proliferative, neuromodulatory
and cytoprotective properties [10].

2. H2S Chemistry

H2S is a gas at room temperature, heavier than air, colorless with a characteristic rotten
egg odor and toxic [11–13]. Until the mid-1990s, it was considered mainly toxic to humans
and harmful to the environment. The substance is moderately soluble in water, with a
solubility of 2.77 volumes in 1 volume of water at a temperature of 20 ◦C. Moreover, it can
be effectively eliminated from an aqueous solution by complete dissolution during boiling.

A sulfur atom is larger than an oxygen atom (covalent radius 105 vs. 66) and has a
comparatively lower electronegativity value of 2.5 on the Pauling scale, while oxygen (O)
has a higher electronegativity value of 3.5. In addition, sulfur is characterized by a higher
degree of polarizability. Consequently, the dipole moment of H2S is comparatively smaller
than that of water, being 0.97 D and 1.85 D, respectively, and intermolecular interactions
are weaker. It has a similar structure to water, but since sulfur has lower electronegativity
values than oxygen (S = 2.5 and O = 3.5, according to the Pauling scale), H2S is less polar
than water [14]. Compared to water, this difference has an impact on the inability to
form hydrogen bridges. H2S can diffuse freely through the hydrophobic core of biological
membranes [15]. The sulfur in H2S has the electronic configuration 1s2, 2s2 2p6, 3s2 and
3p6 and borrows an electron from each hydrogen to complete its valence shell (Figure 2).



Cells 2023, 12, 2684 3 of 45Cells 2023, 12, x FOR PEER REVIEW 3 of 48 
 

 

 

 

Figure 2. H2S molecule structural formula, molecular geometry, angle and Lewis structure. 

H2S is considered a toxic substance when inhaled in its pure form or even when 

diluted in a ratio of 1 part gas to 200 parts air. Bird species are very sensitive to H2S, 

rendering them susceptible to mortality even at a dilute concentration of 1 part per 1500 

in atmospheric air. H2S has significant inhibitory effects on specific enzymes and processes 

related to oxidative phosphorylation, ultimately leading to cell suffocation. Most people 

perceive hydrogen sulfide through the sense of smell when the concentration is above 5 

parts per billion (ppb). Concentrations of 20 to 50 parts per million (ppm) have been found 

to cause irritation to both the eyes and the respiratory system. 

Short-term inhalation of 100 to 250 parts per million (ppm) can cause adverse effects 

such as incoordination and cognitive and motor impairment. At concentrations of about 

150 to 200 parts per million (ppm), individuals may suffer from olfactory fatigue or 

anosmia, resulting in an inability to detect the characteristic odor of H2S. Inhalation of a 

concentration of 500 parts per million (ppm) for a period of 30 min may result in the 

development of pulmonary edema and pneumonia. 

Concentrations greater than 600 parts per million (ppm) have the potential to cause 

death within a short 30 min period, primarily due to paralysis of the respiratory system. 

A concentration of 800 ppm is considered immediately fatal to humans. H2S has a 

comparatively high solubility in water, 110 millimoles per atmosphere at standard room 

temperature [16,17]. 

H2S is the smallest and simplest inorganic biologically relevant thiol with the 

maximal reduced state of sulfur atom (−2) [18]. H2S has only oxidizing properties and does 

not have the ability to act as an oxidant. H2S is a reducing species, with a reduction 

potential of −280 mV (pH 7.0 vs. standard hydrogen electrode) for the two-electron redox 

pair HS−/S0 and −230 mV for H2S/S0, close to the values for the glutathione/glutathione 

disulfide (GSSG/GSH) and cystine/cysteine redox couples [19]. The first evidence for the 

physiological role of H2S was its detection in brain tissues of different species [20]. 

H2S serves as a stimulator of electron transport in mammalian mitochondria by 

acting as an electron donor (the electron acceptor is oxidized CoQ), involving sulfur-

quinone oxidoreductase (SQR) and leading to the production of GSSH-glutathione 

persulfide or thiosulfate and reduced CoQ [21]. 

The H2S-derived effect on electron transport processes is a double-edged sword: a 

low amount can stimulate respiration, while a higher dose will lead to complete inhibition 

of respiration by inhibiting the heme-containing proteins. It is still questionable whether 

H2S has any impact on the electron transport chain via enrichment of the reduced CoQ 

pool, particularly under normoxic (in vivo) or supra-normoxic conditions (21% O2, in cell 

incubators [22,23]. 

3. Pathways of H2S Production 

3.1. Environmental (Anthropogenic and Non-Anthropogenic) Sources 

Non-anthropogenic environmental sources of H2S are wetlands, volcanic eruptions 

and emissions, geothermal activity, thermal upwellings and sulfide-metabolizing 

bacteria. Anthropogenic emissions of H2S are paper factories, tanneries, mining, oil 

refineries, combustion and sewage dumps. 
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H2S is considered a toxic substance when inhaled in its pure form or even when
diluted in a ratio of 1 part gas to 200 parts air. Bird species are very sensitive to H2S,
rendering them susceptible to mortality even at a dilute concentration of 1 part per 1500 in
atmospheric air. H2S has significant inhibitory effects on specific enzymes and processes
related to oxidative phosphorylation, ultimately leading to cell suffocation. Most people
perceive hydrogen sulfide through the sense of smell when the concentration is above
5 parts per billion (ppb). Concentrations of 20 to 50 parts per million (ppm) have been
found to cause irritation to both the eyes and the respiratory system.

Short-term inhalation of 100 to 250 parts per million (ppm) can cause adverse effects
such as incoordination and cognitive and motor impairment. At concentrations of about
150 to 200 parts per million (ppm), individuals may suffer from olfactory fatigue or anosmia,
resulting in an inability to detect the characteristic odor of H2S. Inhalation of a concentration
of 500 parts per million (ppm) for a period of 30 min may result in the development of
pulmonary edema and pneumonia.

Concentrations greater than 600 parts per million (ppm) have the potential to cause
death within a short 30 min period, primarily due to paralysis of the respiratory sys-
tem. A concentration of 800 ppm is considered immediately fatal to humans. H2S has a
comparatively high solubility in water, 110 millimoles per atmosphere at standard room
temperature [16,17].

H2S is the smallest and simplest inorganic biologically relevant thiol with the maximal
reduced state of sulfur atom (−2) [18]. H2S has only oxidizing properties and does not
have the ability to act as an oxidant. H2S is a reducing species, with a reduction potential
of −280 mV (pH 7.0 vs. standard hydrogen electrode) for the two-electron redox pair
HS−/S0 and −230 mV for H2S/S0, close to the values for the glutathione/glutathione
disulfide (GSSG/GSH) and cystine/cysteine redox couples [19]. The first evidence for the
physiological role of H2S was its detection in brain tissues of different species [20].

H2S serves as a stimulator of electron transport in mammalian mitochondria by acting
as an electron donor (the electron acceptor is oxidized CoQ), involving sulfur-quinone
oxidoreductase (SQR) and leading to the production of GSSH-glutathione persulfide or
thiosulfate and reduced CoQ [21].

The H2S-derived effect on electron transport processes is a double-edged sword: a
low amount can stimulate respiration, while a higher dose will lead to complete inhibition
of respiration by inhibiting the heme-containing proteins. It is still questionable whether
H2S has any impact on the electron transport chain via enrichment of the reduced CoQ
pool, particularly under normoxic (in vivo) or supra-normoxic conditions (21% O2, in cell
incubators [22,23].

3. Pathways of H2S Production
3.1. Environmental (Anthropogenic and Non-Anthropogenic) Sources

Non-anthropogenic environmental sources of H2S are wetlands, volcanic eruptions
and emissions, geothermal activity, thermal upwellings and sulfide-metabolizing bacteria.
Anthropogenic emissions of H2S are paper factories, tanneries, mining, oil refineries,
combustion and sewage dumps.
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3.2. Endogenous Sources of H2S in Mammalian Cells

In 1996, it was shown that cystathionine-β-synthase can produce H2S in the brain
and that H2S facilitates the induction of hippocampal long-term potentiation by enhancing
NMDA receptor activity [24]. In 1997, another H2S-producing enzyme, cystathionine-
γ-lyase, was found to be expressed in the thoracic aorta, portal vein and ileum, and it
was found that H2S relaxes these tissues [25]. Based on these findings, H2S may be a
neuromodulator as well as a smooth muscle relaxant, in addition to functioning as a sig-
naling molecule and as a cytoprotectant [4]. H2S protects neurons from oxidative stress by
restoring depleted glutathione levels. A third H2S-producing enzyme, 3-mercaptopyruvate
sulfurtransferase (3MST), is expressed in neurons, the vascular endothelium [26] and the
mitochondria of almost all cells [27]. In addition to restoring glutathione levels, the H2S
produced by 3MST, which is mainly located in the mitochondria, reduces ROS generated in
these organelles [24].

The biosynthetic pathways leading to H2S production rely on the activity of three
enzymes: cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS) and 3MST, which
synthesize H2S in vivo (CSE from L-cysteine, CBS from homocysteine and 3MST from
mercaptopyruvate) [28]. CBS is the main H2S generator in the brain, while CSE generates
H2S in peripheral tissues, and both enzymes are present in both the central nervous system
and peripheral tissues. The third enzyme involved in H2S production, 3MST, also functions
in the brain [29].

Selenium-Binding Protein 1 (SELENBP1) supports H2S biosynthesis and adipogenesis.
The cellular regulatory functions of SELENBP1 are not fully understood [30]. Subsequently,
another pathway was documented in which H2S is produced using D-cysteine as a sub-
strate in conjunction with the enzymes D-amino acid oxidase and 3MST [31,32]. The gut
microbiota also produces H2S, which has a significant impact on the physiological processes
of both the host organism and the microbial community. H2S has the potential to be released
in a living organism. There are two major sources that have the ability to release H2S. The
first is the labile acid pool, which includes proteins with iron–sulfur groups. The second
source is the sulfane sulfur pool, which functions in the presence of reducing agents [33]. In
addition to an immediate release of H2S from the producing enzymes, H2S can be stored as
sulfane sulfur (any sulfur atom bound to another sulfur atom and an ionizable hydrogen).

There are at least two mechanisms for H2S release [33]:

(i) H2S is released immediately after its production by enzymes;
(ii) H2S is stored and released in response to a physiological signal.

And there are two forms of sulfur deposition in cells [34,35]:

1. Acidic conditions release H2S from acid-labile sulfur. Acid-labile sulfur is mainly
sulfur atoms in iron–sulfur complexes, which play a key role in a wide range of redox
reactions in respiratory chain enzymes in mitochondria. The critical pH below which
H2S is released from labile sulfur to acid is 5.4 [36]. Because the mitochondrial pH
is between 7 and 8, which is higher than the critical pH, acid-labile sulfur may not
release H2S under physiological conditions.

2. Another form of storage is called sulfane sulfur, which is localized in the cytoplasm,
releasing H2S under reducing conditions [37]. This includes compounds such as
polysulfides, thiosulfates, polyethionates, thiosulfonates, bisorganyl-polysulfanes or
monoarylthiosulfonates and elemental sulfur. Sulfane sulfur compounds such as
polysulfides release H2S under reducing conditions, suggesting that the cellular redox
state is important in regulating their bioavailability [38]. The activity of reducing
substances increases under alkaline conditions, and H2S can be released from sulfane
sulfur when intracellular conditions become alkaline. In addition, free H2S can be
incorporated into proteins as sulfane sulfur, where its divalent sulfur form binds only
elemental sulfur, persulfides and polysulfides [39].

H2S is produced in almost all mammalian cell types. In humans, there are at least two
sources of H2S generation: (i) enzymatic synthesis in tissues and (ii) metabolism by bacteria
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in the digestive tract [40]. Erythrocytes are also capable of reducing elemental sulfur to
HS− in a non-enzymatic manner [41].

Non-enzymatic H2S production occurs via glucose, glutathione, organic and inorganic
polysulfides and elemental sulfur. The reduction of elemental sulfur using NADPH or
the oxidation of glucose in the phosphogluconate pathway also produces H2S in a non-
enzymatic form [41].

The non-enzymatic form, although less important, comes from the reduction of ele-
mental sulfur to H2S using reductants that come from glucose oxidation, such as lactate,
or others such as nicotinamide adenine dinucleotide hydrogen (NADH), nicotinamide
adenine dinucleotide phosphate (NADPH) and glutathione (Figure 3).
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Figure 3. Various non-enzymatic routes of H2S synthesis. In the presence of reducing equivalents
such as NADPH and NADH, reactive sulfur species in persulfides, thiosulfate and polysulfides are
reduced into H2S and other metabolites. GSH is glutathione and GSSG is glutathione disulfide.

The non-enzymatic pathway involves the production of NADPH as a by-product
of glycolysis to drive the reduction of glutathione disulfide (GSSG) to liberate H2S from
sulfane sulfur compounds [42].

Non-enzymatic H2S production in eukaryotes requires various forms of sulfane such
as thiosulfate, thiocysteine, polysulfides, persulfides, thiosulfonate and elemental sulfur to
release H2S in the presence of reactive molecules [43]. The oxidation of glucose in glycolysis
generates reducing equivalents, such as NADPH, which are used for the reduction of
glutathione disulfide to glutathione. In addition, this process leads to the release of H2S
from the above-mentioned sulfur-containing compounds [41].

Among the enzymes involved in sulfide synthesis, cystathionine-β-synthase, cystathionine-
γ-lyase and mercaptopyruvatesulfur transferase are part of the transsulfuration pathway, the
latter involved in cysteine catabolism (Figure 4).
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The enzymatic pathway involves the production of H2S from L-cysteine, which is
an amino acid synthesized by the organism. In mammals, the enzymatic synthesis of
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H2S involves two pyridoxal-5′-phosphate-dependent enzymes located in the cytosol: cys-
tathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) [44]. A third H2S-producing
enzyme, 3MST, is expressed in neurons and the vascular endothelium. In addition, 3MST
and cysteine aminotransferase (CAT) contribute to H2S biosynthesis [45]. The third enzyme
mentioned, 3MST, unlike the other two which are only in the cytosol, is found in both
cytosol and mitochondria [46] and catalyzes the anaerobic pathway of cysteine conversion
together with cysteine aminotransferase, transporting sulfide ions to thiol (-SH) groups
and forming H2S. This enzyme is localized in the kidney, liver, heart, lungs, thymus, testis,
brain and erythrocytes [41,47] (Figure 5).
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Figure 5. Main route of H2S synthesis mediated by the enzymes CBS, CSE and 3MST.

Cystathionine-β-synthase (CBS) is the predominant enzyme in the production of H2S
in the brain and nervous system; is present in liver, kidney, ileum, uterus, placenta and
pancreatic islets [46]; belongs to the family of carbon-oxygen-lyases; and is a hydrolase
as it catalyzes the cleavage of a C-O bond in serine, with the loss of a water molecule.
Human CBS is a homopolymer and uses pyridoxal-5′-phosphate (PLP) as a cofactor, and
each monomer contains a non-catalytic heme cofactor [44]. CBS can produce H2S by three
distinct pathways:

(1) Hydrolysis of cysteine to form serine and H2S.
(2) Condensation of cysteine and homocysteine to generate cystathionine and H2S.
(3) Condensation of two cysteine molecules to form lanthionine and H2S [48].

Cystathionine-γ-lyase (CSE) is capable of producing H2S via both cysteine (70%) and
homocysteine (30%) and is expressed in liver, kidney, ileum, uterus, brain, pancreatic
islets and placenta, as well as being characteristic of the vascular system and its smooth
muscle [49]. CSE is a PLP-using enzyme, and its catalytic mechanism is very similar to that
of CBS. It is a homotetramer [50].

H2S can also be generated from L-methionine via transsulfuration [51]. Homocys-
teine, a risk factor for cardiovascular and neurocognitive diseases, is converted to H2S, a
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cardiovascular and neuronal protector, via the transsulfuration pathway or the release of a
persulfide (RS-SH) by thiol–disulfide exchange [51].

Mercaptopyruvatesulfurtransferase (3MST) belongs to the family of sulfurtransferases,
which catalyze the transfer of a sulfur from a sulfur donor to a thiophilic acceptor by
the formation of a protein cysteine persulfur intermediate [52]. The sulfur atom donor is
3-mercaptopyruvate, and the kinetically favored acceptor under physiological conditions is
thioredoxin [53] (Figure 6).
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Figure 6. H2S synthesis via the 3MST/CAT pathway.

The enzyme known as cysteine aminotransferase (CAT) facilitates the transamination
process of cysteine and α-ketoglutarate, leading to the production of mercaptopyruvate
and glutamate, respectively. Subsequently, another enzyme called mercaptopyruvate
sulfurtransferase (MST) catalyzes the transfer of sulfur from 3-MP to a specific active
cysteine site. This transfer leads to the formation of pyruvate and a persulfide compound
bound to MST. The persulfide bound to MST then reacts with thioredoxin and eventually
produces H2S [53].

A synthesis pathway has been described from D-cysteine, which by action of the
enzyme D-amino acid oxidase (DAO) produces 3-mercaptopyruvate, which serves as a
substrate for 3MST [54] (Figure 7).
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Figure 7. Formation of 3-mercaptopyruvate from D-cysteine.

In contrast to the L-cysteine system, the D-cysteine-dependent metabolic pathway
functions mainly in the cerebellum and kidney, and it is approximately 80 times more
efficient than CAT/3MST in H2S production in these tissues [32,55].

3.3. Microbial Synthesis of H2S

Some intestinal bacteria use sulfate as a final acceptor in their respiratory chain and
produce H2S, implying that there is an additional source of sulfide in this tissue, in addition
to the basal production in the intestinal cells from CBS and CSE enzymes. This results in
the organs of the digestive tract, mainly the intestinal epithelium, being exposed to high
concentrations of the gas [56,57]. However, the amount of H2S produced by the microbiota
is variable and may be related to diet and the type of microbiota present in the gut [58].
H2S has a major influence on digestive health and can be generated from the degradation
of cysteine, as well as through the dissimilatory reduction of sulfate [59] (Figure 8).
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Figure 8. Dissimilatory sulfate reduction pathway.

Sulfate reduction, depending on the micro-organism, can take place in two ways:
assimilatory and dissimilatory [60,61]. In dissimilatory sulfate reduction, H2S is produced,
and in the assimilatory form, the terminal product is cysteine. The above pathways show
clear differences, which are mainly characterized by the role of dissimilatory sulfate in
energy production and the function of sulfate as an electron acceptor. In the process of as-
similatory sulfate reduction, sulfate serves as a substrate for the production of amino acids.

Sulfate-reducing bacteria are responsible for generating 50% of the H2S found in
colonocytes, while the other 50% corresponds to the action of CBS and CSE enzymes [62].

3.4. Production in Laboratory or Industrially

In ambient conditions, hydrogen gas (H2) and the element sulfur (S) show no reactivity.
However, when temperatures above room temperature are reached, these elements initiate
a chemical reaction, with the optimal temperature being 310 ◦C.

However, since this process is very slow, alternative methods of extraction are used,
such as the one shown in the figure below. Metal sulfides, including iron sulfide, react with
acids, such as hydrochloric acid, in a dilute solution (Figure 9).

Cells 2023, 12, x FOR PEER REVIEW 8 of 48 
 

 

addition to the basal production in the intestinal cells from CBS and CSE enzymes. This 

results in the organs of the digestive tract, mainly the intestinal epithelium, being exposed 

to high concentrations of the gas [56,57]. However, the amount of H2S produced by the 

microbiota is variable and may be related to diet and the type of microbiota present in the 

gut [58]. H2S has a major influence on digestive health and can be generated from the 

degradation of cysteine, as well as through the dissimilatory reduction of sulfate [59] 

(Figure 8). 

 

Figure 8. Dissimilatory sulfate reduction pathway. 

Sulfate reduction, depending on the micro-organism, can take place in two ways: 

assimilatory and dissimilatory [60,61]. In dissimilatory sulfate reduction, H2S is produced, 

and in the assimilatory form, the terminal product is cysteine. The above pathways show 

clear differences, which are mainly characterized by the role of dissimilatory sulfate in 

energy production and the function of sulfate as an electron acceptor. In the process of 

assimilatory sulfate reduction, sulfate serves as a substrate for the production of amino 

acids. 

Sulfate-reducing bacteria are responsible for generating 50% of the H2S found in 

colonocytes, while the other 50% corresponds to the action of CBS and CSE enzymes [62]. 

3.4. Production in Laboratory or Industrially 

In ambient conditions, hydrogen gas (H2) and the element sulfur (S) show no 

reactivity. However, when temperatures above room temperature are reached, these 

elements initiate a chemical reaction, with the optimal temperature being 310 °C. 

However, since this process is very slow, alternative methods of extraction are used, 

such as the one shown in the figure below. Metal sulfides, including iron sulfide, react 

with acids, such as hydrochloric acid, in a dilute solution (Figure 9). 

 

Figure 9. Mineral-acid-catalyzed H2S synthesis. 

In this way, H2S gas is obtained and, due to its toxicity, must be collected safely. 

4. H2S Consumption Routes 

There are five ways of eliminating H2S in the body (Figure 10). 

Figure 9. Mineral-acid-catalyzed H2S synthesis.

In this way, H2S gas is obtained and, due to its toxicity, must be collected safely.

4. H2S Consumption Routes

There are five ways of eliminating H2S in the body (Figure 10).
It is important to control the concentration of H2S in mammalian tissues, which is

maintained at nanomolar levels [63]. The concentration of H2S varies between different
tissues, and the general agreement is that its concentration should be present in nanomolar
concentration, as higher concentrations can inhibit metal-containing proteins. However,
methods for the detection of H2S are currently being developed.

H2S only takes on an important signaling function at low concentrations. At higher
concentrations, however, it has the potential to have a toxic effect by inhibiting cell respira-
tion through the inhibition of cytochrome c oxidase (CcOX) [64]. To prevent toxicity, it is
necessary to regulate the bioavailability of H2S [65].
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Figure 10. The metabolic processes involved in the breakdown and utilization of H2S. H2S is degraded
by various enzymatic reactions. The enzymes rhodanese, bisulfide methyltransferase (BMT) and
thiosulfate reductase (TSR) play critical roles in catalyzing the conversion of H2S to thiocyanate,
methanethiol and thiosulfate, respectively. Oxidation of thiosulfate to sulfite can occur through the
enzymatic action of thiosulfate sulfurtransferase (TSST), followed by further oxidation to sulfate. H2S
reacts with hemoglobin, resulting in the formation of sulfohemoglobin. In addition, H2S combines
with proteins present in the tissue, resulting in the formation of a bound sulfur pool.

4.1. Mitochondrial Pathway of Sulfur Oxidation

In the body, H2S is broken down by the mitochondrial enzyme system, currently des-
ignated as the “sulfuroxidising unit” or “sulfuroxidising pathway” [66], which transforms
sulfur into sulfate and thiosulfate.

Four enzymes are involved in the oxidation pathway: (i) One is sulfur quinone
oxidoreductase (SQR), which catalyzes the transfer of two electrons from sulfur to oxidized
coenzyme Q. The sulfur is oxidized and transferred to an acceptor molecule (GSH or
sulfite). (ii) Others are sulfur transferase (rhodanase) and (iii) oxidases such as persulfide
dioxygenase (PDO) and sulfite oxidase (Figure 11). Sulfate and thiosulfate are the main
products of the mammalian mitochondrial sulfide oxidation pathway and are safer than
sulfide [14].
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Figure 11. The two alternative modes for sulfide oxidation.

According to the current knowledge, SQR is the ancient enzyme (from algae and
bacteria) initially used instead of Complex I to provide the electrons from H2S to the rest
of the primitive ETC process, mostly consisting in its beginning of SQR and the primitive
version of Complex IV and Complex V [67]. Mitochondria have the main intracellular
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machinery responsible for the uptake of H2S and its oxidation into inert metabolites: sulfite
and sulfate [68].

Globins and other proteins, including catalase and superoxide dismutase, can serve
as catalysts for the oxidation of H2S to polysulfide. This process involves the use of O2 or
H2O2 as an electron acceptor [65,69–72].

4.2. Oxidation of Sulfides by Hemoproteins

Sulfur can react with metal centers through covalent bonding, redox interaction or
coordination. This is described as another possible mechanism of sulfide detoxification in
red blood cells. As there are no mitochondria in red blood cells, oxidation of sulfur by the
route described above is not possible [73].

In methemoglobin, iron is present as Fe(III), which can react reversibly with H2S to
form an intermediate MetHb-Fe(III)-SH2. H2S can dissociate and subsequently replenish
iron heme through a reversible mechanism. Alternatively, it has the potential to convert
ferrous heme into its ferrous counterpart. This redox process would be favored by the loss
of a proton from H2S bound to the heme. Methehemoglobin binds to H2S, and the end
result is oxidation to a mixture of thiosulfate and hydropolysulfides (Figure 12).
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Figure 12. Reaction mechanism postulated for the oxidation of H2S by MetHb. Methemoglobin binds
to H2S and oxidizes it to a mixture of thiosulfate and hydropolysulfides.

Like human Hb and Mb, there is a set of enzymes such as globins, lactoperoxidases
and catalase that react with H2S to form sulfemo analog derivatives, where a sulfur atom
covalently bonds to one of the pyrroles of the porphyrin ring [74].

5. H2S Reactivity

H2S has strong nucleophilic properties that allow it to react with electrophilic species,
whereas sulfur is a good reductant and will react with oxidants. Sulfur has a variable
oxidation state, which can range from −2 to +6, and, in its lowest oxidation state, −2, is
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a good reductant. This means that it can give up electrons to other atoms, reducing its
oxidation state. The sulfur atom from H2S is also a good reductant because sulfur has an
oxidation state of −2. When H2S reacts with an oxidant, the sulfur gives up electrons to the
oxidant, reducing its oxidation state. It is, therefore, a good reductant acting as a general
sulfur atom or as a sulfur atom from H2S.

These properties have been used to make probes to determine the amount of H2S
generated. As shown in Figure 13, sulfur can act as a double nucleophile, and this is an
important difference from cysteine.
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5.1. In Aqueous Solution

H2S is a weak acid that possesses two ionizable protons [75] (Figure 14).
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Figure 14. H2S dissociation equilibria.

The limited ionization of the first proton can be derived from the initial ionization
constant. The ionization of the second proton is minimal, but solutions of hydrogen sulfide
contain a certain amount of the sulfur anion S2− [76].

Under physiological conditions, at pH 7.4, the monoanionic species (HS−) will predom-
inate by 71.5%, while the remaining 28.5% will be in the protonated form (H2S [65]; under
these conditions, the concentration of the dianionic species (S2

−) is considered negligible.
In the alkaline mitochondrial matrix, which is characterized by a pH of 8.0, about

92% of the sulfur species present are in the form of HS−, while the remaining 8% are due
to H2S. HS− is a prominent sulfur species that exerts a strong attraction to cell nuclei by
binding to specific metal centers found in some molecules, such as the oxygen binding
site of hemoglobin [76]. The enormous biological potential of H2S is attributed to this
phenomenon. In the acidic environment of lysosomes, which is characterized by a pH of
4.7, most H2S is present in its H2S form, which accounts for over 99% of the compound.
In this state, H2S has low polarity, allowing it to move freely, diffuse and accumulate in
an aqueous or hydrophobic medium, such as biological membranes. About 40% of the
sulfides present in the body are in the form of H2S, while the remaining portion is present
as hydrogen sulfide anion (HS−). There is a tiny and potentially insignificant amount of
S2−. The fundamental difference of H2S from the other gasotransmitters is its ability to
dissociate in a solution.

5.2. Reaction with Oxygen

H2S interacts with the oxygen present in the atmosphere, leading to the following
chemical reactions (Figure 15).
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5.3. Basic Chemical Reactivity of H2S

The basic chemical reactivity of H2S is summarized in Figure 16.
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The formation of hydrogen halides and sulfur takes place in the presence of chlorine
Cl2, bromine Br2 and iodine I2 [77]. H2S reacts with metals by forming metal sulfide [78].
H2S and SO2 are present in volcanic gases and react with each other to form solid sulfur [79].
H2S is not very stable; it decomposes easily upon heating [80].

5.4. Reaction with Disulfide

Kinetic studies showed that the reaction of disulfide reduction by HS− occurs through
multistep equilibria with the formation of disulfide, hydropersulfide and inorganic poly-
sulfides [81]. The mechanism presented in the figure indicates that inorganic polysulfides
(HSn

−) are formed in parallel with hydrosulfides (RSS−) (Figure 17).
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Inorganic polysulfides have been identified as potential intermediates in the transition
pathway from sulfhydryl (SH) to persulfide (SSH) species and are thought to play a role in
thiol-based redox signaling mechanisms.

6. Biological Functions of H2S

Endogenous H2S refers to the natural presence of this compound in the body because
of regular metabolic processes in humans, animals and other organisms. Research con-
ducted from the early 2000s to the present has revealed that endogenous H2S plays a critical
role in regulating specific systems and processes in living organisms [82]. H2S has a high
affinity for lipids, which makes it extremely lipophilic and facilitates its penetration of cell
membranes, allowing it to enter various cell types. H2S plays a central role in the regulation
of various physiological and pathological processes [83,84]. The potential consequences
of decreasing H2S levels in the human body include the development and progression of
various health conditions, including hypertension, atherosclerosis, gastrointestinal ulcers,
cirrhosis of the liver, diabetes, inflammation, Alzheimer’s disease, cancer and other dis-
eases [85]. The accompanying diagram provides a comprehensive representation of the
biological mechanisms in human physiology that are controlled by endogenous H2S or
show a response to pharmacological intervention with H2S or its derivatives (Figure 18).
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Figure 18. Examples of diseases related to low levels of H2S.

Among the variety of effects attributed to H2S, we can mention its participation in
cardiovascular processes (in vasodilation, one of the first effects described), the central ner-
vous system, the gastrointestinal system, the endocrine system, cytoprotection, etc. [86–89]
(Figure 19).
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6.1. Cardiovascular System

H2S plays a central role in modulating and regulating various signaling pathways in-
volved in metabolism, cardiac function and cellular viability in mammalian organisms [90],
and it has a significant effect on the cardiovascular system, blood vessels and blood compo-
nents. Both mitochondrial activity and cellular metabolism are affected [21].

H2S has been found to be associated with hypertension, atherosclerosis and myocar-
dial damage in the cardiovascular system. The potential efficacy of this compound in the
treatment of hypertension may be due to its ability to induce vasodilation. Relaxation of
the rat thoracic aorta, portal vein and mesenteric artery by H2S has been demonstrated, sug-
gesting that hydrogen sulfide plays an important role in regulating contractility and blood
pressure. In contrast, another study suggests that H2S exhibits vasoconstrictor properties at
low concentrations, possibly through a mechanism that inhibits the activity of nitric oxide
(-NO), a molecule also involved in contractility [91,92]. H2S may help patients recover from
myocardial injury, particularly ischemia–reperfusion injury. Numerous cardiovascular
diseases have been associated with H2S, suggesting a potentially broad applicability of H2S
in the context of heart disease [90].

H2S exerts several effects on the cardiovascular system. These include attenuating
ischemia–reperfusion injury to cardiac tissue, facilitating angiogenesis, relaxing smooth
muscle cells and regulating blood pressure [93].
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6.2. Gastrointestinal System

H2S is known to have a significant effect on reducing gastric mucosal damage and has
the potential to act as a crucial mediator of gastrointestinal motility.

Insulin secretion and diabetes mellitus may be affected by H2S because the pancreas is
among the targets of H2S [94–96]. In the pancreas, CSE is the main enzyme that converts
cysteine to H2S. H2S concentration is elevated in response to the presence of pancreatitis,
which is attributed to its proinflammatory effect. H2S administration contributes to chloride
secretion, which aggravates certain types of gastritis [97]. H2S concentration increases
when abdominal sepsis or endotoxemia occurs [98].

H2S has a protective anti-inflammatory effect on the gastrointestinal system in some
types of gastritis and colitis [99–101]. H2S elicits both proinflammatory and anti-inflammatory
responses in various models of inflammation [102]. The synthesis of H2S is markedly
increased in colon ulcers, resulting in accelerated restoration of epithelial barrier integrity
and healing of injured tissues [103].

6.3. Respiratory System

A study that investigated the relationship between H2S and pulmonary hyperten-
sion represents a pioneering achievement in the field of pathophysiology and H2S on a
global scale [104]. In recent years, numerous studies have been conducted to investigate
the involvement of H2S in the development of pulmonary hypertension. These studies
have primarily focused on the administration of H2S to animal models suffering from
chronic hypoxia.

H2S is implicated in the pathogenesis and therapeutic interventions of chronic obstruc-
tive pulmonary disease, as endogenous H2S is involved in the regulation of physiological
functions of the respiratory system and pathophysiological alterations, such as chronic ob-
structive pulmonary disease, asthma, pulmonary fibrosis and hypoxia-induced pulmonary
hypertension [105].

6.4. Nervous System

In addition, H2S exerts its action on important functions of the central nervous system
and provides neuroprotective protection against oxidative stress. There is a belief that it has
potentially protective properties against neurodegenerative diseases such as Parkinson’s
disease, Alzheimer’s disease and Huntington’s disease [106]; spinocerebellar ataxia; and
traumatic brain injury. It has been published that H2S levels are reduced in the brains of
patients with Alzheimer’s disease compared to healthy individuals [107]. In the central
nervous system, both sides of H2S are observed: it ameliorates ischemic lesions, but it leads
to the aggravation of stroke.

6.5. Endocrine System

The variation in H2S concentration is related to a variety of endocrine disorders [108].
Understanding the effect of H2S concentration on the endocrine system is useful for the
treatment of hypertension, diabetes and other diseases. H2S can affect the secretion of
many hormones and participate in the onset and development of endocrine diseases. H2S
can regulate hormone secretion through antioxidant stress and regulation of ion channels
and protect endocrine organs. H2S can regulate glucose and fat metabolism through the
pancreas, liver, adipose tissue and skeletal muscle [109].

6.6. Visual System

H2S protects retinal photoreceptor cells from light-induced degeneration. Deficiency
of H2S or its substrates was found to be associated with ectopialentis, myopia, cataracts,
optic atrophy and retinal detachment [110–112].



Cells 2023, 12, 2684 15 of 45

6.7. Age-Related Diseases

H2S is a reducing agent and can be metabolized by various oxidants in the human body.
It counteracts oxidative species, such as reactive oxygen species (ROS and reactive nitrogen
species (RNS), in the human body. The activation of antioxidant enzymes serves to limit
the reactions of free radicals and thus protects against the harmful effects of aging [113].

H2S has several cytoprotective and physiological functions related to age-related
diseases. Most notably, it serves as a potent antioxidant and gasotransmitter. Oxidative
stress plays an important role in the development and progression of many age-related
diseases [114].

6.8. H2S in Cancer

It is documented that several types of cancer such as colon, breast, ovarian and prostate
cancers have higher levels of CBS, CSE or 3MST enzymes or synthesize greater amounts of
H2S compared to adjacent non-tumor tissue [115–118].

The outcome of treating cancer cells with H2S donors depends on the concentra-
tion/dose, time, cell type and drug used. The effects of both natural and synthetic donors
vary from potent cancer suppressors to promoters [40,119]. The administration of H2S
donors to various cancer cell lines has been shown to produce cell death, with this effect
being dependent on increasing concentrations of H2S. This indicates that H2S donors could
represent a therapeutic potential as anticancer drugs. The combination of non-steroidal
anti-inflammatory drugs with slow-release H2S donors has been shown to effectively in-
hibit the growth of human colon, mammary, pancreatic, prostate, lung and bone marrow
cancer cells by promoting cell apoptosis via the activation of p38 MAPK [120].

6.9. H2S and Antimicrobial Resistance

The prevalence of antimicrobial resistance (AMR) is increasing and represents a ma-
jor public health challenge [121]. Similar to mammalian organisms, bacterial cells also
have three enzymes involved in the synthesis of H2S [122]. These enzymes are known as
cystathionine-γ-lyase (CSE), cystathionine-β-synthetase (CBS) and 3-mercaptopyruvate
sulfurtransferase (3MST) [123]. Bacteria have been shown to produce H2S as a cytoprotec-
tive agent in response to host-induced stress, such as oxidative stress and antibiotics [124].
Endogenously produced H2S stimulates ROS-scavenging enzymes and interferes with the
Fenton reaction, reducing the amount of ROS produced by cells and promoting antibiotic
tolerance [125]. Antibiotics such as quinolones, beta-lactams and aminoglycosides are more
effective against bacterial pathogens in vitro and in mouse models when combined with
small compounds that block a bacterial enzyme involved in the formation of hydrogen
sulfide [126]. Therefore, it has been hypothesized that this messenger is a fundamental
anti-antibiotic defense mechanism in bacteria [126,127]. In biofilms, persisting cells had
significantly higher H2S content than active cells, supporting the notion that H2S is a critical
component in bacterial biofilm formation [128]. However, not all significant pathogenic
bacteria encode the H2S biosynthetic pathway. Pathogenic Acinetobacter baumannii bacteria
do not produce endogenous H2S. By manipulating the sulfide content of A. baumannii with
a H2S-releasing chemical, researchers showed that exogenous-H2S-sensitized A. baumannii
was able to reverse acquired resistance to gentamicin [129]. It appears that the presence
of exogenous H2S triggered a disruption of redox and energy balance that ultimately led
to increased susceptibility to the lethal effects of antibiotics [126]. Therefore, it was hy-
pothesized that H2S can be used as an antibiotic-potentiating and resistance-converting
agent in bacteria that do not produce it themselves [129]. The recognition of H2S biogenesis
is a promising focus for the development of antibacterial adjuvants to combat tolerance
and resistance [130]. Influencing hydrogen sulfide-based defenses is a largely unexplored
alternative to conventional antibiotic discovery.
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7. Mechanisms of Action of H2S and Molecular Targets

The mechanisms through which H2S exerts its effects are not yet fully understood.
However, there is sufficient consensus regarding four mechanisms of action or molecular
targets (Figure 20).
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Figure 20. H2S signaling mechanisms.

H2S is of great importance as a secondary messenger that binds to specific target
proteins to facilitate signal transduction, especially in the field of mammalian physiology.
It is now known that the signal transduction function of H2S occurs through at least three
main mechanisms: (i) interactions with metal centers [131], (ii) scavenging of ROS and
RNS [132], (iii) S-persulfidation [6] and (iv) effects on ion channels.

7.1. Effect of H2S on Ion Channels

There is abundant literature on the effect of H2S on ion channels. For example,
H2S opens ATP-dependent potassium channels [133,134] and modulates various types of
calcium [135–137] and chloride channels [138].

Ion channels are proteins that form pores in the membranes of cells and organelles,
having the function of regulating the flow of ions through them. H2S can act directly
or indirectly on the channels. ATP-dependent potassium channels (K+ATP) are the most
studied in terms of their interaction with H2S.

K+ATP is a hetero-octamer consisting of four pore-forming subunits, Kir6.x, and
four regulatory subunits, SURx, and their activity is inhibited by binding to ATP [139]
(Figure 21).
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Cysteine 43 of the Kir6.1 subunit is the target of H2S persulfuration. The interaction
of the gas with the protein was accompanied by decreased ATP binding and increased
binding of phosphatidyl inositol diphosphate, suggesting that the effect of the interaction
with H2S decreases the affinity of the protein for ATP, thus activating the channel. Other
authors showed with targeted mutagenesis experiments that the effect of H2S was only
observed when the two subunits, Kir6.1 and rvSUR1, were present, but not with Kir6.1
alone [139]. They also identified cysteine residues in the regulatory subunit, cysteine 6 and
cysteine 26, necessary for the effect.

H2S is unable to regulate the function of K+ATP channels directly [140]. It has been
observed that the cardioprotective effects of H2S partially disappear when K+ATP channels
are chemically blocked [141].

7.2. Direct Reaction of H2S with ROS and RNS

There is conflicting evidence for the influence of H2S on various organisms, mainly
due to its toxic nature and its ability to scavenge reactive oxygen species (ROS) and thus
mitigate oxidative stress [7,20]. Hydrogen peroxide, peroxynitrite, hypochlorite and the
superoxide radical anion are examples of ROS and reactive nitrogen species (RNS) that can
react with H2S. This means that it can inhibit the harmful effects of ROS and/or RNS on
organic substances.

Recently, there has been increased interest in the study of H2S due to its toxic nature
and its ability to protect bacteria from the harmful effects of oxidative stress induced
by antibiotic therapy [142]. The process has the ability to render the redox centers of
metalloenzymes inactive [143–146], causing DNA damage [147] and protein denaturation
by disrupting disulfide bonds [148].

7.2.1. Non-Radical Species (Two-Electron Oxidation)

H2S reacts with two-electron oxidants such as hydrogen peroxide, peroxonitrous acid
and hypochlorous acid and chloramines to transform into sulfenic acid (HSOH) which is
an unstable intermediate (Figure 22).
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Figure 22. Oxidation of H2S by H2O2, ONOOH and HOCl. Formation of sulfenic acid (HSOH).

The primary outcome of the chemical reaction between H2S and hydrogen peroxide
(H2O2) is the formation of hydroxylthiol (HSOH). The final product consists largely of
polysulfides, elemental sulfur and, in the case of excess oxidant, sulfate, and it depends on
the initial ratios of hydrogen peroxide and H2S.

The direct reaction between peroxynitrous acid and HS− involves a nucleophilic
substitution of HS−, leading to the formation of HSOH and NO2

− as starting products. In
the presence of an excess amount of H2S, HSOH further reacts with a second HS−, leading
to the formation of HSS−/HSSH and other compounds.

It is likely that the interaction between hypochlorous acid and HS− occurs through
the formation of HSCl, which is subsequently subjected to rapid hydrolysis to produce
HSOH. Chloramines, particularly RHNCl and R2NCl, exhibit lower reactivity but higher
selectivity as oxidants compared to hypochlorous acid, as indicated in Table 1.
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Table 1. Rate constants determined for reactions of H2O2, ONOOH and HOCl with H2S.

Oxidizing k2 M−1 s−1 pH Temperature Reference

Hydrogen peroxide 0.73 7.4 37 ◦C [149]

Peroxynitrous acid 6.7 × 103 7.4 37 ◦C [150]

Hypochlorous acid 0.8–20 × 108 7.4 [151]

Taurine chloramine 3 × 102 7.4 37 ◦C [152]

HSOH is the main product. Polysulfides, elemental sulfur and sulfate can all be
produced by this reaction, but the exact composition of the final product depends on the
ratio of hydrogen peroxide to hydrogen sulfide. It is noteworthy that the system exhibits the
typical properties of a chemical oscillator. The oxidation of H2S can lead to the formation of
a very reactive reductant: sulfoxylic acid. In many respects, H2S exhibits a reactivity profile
similar to cysteine. It is a powerful nucleophile and, like thiols, can react with electrophiles
as well as oxidants.

The oxidation process of H2S can lead to the formation of many compounds in which
the sulfur atom can have oxidation states from −2 to +6. The oxidation products include
several chemical compounds such as sulfate (SO4

2−), sulfite (SO3
2−), thiosulfate (S2O3

2−),
persulfides (RSS−), organic and inorganic polysulfides and elemental sulfur (Sn).

The oxidation pathways of thiols lead to the formation of sulfenic acids as transient
intermediates. The main mechanism by which they are degraded is the formation of
disulfide bonds in response to the presence of another thiol, and they are widely recognized
for their instability [153,154].

7.2.2. Radical Species (One-Electron Oxidation)

H2S can be oxidized to HS−/S•− by a limited number of strong one-electron oxidizing
agents, namely the hydroxyl radical (HO−), the carbonate radical (CO3

•−), nitrogen dioxide
(NO2

−) and the peroxidase compounds oxoferryl I and II.
The initial product of the one-electron oxidation of H2S is the sulfyl radical (HS−/S−)

(Figure 23).
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This particular radical exhibits oxidizing properties and is capable of undergoing
reactions with a number of electron donors or hydrogen atoms. The compound is capable
of undergoing a reaction with a secondary radical HS−/S•−, forming HSSH/HSS− [155],
or it can react with HS− to form HSS•2−, which is a reducing radical that has the ability
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to undergo a reaction with oxygen that leads to the formation of the superoxide radical.
HS−/S•− can [155] also react with oxygen to form SO2

•−, which again can react with
oxygen to form a superoxide radical [156]. The one-electron oxidation of H2S has the ability
to trigger oxygen-dependent free radical chain reactions that can lead to an amplification
of the original oxidation species (Figure 24).
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In addition to ROS and RNS, it is also necessary to consider reactive sulfur species,
including hydropersulfides, polysulfides and H2S. The concept of RSS was postulated in
2001 [157], RSS that are produced under oxidative stress include RS−, sulfenic acids (RSOH),
disulfides (RSSR), thiosulfinate (RS(O)SR), thiosulfonate (RS(O)2SR) and S-nitrosothiols
(SNTs), the products of cysteine transformations, H2S and sulfane sulfur-containing com-
pounds. SSRs that are produced under physiological conditions (without oxidative stress)
are referred to in the scientific literature as “the first class of SSRs”. The “second class of
SSRs”, on the other hand, “refers to species that are formed by the initial action of oxidative
stress” [158].

H2S plays an important role in combating oxidative species such as ROS and RNS in
the body. Filipovic, in 2012 [159], studied the reaction of H2S with peroxynitrite in vitro
and in different cell models. The results showed that H2S can remove peroxynitrite with a
second-order rate constant and that the reaction does not proceed through radicals. In this
reaction, a new product is formed, which was characterized by spectral and computational
studies as HSNO2 (thionitrate), mostly as sulfinyl nitrite HS(O)NO.

The ability of HS(O)NO to function as a nitric oxide (NO•) donor in response to pH and
its ability to release NO• in cellular environments have been successfully demonstrated.
Therefore, H2S removal plays a role in modulating the chemical and biological effects
of peroxynitrite. This process effectively suppresses the pro-apoptotic, oxidative and
nitratative properties associated with peroxynitrite (Figure 25).
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8. Persulfidation or S-Sulfhydration of Protein Thiols

Sulfhydration of cysteine residues and nitration of tyrosine are H2S-induced post-
translational modifications induced by H2S and RNS, respectively [160]. H2S is an impor-
tant biological messenger molecule that transmits signals through the formation of persul-



Cells 2023, 12, 2684 20 of 45

fide bonds (SSH) in proteins or low-molecular-weight thiols [1,161,162]. S-Persulfidation is
the process in which a thiol (R-SH) is converted into a perthiol (R-SSH). The modification
of thiols to form persulfides is one of the mechanisms by which sulfide exerts signaling
functions. Protein modification by persulfurization of cysteine residues is able to modulate
the activity of different proteins. The formation of persulfides is associated with the body’s
sulfur reserve [1]. The direct reaction of H2S with protein cysteines does not take place; for
this reaction to occur, the presence of an oxidant is required. The proposed mechanism for
the formation of persulfides is the reaction of sulfur with oxidized cysteines such as sulfenic
acid (RSOH) or disulfide (RSSR) [163]. Persulfides can also be formed via radicals, through
the reaction of the sulfhydryl radical (HS•−) with the RS−, although the low concentration
of these species means that this reaction is of little biological relevance [148,164]. HS•− can
also react with a non-radical thiol to generate the radical anion RSSH•−, which gives up
its unpaired electron to molecular oxygen to give the persulfide and superoxide radical
anion [165] (Figure 26).
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Figure 26. Mechanisms of protein persulfidation.

Persulfides are unstable and have an electrophilic character. They also retain the
nucleophilic character of the original thiol, or even enhance it due to the presence of an
adjacent sulfur containing unshared electron pairs, i.e., the α-effect [166–168]. It has been
proposed that these compounds are responsible for the biological effects initially assigned
to H2S [169].

One of the ways in which H2S functions as a messenger molecule is by sulfhydration
of reactive cysteine residues of target proteins in a manner analogous to protein nitrosyla-
tion [1,28].

Due to a decrease in pKa and an increase in nucleophilicity of perthiols compared
to thiols, S-persulfidation can affect the biological activity of proteins [170]. For example,
the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is primarily
involved in glycolysis and gluconeogenesis, undergoes an activity shift after persulfidation
to prevent cell death [170]. Persulfidation at KATP channels is a factor contributing to
vasodilation caused by H2S [171].

The reaction of persulfides with cyanide gives thiols and thiocyanate (Figure 27).
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Figure 27. Hydropersulfide cyanolysis reaction.

The cyanolysis reaction is a common reaction involving hydrosulfides and other sulfur
compounds. This reaction serves as a reliable method to confirm the presence of the -SSH
group on a protein. In addition, this reaction has characteristic properties of hydrosulfides
and can be used for the detection of persulfides. The reaction between thiocyanate and
ferric ions leads to the formation of a red complex that exhibits absorption at a wavelength
of 460 nm. This complex can be accurately measured and quantified by spectrophotometric
methods [172] (Figure 28).
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9. Detection of H2S

The two deprotonated H2S species (HS− and S2−) absorb in UV at 230 nm with molar
extinction coefficients of 8 × 103 and 4.6 × 103 M−1 cm−1, respectively, at 25 ◦C, so the
concentration of the predominant species (HS−) could be measured by absorbance [173].
In practice, their oxidation products generate interferences.

Several research groups have focused their efforts on the development of H2S de-
tection probes. Classical instrumental methods for H2S detection include the following:
(i) colorimetric and electrochemical assays, (ii) gas chromatography and (iii) sulfide precipi-
tation [38,75,140,174,175]. These techniques often require complex sample processing. The
results of these methods may differ due to the high reactivity of H2S [63,163,176]. The high
sensitivity of fluorescence-based assays suggests that they could be potentially valuable
in this area. However, the limited number of fluorescence techniques available today for
the detection of H2S poses a challenge when it comes to monitoring this gas in biological
samples in real time [75,177]. A major challenge is to develop molecular probes that can
detect aqueous sulfides (H2S and HS− at neuronal pH) in the presence of other thiols found
inside most cells.

Numerous H2S detection techniques have been described, including spectrophotomet-
ric methods, where sulfide can be monitored by the formation of lead sulfide or methylene
blue at 390 or 670 nm, respectively; fluorimetric methods, using fluorescein mercuric ac-
etate; and polarographic methods with sulfide-specific electrodes, as well as by liquid or
gas chromatography [178,179].

Another methodology used is the trapping of sulfide on ZnS particles by a reaction
with zinc acetate. This technique is used in conjunction with other methods [14].

Classical iodometric titrations are used to prepare a standard solution. H2S is first
immobilized in zinc acetate to reduce its dispersion and then reacts with an excess of
iodine in an acidic environment. The remaining iodine is subjected to titration with sodium
thiosulfate, with starch added as an indicator (Figure 29).
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However, this method leads to errors due to the presence of other reductants. Nu-
merous research groups have focused primarily on the development of probes for the
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detection of H2S. The approaches currently described for the detection of sulfur are usu-
ally based on its nucleophilicity or its reductive capacity, both of which are common to
other thiols (glutathione and protein thiols) in biological studies and can easily mask the
signal corresponding to sulfur. Figure 30 shows the most commonly used methods for
H2S detection.
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9.1. Lead Acetate

The enzymatic synthesis of hydrogen sulfide can be traced back to a simple approach
involving the use of lead acetate and the determination of the formation of lead sulfide
(Figure 31), which is insoluble and can be detected by increasing turbidity at 390 nm.
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Figure 31. Hydrogen sulfide reacts with lead acetate to form a brown solid of lead sulfide (PbS).

When using this approach to calculate H2S concentrations, it is required to compare
the results with a calibration curve created with already-known lead sulfide concentra-
tions [180]. This approach provides semi-quantitative data and has relatively low sensitivity.

9.2. Methylene Blue Method

Methylene blue is formed when an oxidizing agent, usually ferric iron, reacts with
H2Saq and N,N-dimethyl-p-phenylenediamine (N,N-dimethylbenzene-1,4-diamine) in an
acidic environment (Figure 32).
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Figure 32. Reaction in the methylene blue method for sulfide detection.

The methylene blue formation reaction can be used to determine the H2S concentration.
The concentration of methylene blue is determined at a wavelength of 670 nm and then
compared with calibration curves generated with samples of known H2S concentrations
subjected to comparable processing procedures [179,181]. This method also has a number
of disadvantages.
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9.3. Monobromobimane Derivatization

H2S undergoes a nucleophilic substitution reaction with monobromobimane, resulting
in the formation of a bimane-substituted thiol compound. This biman-substituted thiol
can further react with a second monobromobiman molecule, leading to the formation of
dibiman sulfide. The fluorescence of dibiman sulfide can be observed upon its separation
by high-performance liquid chromatography (HPLC) or mass spectrometry. This method
has found wide use recently; however, the reaction rate is relatively slow (K ≈ 10 M−1 s−1

at pH 8) [182] (Figure 33).
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9.4. Methods Based on the Reducing Capacity of H2S

The sensitivity of fluorescent probes can be quite high. Certain probes, which have
been described in detail, use nitro or azide derivatives of rhodamine, dansyl, coumarins or
naphthylamides, which can be reduced by H2S to produce fluorescent amines (Figure 34).

Cells 2023, 12, x FOR PEER REVIEW 25 of 48 
 

 

9.4. Methods Based on the Reducing Capacity of H2S 

The sensitivity of fluorescent probes can be quite high. Certain probes, which have 

been described in detail, use nitro or azide derivatives of rhodamine, dansyl, coumarins 

or naphthylamides, which can be reduced by H2S to produce fluorescent amines (Figure 

34). 

 

Figure 34. Fluorescent probes for the detection of H2S using the reduction of azide (a–c) or nitro (d) 

groups. 

In chemical synthesis, H2S is frequently used for the reduction of azido groups (N3) 

[183] and aromatic nitro groups [184] to aniline derivatives due to its strong reducing 

agent properties. 

By attaching an N3 group to an SF1 rhodamine core, the research team led by Chang 

was able to produce a selective probe for the detection of H2S. Such probes exhibit strong 

selectivity for H2S over oxygen and nitrogen [185], two other reactive sulfur species that 

are physiologically important, and the fluorescent signal is released upon reduction to the 

amine. Using a similar strategy, Wang’s lab has developed a sulfonyl azidedansyl 

derivative, whose electrical and fluorescent properties are due to the different 

electronegativity of the azide and amine groups. H2S could be captured with a fluorescent 

probe to detect and visualize hydrogen sulfide. However, its slow kinetics are a 

disadvantage. 

To track changes in mitochondrial H2S content in living organisms, Mike Murphy’s 

team synthesized and characterized MitoA [186]. MitoA consists of an aryl azide coupled 

with a lipophilic triphenylphosphonium cation (TPP). In living organisms, the TPP cation 

causes MitoA to accumulate in the mitochondrial structures of the cell. The arylazide 

group forms MitoN, an arylamine species, when it interacts with H2S (Figure 35). 
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(d) groups.

In chemical synthesis, H2S is frequently used for the reduction of azido groups
(N3) [183] and aromatic nitro groups [184] to aniline derivatives due to its strong reducing
agent properties.

By attaching an N3 group to an SF1 rhodamine core, the research team led by Chang
was able to produce a selective probe for the detection of H2S. Such probes exhibit strong
selectivity for H2S over oxygen and nitrogen [185], two other reactive sulfur species that
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are physiologically important, and the fluorescent signal is released upon reduction to the
amine. Using a similar strategy, Wang’s lab has developed a sulfonyl azidedansyl derivative,
whose electrical and fluorescent properties are due to the different electronegativity of the
azide and amine groups. H2S could be captured with a fluorescent probe to detect and
visualize hydrogen sulfide. However, its slow kinetics are a disadvantage.

To track changes in mitochondrial H2S content in living organisms, Mike Murphy’s
team synthesized and characterized MitoA [186]. MitoA consists of an aryl azide coupled
with a lipophilic triphenylphosphonium cation (TPP). In living organisms, the TPP cation
causes MitoA to accumulate in the mitochondrial structures of the cell. The arylazide group
forms MitoN, an arylamine species, when it interacts with H2S (Figure 35).
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Therefore, the extent to which MitoA is converted to MitoN serves as an indicator of
the amount of H2S in the mitochondria of a living organism. Detection and quantification of
these chemicals in tissues can be performed with high sensitivity by liquid chromatography–
tandem mass spectrometry (LC-MS/MS), using deuterated internal standards for accurate
measurement.

Certain electrochemical techniques utilize the inherent reducing capability of sulfide
as a fundamental principle. A polarographic technique based on the oxidation reaction
between sulfide and ferricyanide can be used [175].

9.5. Methods Based on Nucleophilicity

H2S is considered a nucleophile that usually occurs as HS− under physiological pH
conditions. Consequently, it exhibits stronger nucleophilic activity than various other thiols
in the cellular environment, which are predominantly present in their protonated form
(RSH). The observed difference indicates specific advantages in terms of the nucleophilicity
of sulfur compared to thiols. For the selective detection of H2S, it is crucial to distinguish
H2S from other nucleophilic compounds present in biological systems, especially thiols
such as cysteine and glutathione. In a theoretical context, it is plausible to classify H2S
as an unmodified thiol that has the potential to perform two nucleophilic attacks. In
contrast, other thiols, such as cysteine, are capable of performing only a single nucleophilic
attack. In view of these considerations, probes containing electrophilic functions capable of
transforming in the presence of H2S have been described.

HS− is known for its strong nucleophilic properties, which allow it to readily bind
to electrophilic sites in luminescent compounds such as cyanine dyes. This approach has
been used in the development of radiometric H2S sensors, where fluorescence emission is
altered by disrupting an extended pi system [187–189].

This review introduces a novel radiometric fluorescence probe called CouMC, which
is described in a recently published research article. The functionality of this probe is
based on the process of selective nucleophilic addition of HS− to a merocyanine derivative
in a near-neutral pH environment. In addition to its ability to rapidly and specifically
detect H2S, this probe also shows potential for the selective visualization of H2S in the
mitochondria of living cells (Figure 36).
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Figure 36. Structures of ratiometric H2S probes that function by disrupting the conjugated p-system
within a fluorophore. Also shown is the process by which these probes react with H2S.

To construct the CouMC probe, an ethylene group was used to link a coumarin fluo-
rophore to an indole block. By aligning with the electrically positive benzopyrilium moiety
of the fluorescent probe, H2S can be distinguished from biothiols and other biological
products. This allows the probe to detect H2S based on a flavilium derivative.

The sensitivity of fluorescent probes can be of a considerable order of magnitude. The
Xian research group postulated that the introduction of a probe with two electrophilic
cores could potentially lead to selectivity for H2S, prompting them to investigate this
particular property. The synthesis of a fluorescein ester of thiosalicylic acid was achieved
by introducing a thiopyridyl disulfide functionality into the thiol group. This result was
achieved by a synthesis process. Active disulfides can undergo disulfide exchange reactions
with thiols and H2S. It is important to note that further rearrangement can only take place
with the disulfide intermediate generated from H2S. The rearrangement of the ester occurs
because of an intramolecular nucleophilic attack on the carboxyl carbon atom, resulting in
the release of benzodithiolone and a fluorophore [75] (Figure 37).
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Figure 37. Fluorescent probe for the detection of hydrogen sulfide on the basis of H2S-mediated
benzodithiolone formation.

Aldehydes and acrylates are two examples of electrophilic centers that have been used
in the development of probes. Hemithioacetal is formed by the addition of hydrogen ions to
the aldehyde compound. Subsequently, in a neutral pH aqueous solution, the nucleophilic
behavior of S is observed; S undergoes an intramolecular Michael addition, specifically
adding to the beta position of the α,β-unsaturated ester. The process described above leads
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to a cyclic thioacetal compound. The results of this research represent a significant advance
for Chuan’s research team, as they have effectively visualized the enzymatic production of
H2S in living cell systems [190] (Figure 38).
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Figure 38. Fluorescent probes and reaction of methyl (E)-3-(5-(3-(3,5-difluorophenyl)-1-phenyl-1H-
pyrazol-5-yl)-2-formylphenyl)acrylate with H2S.

9.6. Methods Based on the Ability to Bind Metal Cations

Another property that can be exploited for the detection of H2S is its remarkable
affinity for metals. Novel probes consisting of a fluorophore coupled with Cu2+ have been
developed. The precipitation of CuS and subsequent increase in fluorescence are the result
of H2S binding to the copper ion [191] (Figure 39).
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Figure 39. Use of azamacrocyclic copper(II) ion complex chemistry to modulate fluorescence in the
fluorescent probe for the detection of H2S, known as HSip-1.

10. H2S Donors

There is an urgent need for the development of novel chemical tools that facilitate
the controlled release of H2S to study its biological activities for research purposes and
potential therapeutic applications. This need arises from the frequently observed low
concentrations of endogenous H2S, which pose a challenge in studying its biological effects.
Different categories of hydrogen sulfide donors can release hydrogen sulfide at different
rates. Since a synthetic source of H2S is needed, chemists have developed chemical tools to
analyze H2S in biological contexts.

Given the problems associated with the direct administration of H2S gas in various bi-
ological contexts, inorganic sulfide salts such as sodium (NaSH) and sodium sulfide (Na2S)
are often used as alternative sulfide sources. Potential problems associated with these
salts include their susceptibility to oxidation, their volatility and/or shortened effective
residence time, and the rapid release of hydrogen sulfide upon dissolution, which can be
challenging in some contexts [192]. To address this problem, researchers have developed
and studied small H2S donors that release H2S at a controlled rate, like enzymatic H2S syn-
thesis [193]. Currently, there is a wide range of chemicals that are commonly used as donors
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of H2S. These compounds include aryl isothiocyanates [194], phosphinodithioates [195],
thioacids [196]/amides [197], dithiolethiones [198], thiolysis of protected trisulfides [199]
and persulfides [200]. In addition, the emission of carbonyl sulfide (COS) from thiocarba-
mates, followed by its conversion to H2S by the action of carbonate anhydrase [201], is also
considered to be a component of these donors.

10.1. Sulfur Salts

Inorganic salts, such as sodium acid sulfide (NaHS) and sodium sulfide (Na2S), were
historically the first compounds used and are still the most widely used to generate H2S.
These salts are very soluble in water and upon dissolution release a large amount of H2S
quickly, and for this reason, they are called fast-releasing donors (Figure 40).
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More recently, slow-releasing donors that gradually release small amounts of H2S
have been developed. These are usually organic compounds, and their effect more closely
resembles a physiological situation, where the gas is released at a low but constant rate [202].
One of the most widely used slow releasers is GYYY4137 [195]. In addition, peptide-based
releasers capable of releasing H2S in a more controlled manner are being explored [203].

10.2. Natural Donors

The human body is able to convert sulfur compounds contained in some foods such
as garlic, onions, mushrooms and selected edible legumes and fruits into hydrogen sulfide
through chemical or enzymatic processes. The compounds isolated from natural products
are polysulfides substituted with allyl residues. The garlic derivatives diallyl sulfide, diallyl
disulfide and diallyl trisulfide (DAS, DADS and DATS) are capable of releasing H2S in the
presence of GSH.

There has long been speculation about the possible health benefits associated with the
consumption of garlic.

The major bioactive compound in freshly pressed garlic and certain other Allium
plants is allicin [204]. Allicin is a naturally occurring compound that is chemically syn-
thesized during the mechanical crushing of a garlic clove [205]. The compound exhibits
inherent instability and is converted into many secondary metabolites that possess bioactive
properties. Allicin and its secondary metabolites are a class of organosulfur compounds
(OSCs) that exhibit various physiological functions, such as anticancer properties, activ-
ity against pathogenic organisms, modulation of the gut microbiota and antioxidant and
anti-inflammatory effects. Their effects on pathogenic organisms include antibacterial,
antifungal, antiviral and antiparasitic activities [206] (Figure 41). Numerous studies have
demonstrated the following beneficial effects of garlic on cardiovascular health: (i) reduc-
ing blood pressure, (ii) reducing blood cholesterol levels and aggregation of platelets and
(iii) reducing oxidative stress. S-allyl-l-cysteine (SAC) is proposed to be responsible for the
cardioprotective effects of garlic.
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Figure 41. The biological functions of allicin and its secondary metabolites.

When garlic cloves are crushed or chopped, the enzyme allinase, which is stored in
the vacuoles, is released. When it comes into contact with the cytosolic allicin, it converts it
into a series of thiosulfinates, of which allicin is the best known (Figure 42).
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Figure 42. Enzymatic conversion of allin to allicin. Two molecules of 2-propenesulfenic acid interact
to form allicin and remove water.

The chemical compound allicin exhibits a high degree of instability, as it is susceptible
to decomposition and subsequent rearrangement, which leads to the formation of various
organosulfur compounds (Figure 43).

Ajoene is a colorless liquid containing a sulfoxide group and a disulfide group and is
found as a mixture of up to four stereoisomers and two geometric isomers (E-Z) due to the
chirality of sulfoxide (R-S). This chemical that gives garlic its distinctive aroma and flavor
is released when the cloves are mechanically crushed or cut. To synthesize ajoene, allicin is
dissolved in various solvents, such as edible oils. It has antioxidant properties and thus
prevents the formation of superoxides. In addition, it shows antithrombotic and antiviral
effects, especially against vaccinia, herpes simplex, rhinovirus, human parainfluenza virus
and vesicular stomatitis virus. In addition, ajoene has been observed to have an inhibitory
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effect on integrin-mediated viral mechanisms in the context of HIV infections. In addi-
tion, this molecule has shown antibacterial and antifungal properties, particularly against
Candida albicans and Tinea pedis infections.
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The chemical composition of the garlic juice produced by the mechanical crushing of
the garlic cloves differs significantly from that of the intact garlic clove, particularly with
regard to the content of organosulfur components. Unprocessed garlic consists mainly of
sulfur derivatives (Figure 44).

Cells 2023, 12, x FOR PEER REVIEW 32 of 48 
 

 

 

Figure 44. The main compounds found in intact garlic cloves. 

The proposed mechanism of H2S release from DADS by GSH attack of sulfur to form 

an allyl perthiol is shown in Figure 45. Similarly, red blood cells rapidly released H2S from 

diallyl disulfide (DADS) under oxygen deprivation and in the presence of glutathione 

[199]. 

 

Figure 45. Proposed mechanism of H2S release from trisulfide in the presence of GSH by initial GSH 

attack on sulfur and a second GSH attack on α-carbon with the formation of S-allyi glutathione. 

The identification of DATS signifies the early recognition of a garlic-derived chemical 

that possesses vasoactive properties as well as a marked ability to selectively inhibit the 

proliferation of cancer cells [207]. Garlic-derived chemical compounds are commonly 

known as precursors of H2S during the absorption and metabolization process in the 

circulatory system. 

The antiviral potential of garlic and its CSOs has been demonstrated in both in vivo 

and in vitro studies against a variety of viruses, including those belonging to the families 

Adenoviridae, Arteriviridae, Coronaviridae, Flaviviridae, Flaviviridae, Herpesviridae, 

Orthomyxoviridae, Picornaviridae, Paramyxoviridae, Poxviridae, Rhabdoviridae and 

Retroviridae. Blocking viral entry and fusion into host cells; inhibiting viral RNA 

polymerase, reverse transcriptase and viral replication; and enhancing the host immune 

response are the primary mechanisms by which garlic and its CSOs exert their antiviral 

activity. Garlic and its CSOs were also responsible for enhancing the host immune 

response. Further research is needed to better understand the properties of garlic and its 

active compounds, known as CSOs, in relation to their role in antiviral therapy. This 

means that additional research needs to be conducted focusing on the pharmacokinetics 

and clinical aspects of the therapeutic effect of garlic. 

Figure 44. The main compounds found in intact garlic cloves.

The proposed mechanism of H2S release from DADS by GSH attack of sulfur to form
an allyl perthiol is shown in Figure 45. Similarly, red blood cells rapidly released H2S from
diallyl disulfide (DADS) under oxygen deprivation and in the presence of glutathione [199].
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Figure 45. Proposed mechanism of H2S release from trisulfide in the presence of GSH by initial GSH
attack on sulfur and a second GSH attack on α-carbon with the formation of S-allyi glutathione.

The identification of DATS signifies the early recognition of a garlic-derived chemical
that possesses vasoactive properties as well as a marked ability to selectively inhibit the
proliferation of cancer cells [207]. Garlic-derived chemical compounds are commonly
known as precursors of H2S during the absorption and metabolization process in the
circulatory system.

The antiviral potential of garlic and its CSOs has been demonstrated in both in vivo
and in vitro studies against a variety of viruses, including those belonging to the families
Adenoviridae, Arteriviridae, Coronaviridae, Flaviviridae, Flaviviridae, Herpesviridae, Orthomyx-
oviridae, Picornaviridae, Paramyxoviridae, Poxviridae, Rhabdoviridae and Retroviridae. Blocking
viral entry and fusion into host cells; inhibiting viral RNA polymerase, reverse transcriptase
and viral replication; and enhancing the host immune response are the primary mecha-
nisms by which garlic and its CSOs exert their antiviral activity. Garlic and its CSOs were
also responsible for enhancing the host immune response. Further research is needed to
better understand the properties of garlic and its active compounds, known as CSOs, in
relation to their role in antiviral therapy. This means that additional research needs to be
conducted focusing on the pharmacokinetics and clinical aspects of the therapeutic effect
of garlic.

Other natural sulfur compounds extracted from other plants are isothiocyanates (or
sulforaphane), present in cabbages such as broccoli and cauliflower, and erucin, present in
seeds and leaves of rocket [101,208], (Figure 46).
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10.3. Synthetic H2S Donors

Organic hydrogen sulfide donors, unlike inorganic sulfide salts, are capable of produc-
ing a continuous and regulated release of hydrogen sulfide in concentrations comparable to
endogenous conditions. Many different types of organic H2S donors have been developed,
and the methods by which they produce H2S are as diverse as possible. To advance the
development of novel H2S-releasing donors, scientists have begun to alter the chemical
compositions of extensively characterized substances known for their sulfur-releasing
properties. Examples include donors activated in response to hydrolysis; to endogenous
species such as thiols, ROS and enzymes; and to external stimuli such as photoactivation
and bioorthogonal chemistry. Another possibility for the release of H2S is the use of the
catalyzed hydrolysis of carbonyl sulfide (COS) by carbonic anhydrase. Figure 47 shows the
published H2S donors, grouped according to their activation mechanism [209–211].



Cells 2023, 12, 2684 31 of 45

Cells 2023, 12, x FOR PEER REVIEW 33 of 48 
 

 

Other natural sulfur compounds extracted from other plants are isothiocyanates (or 

sulforaphane), present in cabbages such as broccoli and cauliflower, and erucin, present 

in seeds and leaves of rocket [101,208], (Figure 46). 

 

Figure 46. Natural sulfur compounds present in plants that have been associated with the formation 

of hydrogen sulfide. 

10.3. Synthetic H2S Donors 

Organic hydrogen sulfide donors, unlike inorganic sulfide salts, are capable of 

producing a continuous and regulated release of hydrogen sulfide in concentrations 

comparable to endogenous conditions. Many different types of organic H2S donors have 

been developed, and the methods by which they produce H2S are as diverse as possible. 

To advance the development of novel H2S-releasing donors, scientists have begun to alter 

the chemical compositions of extensively characterized substances known for their sulfur-

releasing properties. Examples include donors activated in response to hydrolysis; to 

endogenous species such as thiols, ROS and enzymes; and to external stimuli such as 

photoactivation and bioorthogonal chemistry. Another possibility for the release of H2S is 

the use of the catalyzed hydrolysis of carbonyl sulfide (COS) by carbonic anhydrase. 

Figure 47 shows the published H2S donors, grouped according to their activation 

mechanism [209,210,211]. 

 

Figure 47. Organic H2S donors and the mechanisms by which they produce H2S. Figure 47. Organic H2S donors and the mechanisms by which they produce H2S.

10.4. H2S and •NO Hybrid Synthetic Donor

It is synthesized from S-(prop-2-yn-1-yl)-L-cysteine by reaction with di-tert-butyl dicar-
bonate and subsequent reaction of N-(tert-butoxycarbonyl)-S-(prop-2-yn-1-yl)-L-cysteine
with 3-(hydroxymethyl)-4-phenyl-1,2,5-oxadiazole 2-oxide (Figure 48).
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Figure 48. Chemical synthesis of ZYZ-803.

ZYZ-803 is a synthetic H2S and •NO donor, in vitro and in vivo, and its potency
appears to be higher than that of the H2S and/or •NO donor. ZYZ-803 also stimulates H2S
production from CSE and •NO production from eNOS [212,213].
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Despite the remarkable development and study of H2S donors, there is an absence of
compounds that can address all the requirements for the perfect H2S donor in clinical studies.

10.5. Mitochondrial H2S Donors

AP39 [214], AP123 [215] and MitoPerSulf [216] as new donors of slowly released
hydrogen sulfide to the mitochondria are shown in Figure 49.
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Figure 49. Mitochondrial H2S donors.

H2S donors with a slow mitochondrial release rate, such as AP39 and AP123, are
>1000 times more potent than Na2S against hyperglycemia-induced oxidant production
and also have a beneficial effect on cellular bioenergetics in endothelial cells [215].

The thiocarbonyl group of the 1,2-dithiole-3-thione of AP39 is hydrolyzed to form the
corresponding 1,2-dithiole-3-one (RT01) and releases H2S. RT01 undergoes further hydrol-
ysis to release H2S and generate a series of unknown products. The mechanism of H2S
release by AP123 involves the hydrolysis of the thiocarbonyl group of the thiobenzamide
to form the corresponding amide and releases H2S (Figure 50).
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Figure 50. H2S release mechanism by AP39 and H2S release mechanism by AP123.

MitoPerSulf is rapidly taken up by the mitochondria, where it reacts with endogenous
thiols to generate a persulfur intermediate that releases H2S. MitoPerSulf reacts with thiols
such as GSH to rapidly form persulfide, MitoNAP-SSH and GSCOPh. In the presence of
excess GSH, GSSH forms H2S by forming GSSG which can react with MitoNAP-SH to form
MitoNAP-SSG (Figure 51).
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Figure 51. Reaction mechanism of thiol-dependent H2S release by MitoPerSulf. Reactions with GSH
are shown.

The facilitation of the internalization of MitoPerSulf into the mitochondria is enhanced
by the incorporation of the triphenylphosphonium group (TPP), which has a special affinity
for the mitochondria. Upon entry into the intended environment, the benzoyl thioester
is cleaved due to its interaction with the thiols, resulting in the formation of the labile
persulfide compound known as MitoNAP-SSH. The mitochondrial thiols play a crucial
role in the persulfidation processes associated with each persulfide. The previously de-
scribed persulfides show a remarkable propensity to generate hydrogen sulfide and to
form disulfides when they interact with other thiols.

11. Hydrogen Sulfide as a Therapeutic Agent
11.1. Garlic Source of H2S Supplements

Garlic has a unique aroma and is a popular ingredient in many dishes. It contains
several bioactive components such as polysaccharides, organic sulfides, saponins and
phenolic chemicals. Garlic contains organic sulfides such as allicin, alliin, diallyl sulfide,
diallyl disulfide, diallyl trisulfide, ajoene and S-allyl cysteine, which are its main bioactive
constituents. The bioactive components of garlic have numerous biological effects, such as
reducing inflammation, protecting the cardiovascular system, fighting cancer, preventing
diabetes, reducing obesity, protecting the nervous system, preventing kidney damage and
fighting bacteria and fungi. Through a mechanism involving the reduction of thiols in or
on the cell membrane, human red blood cells or rat aortic rings can convert garlic-derived
organic polysulfides into hydrogen sulfide [199].

The formation of H2S during the decomposition of organic polysulfides is enhanced
by the presence of allylic substituents and an increasing number of sulfur atoms attached
to the molecule. In view of the new information obtained, it is conceivable that changes
can be made to the compound S-allylcysteine (SAC) found in garlic. The result was a novel
molecule called S-propargyl cysteine (SPRC), which is capable of releasing H2S. It was
successfully synthesized and proved to be resistant to oxidation in the presence of air [217].
The administration of SPRC (ip) showed a reduction in cognitive impairment caused by
intracerebroventricular injection of LPS in rats. The administration of SPRC effectively
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reduced the lipopolysaccharide (LPS)-induced decrease in H2S levels in the hippocampus
of rats.

The proven anticancer effect of allicin and its secondary metabolites suggests promis-
ing prospects, even if the practical application of this compound as a pharmaceutical drug
is still a long way off. Further experiments are needed to improve the effectiveness of this
treatment in fighting cancers of the digestive tract. Garlic is characterized by its non-toxicity
or relatively low toxicity. Further studies are needed to explore the potential effects of
fermentation or heat treatment of garlic, as these processes may affect the physiological
functions and safety aspects of garlic. Additional clinical studies are needed to validate
the putative therapeutic benefits of garlic in human cohorts, with particular attention to
thoroughly assessing any adverse effects and ensuring overall safety.

11.2. Sulfur Drugs and Their Therapeutic Potential

Functional groups produced from sulfur exhibit a wide range of pharmacological
properties and serve as valuable resources for the development of new therapeutic drugs.
Pharmaceutical compounds containing sulfur in their chemical composition have the
potential to either (i) release H2S or (ii) affect its endogenous synthesis. The ability of
pharmaceutical compounds to release H2S has the potential to increase their biological
efficacy and provide additional therapeutic benefits, but it can also lead to unfavorable
outcomes. The action of sulfur groups and the emission of H2S from the active ingredient
may affect the pharmacological activity of routinely used drugs.

Drugs with various therapeutic purposes, such as antihypertensive drugs, antibacterial
agents, analgesics, anticancer drugs and anti-inflammatory compounds, may contain
detectable amounts of sulfur (Figure 52).
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Figure 52. Examples of approved and used drugs containing sulfur-containing functional groups or
residues and therapeutic applications.

It is assumed that the activities of these compounds are related to their ability to release
hydrogen sulfide [218]. Drugs that are capable of releasing H2S have been synthesized as a
strategy to enhance their effects or to reduce the adverse effects of treatments. For example,
a H2S-releasing derivative of aspirin was effective in protecting the stomach mucosa against
gastric damage from regular aspirin in rats [219]. Figure 53 shows the H2S-releasing aspirin
derivative (ACS14) and aspirin.
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It has been postulated that H2S in combination with non-steroidal anti-inflammatory
drugs (NSAIDs) may act as a mediator inducing an anti-inflammatory response. Studies
have shown that non-steroidal anti-inflammatory drugs (NSAIDs) that release H2S have
increased efficacy and/or improved safety characteristics. Recent evidence has shown
that gaseous mediators can improve blood circulation; attenuate oxidative stress; protect
gastrointestinal mucosa from damage; enhance the anti-inflammatory properties of non-
steroidal anti-inflammatory drugs (NSAIDs), and promote the resolution of inflammation,
angiogenesis and epithelialization [220].

A diclofenac derivative showed a greater anti-inflammatory effect than diclofenac [220].
H2S-releasing l-DOPA derivatives (ACS83, ACS84, ACS85 and ACS86) (Figure 54) were
synthesized and studied for the treatment of Parkinson’s disease [221].
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11.3. Balneotherapy and H2S

Balneotherapy in sulfurous waters, although effective on its own, is even more effective
when applied in conjunction with a pelotherapy treatment with peloids with sulfurous
components or with hydro-hypnotherapy with sulfurous water. Pelotherapy, in chronic
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rheumatic pathology, consists of local application by means of plasters on the affected areas,
or the immersion of the whole body in the peloid at a high temperature (39–48 ◦C), for
20–30 min, during 12–15 days of treatment. In natural antioxidant peloids (NAPs), a special
clay is combined with sulfurous mineral medicinal water (AMmS), rich in H2S (13 mg/L),
which is used in rheumatological, vascular and dermatological treatments, with excellent
medical results, especially in the elderly. Sludges made with AMmS, with a recognized
antioxidant capacity, due to the effective presence of H2S, are those that have been shown
to have the greatest therapeutic capacity.

Studies carried out solely with sulfurous waters in balneotherapy, pelotherapy and
drinking water in patients with osteoarthritis/arthrosis (OA) reveal that these waters
increase the levels of H2S in plasma after the three types of treatment together [222] and
that in general they have an antioxidant effect [223,224] and improve patient mobility and
overall quality of life.

12. Conclusions

The identification of the endogenous synthesis of H2S in mammals and the observation
that small amounts of H2S have modulatory effects led to the notion that H2S plays a
regulatory role by influencing biological processes through its interaction with specific
target proteins [152,225].

The cellular production of small amounts of H2S has several signaling functions. While
high levels of H2S are extremely toxic, enzymes in the body can detoxify it by oxidation to
harmless sulfate.

H2S has attracted considerable interest as a potential pharmacological target and as an
important endogenous gas mediator. Drugs that can release H2S slowly are being designed
to act beneficially on a variety of diseases. The efficacy, safety and mechanism of action are
not fully understood.

Several research papers have addressed the therapeutic properties of externally ad-
ministered H2S, suggesting that the use of H2S donor medications may be beneficial for
specific pathological conditions. For example, the administration of exogenous H2S drugs
was found to improve blood vessel function in animal models of diabetes, suggesting a
potential therapeutic benefit for diabetic patients. It has been observed that exogenous H2S
administration promotes angiogenesis, the process of blood vessel formation. This finding
suggests that H2S may be a potential therapeutic intervention in chronic ischemic diseases.

In further research, it is essential to comprehensively evaluate other biological func-
tions of garlic while isolating and identifying the specific chemicals contained in garlic.
Further research should be conducted to further explore the underlying mechanisms by
which garlic exerts its effects. In addition, more clinical studies should be carried out to
confirm the positive effects of garlic on human health. The risks and negative consequences
of garlic consumption should be emphasized.
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