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Abstract: Cardio complications such as arrhythmias and myocardial damage are common in COVID-19
patients. SARS-CoV-2 interacts with the cardiovascular system primarily via the ACE2 receptor. Car-
diomyocyte damage in SARS-CoV-2 infection may stem from inflammation, hypoxia–reoxygenation
injury, and direct toxicity; however, the precise mechanisms are unclear. In this study, we simulated
hypoxia–reoxygenation conditions commonly seen in SARS-CoV-2-infected patients and studied the
impact of the SARS-CoV-2 spike protein RBD-epitope on primary rat cardiomyocytes to gain insight
into the potential mechanisms underlying COVID-19-related cardiac complications. Cell metabolic ac-
tivity was evaluated with PrestoBlueTM. Gene expression of proinflammatory markers was measured
by qRT-PCR and their secretion was quantified by Luminex assay. Cardiomyocyte contractility was
analysed using the Myocyter plugin of ImageJ. Mitochondrial respiration was determined through
Seahorse Mito Stress Test. In hypoxia–reoxygenation conditions, treatment of the SARS-CoV-2 spike
RBD-epitope reduced the metabolic activity of primary cardiomyocytes, upregulated Il1β and Cxcl1
expression, and elevated GM-CSF and CCL2 cytokines secretion. Contraction time increased, while
amplitude and beating frequency decreased. Acute treatment with a virus RBD-epitope inhibited mi-
tochondrial respiration and lowered ATP production. Under ischaemia-reperfusion, the SARS-CoV-2
RBD-epitope induces cardiomyocyte injury linked to impaired mitochondrial activity.

Keywords: cardiomyocytes; SARS-CoV-2 infection; COVID-19; mitochondrial respiration; contractions;
hypoxia–reoxygenation; oxidative stress

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a global pan-
demic of coronavirus disease 2019 (COVID-19). This is a novel coronavirus from a large
family of single positive-stranded, enveloped RNA viruses. It can be transmitted person-
to-person through secretions from respiratory droplets or contact with contaminated sur-
faces [1]. SARS-CoV-2 infection severity and lethality increased with age and in people
with concomitant pathologies—cardiac, respiratory, renal, hepatic diseases, diabetes, or
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obesity. Severe COVID-19 is characterised by extensive lung impairment, which can lead
to respiratory failure shock, and death. While respiratory symptoms continue to be the
primary characteristics of COVID-19, emerging data suggest that the virus can also affect
the cardiovascular system, leading to severe complications and potential long-term effects
on heart health. Common complications of COVID-19 are arrhythmias, cardiomyopa-
thy, thromboembolism, pulmonary embolism, disseminated intravascular coagulation,
haemorrhage and arterial clot formation, sepsis, shock, and multi-organ failure [2].

The viral life cycle consists of several steps, namely, entry, translation, replication,
assembly, and egress [3]. Most evidence points towards angiotensin-converting enzyme
2 (ACE2), being the primary receptor for SARS-CoV-2 entry into the cell. Infection by
SARS-CoV-2 commences when transmembrane protease serine II (TMPRSS2) cleaves the
virus spike proteins, exposing its receptor binding domain (RBD), which then binds to
ACE2 and initiates virus endocytosis within the cell. Although ACE2 is primarily expressed
in pulmonary alveolar type 2 progenitor (AT2) and respiratory epithelial cells, it is also
present in myocardial, ileum, and oesophagus tissues, as well as some kidney cells, with
low expression in immune cells [4]. Once inside a cell, viral RNA and proteins localise
to mitochondria. It is notable that the signalling pathways related to inflammation are
highly regulated by mitochondria [4–6]. There are studies that show that, by inducing
mitochondrial dysfunction and oxidative stress, SARS-CoV-2 may initiate a feedback loop
that promotes a chronic state of inflammation and endothelial damage [7,8].

According to a study by Ashraf, a hypothesis was made that SARS-CoV-2 enters the
cell after binding to the ACE2 receptor expressed on an endothelial cell of a blood vessel.
The virus then enables endothelial dysfunction, which causes vasoconstriction and, subse-
quently, ischaemia. Deprived of oxygen, the organ switches to anaerobic respiration, which
produces less ATP, creates an acidic environment, and can impair Na+/K+—ATPase and
Ca2+—ATPase pumps. Unable to remove sodium and calcium ions and water molecules,
cells begin to swell. In response to ischaemia, reperfusion occurs in which excessive reactive
oxygen species are generated, and a cytokine storm is initiated. Monocytes present in the
bloodstream enter the injured tissue as macrophages to start the process of phagocytosis.
However, due to oxidative stress, the macrophages are unable to perform their function
properly. The high intensity of inflammation results in organ damage [7]. In COVID-19
patients, ischaemia-reperfusion injury may contribute to myocardial damage, myocarditis,
and other cardiac complications [9–12]. It can also lead to a dysregulated immune re-
sponse, including producing proinflammatory cytokines, the hallmark of severe COVID-19
cases [11,13].

Cardiomyocytes are the main heart cells with expressed ACE2 receptors. If these
cells are damaged by the virus, it could lead to serious heart problems such as impaired
contractile function, disrupted electrical activity, and an imbalance of the renin-angiotensin–
aldosterone system, which can cause damage to the heart muscle [14]. However, there have
not been enough studies to fully understand how SARS-CoV-2 affects the cardiovascular
system. To gain a better understanding, we conducted a study on rat cardiomyocytes
using a virus RBD epitope for infection modulation. We simulated oxygen deprivation
and reoxygenation to provide insight into the potential mechanisms of COVID-19-related
heart complications, focusing on cellular functionality and mitochondrial respiration. Our
findings suggested that infected primary rat cardiomyocytes suffered from acute cardiac
insufficiency, followed by increased inflammation and impaired mitochondrial function
due to mitochondrial damage.

2. Results

Severe cases of COVID-19 are often linked to cardiac complications. One of the
possible causes of this is respiratory distress syndrome caused by coronaviruses, leading to
breathing difficulties, damage to blood vessels, disrupted blood flow, and reduced oxygen
intake. As a result, organs may not receive enough oxygen, causing hypoxia. The body then
tries to compensate for it by restoring oxygen levels, but this process can lead to oxidative
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stress and organ damage. Furthermore, since coronaviruses primarily enter cells through
ACE2 receptors, which are also found in cardiomyocytes, direct exposure to the virus
may contribute to heart complications. In addition, it is not clear what damage is caused
by viral signalling via ACE2 receptors after spike protein binding and what is induced
by viral infection and particle replication. To study the impact of SARS-CoV-2 receptor
binding on heart damage, we recreated hypoxia–reoxygenation conditions commonly seen
in individuals with COVID-19 and tested the SARS-CoV-2 epitope (SCoV2-epitope) effects
on rat cardiomyocytes.

2.1. SARS-CoV-2 Reduces Primary Cardiomyocyte Metabolic Activity

Initially, a preliminary study was conducted to analyse cell metabolic activity under
hypoxia–reoxygenation conditions using several SARS-CoV-2 spike protein RBD epitopes.
Only one RBD epitope, epitope 370–394, exhibited significant changes and was further
used for experiments.

To determine the effective concentration of SCoV2-epitope treatment, a dose-dependent
study was conducted using the PrestoBlueTM assay. The results showed that cell metabolic
activity was significantly altered by treatment with the SCoV2-epitope at doses of 100 ng/mL
and 500 ng/mL (Appendix B, Figure A2). Since the lowest significant dose was found to be
100 ng/mL, all subsequent experiments were conducted using this dose.

Later, PrestoBlueTM assay was performed to evaluate cell metabolic activity after
SCoV2-epitope treatment in normoxia and hypoxia–reoxygenation conditions. The ac-
quired results indicated a 17% reduction in the metabolic activity of untreated cells follow-
ing the cycle of hypoxia and reoxygenation compared to healthy cells (normoxia control)
(Figure 1). This result validates our hypoxia and reoxygenation model, as it was estab-
lished that cells undergo shifts in metabolic requirements during hypoxia, and the effort to
restore them during reoxygenation can lead to cellular component damage and impact cell
metabolic activity [15].
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Figure 1. SCoV2-epitope treatment effect on primary cardiomyocyte culture metabolic activity. In 
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Figure 1. SCoV2-epitope treatment effect on primary cardiomyocyte culture metabolic activity. In
normoxia, SCoV2-epitope treatment did not change cell metabolic activity. Treatment followed
by hypoxia and reoxygenation conditions significantly reduced the metabolic activity of primary
cardiomyocytes. Results are expressed as an average percentage of healthy cells (normoxia control)
± standard deviation. * p < 0.05; LSD post hoc test.

Direct treatment with SCoV2-epitope significantly did not change cell metabolic activ-
ity in normal conditions. However, in the hypoxia–reoxygenation group, the application
of SCoV2-epitope treatment resulted in a significant decline in cell metabolic activity of
16% and 33% compared to hypoxia–reoxygenation control cells and healthy cells, respec-
tively. Results suggest that the SCoV2-epitope suppresses metabolic activity of the primary
cardiomyocyte culture under hypoxia–reoxygenation conditions.
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2.2. SARS-CoV-2 Modulates the Immune Response in Primary Rat Cardiomyocytes
2.2.1. Changes in Gene Expression

COVID-19 is often associated with acute inflammatory response characterised by
increased levels of cytokines. During severe COVID-19 cases, extremely high cytokine
levels described as a cytokine storm are reported. To investigate if cardiomyocytes are
stimulated for cytokine production by spike protein RBD epitopes, the expression and
secretion of main proinflammatory cytokines associated with severe COVID-19 cases
were evaluated.

SCoV2-epitope treatment caused significant upregulation of proinflammatory cy-
tokines in primary cardiomyocytes under normal conditions compared to untreated cells
(Figure 2).
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Figure 2. Proinflammatory gene expression changes in rat cardiomyocyte cells after SCoV2-epitope
treatment for 24 h. Treatment caused a significant upregulation of Il-6, Cxcl1, and Il-1β under normal
conditions. Hypoxia and reoxygenation further induced Cxcl1 and Il-1β, but not Il-6 expression.
Treatment with SCoV2-epitope did not have significant effects on NF-kβ1 and TNF expression.
Results are normalised to untreated cells and represented as fold change values. * p < 0.05; ** p < 0.01;
Mann–Whitney U test.

Data show that Il-6, Cxcl1, and Il-1β expression was upregulated by 23%, 55%, and
110%, respectively. Hypoxia followed by reoxygenation did not increase Il-6 levels but
significantly induced Cxcl1 and Il-1β expression: Cxcl1 was found to be upregulated by
150%, while Il-1β expression was amplified by 330%.

SCoV2-epitope tended to elevate NF-kβ1 and TNF expression in both normoxia and
hypoxia–reoxygenation conditions; however, the differences were not significant. In addi-
tion, no significant differences in gene expression changes were observed between normoxia
and hypoxia–reoxygenation conditions.

2.2.2. Changes in Cytokines Secretion

Under hypoxia and reoxygenation conditions, primary cardiomyocytes treated with
SCoV2-epitope secreted TNFα, IL-1β, IL-6, GM-CSF, and CCL2 cytokines in their culture
medium (Figure 3). Among the cytokines measured, CCL2 exhibited the highest detected
levels, whereas IL-8 was not identified (data not presented). Interestingly, the Cxcl1 gene,
coding a rat IL-8, was notably upregulated in both conditions; however, proteins in the
culture medium were not detected. It might be that translated cytokine remained in the cell
and was not secreted. After exposing cells to SCoV2-epitope under hypoxia–reoxygenation
conditions, a significant rise in GM-CSF secretion was noticed compared to the control
group of cells that remained untreated in both standard and hypoxia–reoxygenation condi-
tions. GM-CSF contributes to inflammation by promoting the migration of immune cells to
infected or damaged tissues [16].
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Figure 3. Proinflammatory cytokine secretion by primary cardiomyocytes after treatment of SCoV2-
epitope for 24 h. Treatment caused a significant decrease in IL-6 and CCL-2 production in normoxia
and hypoxia–reoxygenation conditions. TNFα secretion notably decreased after SCoV2-epitope
exposure in both normoxia and hypoxia–reoxygenation conditions. A significant increase in GM-CSF
secretion was detected in hypoxia–reoxygenation after the SCoV2-epitope treatment. No significant
difference in IL-1β production after the epitope treatment was observed. Results are represented as
means ± SEM. * p < 0.05; LSD post hoc test.

In contrast, SCoV2-epitope treatment significantly reduced IL-6, CCL2, and TNFα
cytokine levels in normal and hypoxia–reoxygenation conditions. Notably, Il-1β gene
expression after SCoV2-epitope treatment was significantly upregulated in both normoxia
and hypoxia–reoxygenation conditions; however, no significant difference in secretion of
the protein into the medium after epitope treatment was detected. However, higher levels
of IL-1β were detected in hypoxia–reoxygenation groups, indicating this cytokine is most
likely released not by the virus itself but rather by hypoxia or hypoxia–reoxygenation,
which is also caused by the infection. When IL-1β is released in response to infection or
tissue damage, it activates other cytokines production, for instance, TNFα and IL-6 [17].
Low levels of IL-1β production might explain a decrease in TNFα and IL-6 cytokines
secretion, showing that such cytokines might not achieve their production peak.

Overall, the data indicate that treatment with SCoV2-epitope leads to an increase
in the secretion of proinflammatory cytokine GM-CSF while decreasing the secretion of
TNF-α, IL-6, and CCL2, which can contribute to the damage of primary cardiomyocytes
and potentially lead to cardiac failure.

2.3. SARS-CoV-2 Inhibits Cardiomyocyte Functionality

As the main heart cells, cardiomyocytes are responsible for rhythmic and efficient
contractions to pump blood throughout the body. In our study, we filmed cardiomyocyte
contractions in SCoV2-epitope-treated and -untreated cultures maintained in normoxia
and hypoxia–reoxygenation. Obtained videos were processed with the Myocyter macro
program on ImageJ software. Cardiomyocytes beating less than 20 times per minute,
fibrillating, or not beating were omitted from the evaluation.



Int. J. Mol. Sci. 2023, 24, 16554 6 of 17

In all experimental groups, regular beating was observed. Results showed that in all
the observed parameters, such as beating times, systolic contractions, diastolic contractions,
overall contraction time, and amplitude, statistically significant changes between control
primary cardiomyocyte groups and SCoV2-epitope-infected cardiomyocyte culture groups
were observed in both normoxia and hypoxia–reoxygenation conditions (Figure 4).
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Figure 4. Contraction parameters of primary rat cardiomyocyte culture after SCoV2-epitope exposure
for 24 h. Treatment significantly elongated systolic contraction, diastolic relaxation, and overall
contraction times in normoxia and hypoxia–reoxygenation conditions. In addition, the treatment
significantly decreased frequency and maximal amplitude. Results are presented as corresponding
parameters’ means ± standard deviation. * p < 0.05; Mann–Whitney U test.

Findings indicate that after SCoV2-epitope exposure, systolic contraction times in nor-
moxia and hypoxia–reoxygenation conditions increased by 2.5 and 1.2 times, respectively.
Diastolic relaxation time after virus RBD epitope treatment was elongated by 2 times in
normoxia and 1.2 times in hypoxia–reoxygenation conditions. In these parameters, the
interaction with epitopes had stronger effects in normoxia than hypoxia–reoxygenation
conditions; however, contraction time values in hypoxia–reoxygenation groups were higher.
Overall, contraction time after SCoV2-epitope treatment was raised approximately 1.2 times
in both conditions compared to the control culture.

Data demonstrated that SCoV2-epitope reduced primary cardiomyocyte culture con-
traction frequency compared to untreated cells in normoxia from 14.33 to 10.8 beats per
second and in hypoxia–reoxygenation conditions from 4.09 to 3.88 beats per second. In
addition, maximum amplitudes of cardiomyocyte contractions after SCoV2-epitope treat-
ment were lowered in both conditions more than 2 times (in normoxia 2.3 times and in
hypoxia–reoxygenation 2.4 times).

Research unveiled that SCoV2-epitope-affected primary cardiomyocytes in both nor-
moxia and hypoxia–reoxygenation conditions suffered from acute cardiac insufficiency,
which was determined by the decrease of beating time predisposed by the elongation
of systolic and diastolic times—systolic and diastolic dysfunction. A sharp decrease in
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amplitude was also observed, consistent with acute heart failure found in other works [18].
Our findings could be interpreted as the onset of acute heart insufficiency caused by the
SCoV2 infection, as observed in studies by Siddiq et al. [19].

2.4. SARS-CoV-2 Spike Epitope Effect on Mitochondrial Respiration of Cardiomyocytes

During viral infections, mitochondria play a significant role and act as the first line of
defence when it comes to viral inflammation. Viruses can affect mitochondrial function
and signalling pathways, influencing the immune response and overall cellular behaviour.

This study evaluated mitochondrial respiration after SCoV2-epitope interaction with
primary rat cardiomyocytes in normoxia and hypoxia–reoxygenation conditions. Cells’
energetic activity was evaluated by Seahorse Mito Stress assay. During real-time testing,
the oxygen consumption and pH levels in a cell culture medium were measured, allowing
the evaluation of mitochondrial respiration (oxygen consumption rate) and glycolysis
(extracellular acidification rate), respectively.

The results demonstrated that 24 h treatment of SCoV2-epitope did not cause any
significant effects on mitochondrial respiration in primary cardiomyocyte culture compared
to untreated cells in both conditions (Figure 5). Moreover, mitochondrial respiration tended
to be more active in hypoxia–reoxygenation groups than in normoxia, while glycolysis was
inclined to be less active in the same groups, although the differences were insignificant.
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Figure 5. The effect of 24 h SCoV2-epitope treatment on primary cardiomyocyte culture bioener-
getics after 48 h post-infection in normoxia and after 24 h hypoxia followed by 24 h reoxygenation.
Seahorse Mito Stress Test data. (a)—Oxygen consumption rate (OCR) representing the efficiency of
mitochondrial respiration. (b)—Extracellular acidification rate (ECAR) representing the efficiency of
glycolysis. No significant differences between treated and untreated cells were observed. Results are
presented as means ± standard deviations of each measurement time point.

Overall, in this study, we evaluated mitochondrial activity after 48 h post-treatment
with SCoV2-epitope in both normoxia and hypoxia–reoxygenation conditions, and no
significant effects of SCoV2-epitope treatment were observed. It is possible that, over this
period, cells activated their compensatory mechanisms. Therefore, another experimental se-
ries investigated the acute effect of 3 h SCoV2-epitope treatment on primary cardiomyocyte
culture mitochondrial activity. SCoV2-epitope acute treatment significantly inhibited basal
mitochondrial respiration and caused a 30% reduction in ATP production (Figure 6a,b).
Significant changes in glycolytic activity between experimental groups were not observed
(Figure 6c). Thus, SCoV2-epitope acute treatment affects cells’ energy phenotype, shifting
it towards more quiescent and glycolytic than in untreated cultures (Figure 6d). Moreover,
the SCoV2-epitope-primed cultures showed significantly increased metabolic potential of
mitochondrial respiration (Figure 6e). Metabolic potential refers to the capacity of cells
to fulfil an energy requirement through both mitochondrial respiration and glycolysis.
Together, these results suggest that acute treatment of SCoV2-epitope induces metabolic
energy redistribution of primary rat cardiomyocytes from mitochondrial to glycolytic.
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Figure 6. An acute 3 h exposure of SCoV2-epitope effects on primary cardiomyocyte culture bioen-
ergetics in normoxia assessed by Seahorse Mito Stress Test. (a)—Oxygen consumption rate (OCR)
representing the efficiency of mitochondrial respiration. The first three measurements signify the
baseline mitochondrial respiration. The subsequent three measurements, taken after inhibiting ATP
synthase with the addition of oligomycin, correspond to oxygen consumption stimulated by proton
leak. This is followed by three measurements representing the maximum capacity of mitochondrial
oxygen consumption, achieved when the inner mitochondrial membrane is uncoupled using FCCP.
Finally, the last three measurements account for oxygen consumption that is not related to mitochon-
dria, occurring when the mitochondrial respiratory chain is hindered by rotenone and antimycin
A. Data show that treatment suppressed mitochondrial respiration. (b)—Summary data calculated
from (a) curves. A significant decrease in basal respiration and ATP production was observed after
treatment with SCoV2-epitope. (c)—Extracellular acidification rate (ECAR) representing the efficiency
of glycolysis indicated no significant differences between treated and untreated cells. (d)—Cell energy
phenotype map showed an energy phenotype shift of treated primary culture. (e)—Represents the
ability of cells to meet energy demands via mitochondrial respiration and glycolysis. Results are
presented as means ± standard deviations. * p < 0.05; LSD post hoc test.

3. Discussion

COVID-19 is strongly associated with cardiovascular complications, such as arrhyth-
mias, cardiomyopathy, and myocardial damage [20]. It is known that SARS-CoV-2 interacts
with and affects the cardiovascular system primarily via the ACE2 receptor [9]. SARS-CoV-2
enters the cell through the ACE2 activation by TMPRSS2 cleaved virus spike protein [9].
Accumulated data in big research centres, like the Mount Sinai Health System, shows that
in the SARS-CoV-2-infected patient cohort, more than 10% are at risk of developing car-
diac dysfunction during infection [21]. Understanding possible pathological outcomes in
SARS-CoV-2 patients is beneficial for future treatment and follow-up strategies to prevent
the formation of heart insufficiency in the long term.

Infections of SARS-CoV-2 can cause damage to the heart for various reasons. These
include reduced oxygen levels caused by acute respiratory distress syndrome (ARSD),
hypoxia–reoxygenation injury [22], thrombi formation [23], direct injury to cardiomyocytes
due to viral infection [24], and the inflammatory state of infected patients [25]. One of
the outcomes of SARS-CoV-2 injury to cardiomyocytes is compromised contractility. This
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is a multifactorial outcome that is usually caused by inflammation [25], direct myofibril
injury [19], and mitochondrial impairment [26].

In this study, we simulated the hypoxia–reoxygenation conditions that are prevalent
among SARS-CoV-2-infected patients, including those who have ischaemic heart disease
and observed virus spike protein RBD epitope effects on primary rat cardiomyocytes, to
gain a better understanding of the potential mechanisms behind cardiac complications
associated with COVID-19. Overall, the study results corresponded with the majority of
other studies, which stated that ischaemic injury in the myocardium may have caused
outcomes of SARS-CoV-2 infection to be worse, as was disclosed in a meta-analysis by
Szarpak et al. [10].

Our study was conducted using rat primary cardiac cell cultures comprising approxi-
mately 70% of cardiomyocytes. Based on the literature, for ACE2 expression in rat neonatal
cardiac tissue, myocytes account for 96% of mRNA compared to fibroblasts, which repre-
sent only 4% of ACE2 mRNA [27]. Thus, cardiomyocytes are more susceptible to COVID-19
infection. Moreover, it is important to note that the SARS-CoV-2 spike RBD (amino acids
333–527) has two parts: the variable receptor binding motif (RBM) (amino acids 438–506)
and the conservative core RBD (rest of the region), participating in conformational changes
of RBD required for exposing RBM to open state and facilitating direct RBM–ACE2 interac-
tions [28]. Initially, our study tested the effects of active spike RBD-epitope 480–499 (part
of the ACE2–RBM interaction) on the primary cardiomyocyte culture, and no significant
changes in cell metabolic activity were observed. However, significant effects occurred
when the treatment was changed to spike RBD-epitope 370–394, which is the core RBD
part and does not interact directly with ACE2. In natural infection conditions, coronavirus
spike protein RBD epitope 370–394 contributes to the ACE2 signalling pathway [28]. How-
ever, in our study, the primary cardiomyocyte culture appears to show effects that might
be independent of ACE2. Interestingly, it is reported that core RBD residues that make
limited contact with ACE2 exhibit higher mutation frequencies than those involved in
direct binding to ACE2 [29] and are linked to SARS-CoV-2 variants [29], leading to more
severe complications and hospitalisation [30]. Thus, our study revealed effects on primary
cardiomyocyte culture specifically caused by spike core RBD-epitope 370–394.

Inflammation is one of the most prevalent pathways for cardiomyocyte injury. Our
study revealed upregulated Il-6, Cxcl1, and Il1β proinflammatory gene expression in pri-
mary cardiomyocytes after virus RBD-epitope exposure; however, a contradictory reduction
of main inflammatory cytokines secretion was observed. This can be explained by the
fact that during the acute phase of infection, there is an upsurge in cytokine production
and then, through a negative feedback mechanism, they are suppressed [31]. This phe-
nomenon was also noted by Abers et al. [32] when decreased longitudinal trajectories of
IL-1α were associated with an increased risk of death in SARS-CoV-2-infected patients
and by CCL2 decrease, which was also connected with poor prognosis in a study by
Pius-Sadowska et al. [33].

We also found an increase in GM-CSF, which many believe is responsible for the
detrimental hyperinflammatory response to COVID-19 [34,35]. In normal conditions,
GM-CSF controls the clearance of alveoli but, in cases of severe infection, it can secrete
reactive oxygen species and express elevated levels of other proinflammatory cytokines,
as noted in a study by Hamilton et al. [16]. Yet the increase of the main proinflammatory
factors IL-6 and TNFα was minimal. This might be because the spike S glycoprotein
of the coronavirus suppresses the production of IL-6 and TNFα [36]. Moreover, during
SARS-CoV-2 infection, IL-6 is internalised by immune cells and binds to the IL6R receptor,
activating the production of other cytokines such as GM-CSF, as reported in the KEGG
database [37]. Our study results showed IL-1β upregulation and protein secretion related
to NLRP3 inflammasome activity, which is also found in other studies [38].

In vitro, cardiomyocyte contractions can be used to mimic the changes in myocardial
contractions in vivo. We found that the SARS-CoV-2 spike protein RBD epitope significantly
affected cardiomyocyte contraction time, amplitude, and beating times. In line with our
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observations, beating times were significantly lower in virus-affected groups, as noted
in previous studies by Siddiq et al. [19]. In addition, our findings indicated a decrease
in contraction amplitude and elongated contraction time in cardiomyocytes, indicating
acute cardiac impairment. In this case, alterations in contractility during COVID-19 in
patients could decrease left ventricular ejection fraction (LVEF), which then leads to heart
insufficiency—a complication caused by virus infection damage to cardiomyocytes [19].

In our study, an interesting tendency of mitochondrial respiration activation and
glycolysis reduction after hypoxia–reoxygenation treatment was observed, which was also
noticed by Fuller et al. [39]. This could be attributed to increased Ca2+ deposits during
the ischaemic period [40] activating mitochondria respiration and reducing glycolysis in
reoxygenation [41]. In addition, other authors reported that muscle cells are less susceptible
to hypoxia–reoxygenation stress [42]. Such phenomenon can be explained by the fact that
during hypoxia, cells produce a lot of substrates required for respiration as a response
to oxygen deprivation and cellular stress; thus, after reoxygenation, cells employ these
molecules, resulting in increased respiration.

Like many other viruses, SARS-CoV-2 affects the immunometabolic system, causing
a Warburg-like shift [5]. According to bioinformatics analysis [43], the main molecular
mechanism of cardiac injury in SARS-CoV-2 infection is mitochondrial dysfunction. Our
results revealed that an acute infection by virus epitope suppressed mitochondrial respira-
tion in primary cardiomyocytes, resulting in decreased ATP production and redistributed
energy phenotype to more glycolytic. Interestingly, after 48 h post-infection, no difference
in virus RBD-epitope-treated and -untreated cardiomyocyte groups was observed. These
findings align with other authors’ conclusions [44], that in early infection stages, genes
responsible for mitochondrial respiration are downregulated, and in later stages, gene reg-
ulation is normalised, but the damage to mitochondria persists, potentially causing severe
COVID-19 complications. Disruptions in respiratory chain function and ATP generation
can be considered central components of mitochondrial dysfunction [45].

SARS-CoV-2 simulates and alters mitochondrial function using ACE2 regulation
and open-reading frames (ORFs) [26]. ORFs, such as ORF3a, can impair mitochondrial
homeostasis (biogenesis, fusion, fission, and mitophagy) and function [23]. A recent
study by Eirin et al. showed that cardiomyocyte mitochondrial damage could also happen
because of hypoxic conditions caused by ARDS and the appearance of microthrombi, which
is common in SARS-CoV-2 patients [22]. Several studies [46,47] indicated that patients with
already compromised mitochondrial function have a bigger risk factor for mitochondrial
damage and subsequently worse outcomes in SARS-CoV-2 infection. Ischaemic heart
disease prevalence, as shown by Zhang et al.’s [47] meta-analysis, also confirmed that
impaired mitochondrial respiration or a decrease in its ability to produce ATP can lead to
worse outcomes in SARS-CoV-2-infected patients.

Cardiomyocytes rely on mitochondrial oxidative phosphorylation to produce the
energy needed for contraction. When there is a decrease in the synthesis of ATP by
the mitochondria, it can negatively impact the function of the heart. In this study, we
found reduced cell metabolic activity after virus spike RBD-epitope 370–394 treatment in
hypoxia–reoxygenation conditions, together with suppressed mitochondrial respiration
and impaired contractility results, suggesting that cardiomyocyte injury by SARS-CoV-2 is
associated with mitochondrial damage, induced in the early stages of infection. Our work
might give some insights for future studies, concentrating on mitochondrial dysfunction in
SARS-CoV-2-infected patients and focusing on preventing cardiac damage.

4. Materials and Methods
4.1. Experimental Design

The experimental design of this study is illustrated in Figure 7. At first, primary car-
diomyocyte cultures were isolated from rat hearts, cultivated, and primed with 100 ng/mL
SARS-CoV-2 spike protein RBD epitope 370–394 (Sigma-Aldrich, St. Louis, MO, USA) for
24 h. Treated groups are referred to as Spike groups. An unprimed primary cardiomyocyte
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culture was used as a control. Further, both groups were maintained in standard conditions,
referred to as normoxia. In parallel, other groups of primed and unprimed cells were kept
in a hypoxic chamber for 24 h at 37 ◦C, 2% oxygen, 5% carbon dioxide, and 92% nitrogen
gas. Prior to a transfer to hypoxic conditions, the cell culture medium was replaced with
a hypoxic medium (standard growth medium kept in a hypoxic chamber for 24 h). After
incubation, the medium changed to the standard growth medium again and then, cells
were placed in a cell culture incubator for the next 24 h for reoxygenation. In short, 24 h
hypoxia (2% oxygen) was followed by 24 h reoxygenation. Further, these cell groups in
hypoxia–reoxygenation conditions were referred to as Control and Spike. Overall, four ex-
perimental groups were obtained: two in normoxia and two in hypoxia–reoxygenation
conditions. Later, cell viability was assessed. Also, inflammatory cytokines gene expres-
sion was evaluated, and protein production was determined in a cell culture medium.
In addition, cell contractions and mitochondrial respiration were analysed. During cell
functionality assay, adrenaline was applied to stimulate cell activity before the experiment.
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Figure 7. Experimental design scheme. Primary rat cardiomyocytes were treated with SARS-CoV-2
spike protein RBD-epitope, then, for 24 h, were kept in hypoxic conditions followed by 24 h reoxy-
genation and parallel were kept in normoxia for 48 h. Afterwards, primary cardiomyocyte culture
was tested for inflammatory markers, and cell contractions and mitochondrial respiration were
analysed.

4.2. Primary Culture of Cardiomyocyte Cells

Primary cardiomyocyte cells were prepared from neonatal rat pups according to a
modified protocol from Toraason et al.’s [48] study. All investigation procedures were
performed according to the Republic of Lithuania Law on the Care, Keeping, and Use of
Animals. The rodents were maintained at the Lithuanian University of Health Sciences
animal house in agreement with the ARRIVE guidelines.

For isolation of cardiomyocytes, 4–6-day-old neonatal Wistar rats were sacrificed by
decapitation using sterile scissors, and the chest was opened to extract the heart. The
heart was removed using sterile sharp-end forceps and transferred in cold (+4 ◦C) HBSS
(GIBCO®, Life Technologies Limited, Inchinnan, UK), without Ca2+ and Mg2+ ions, solution.
The hearts were dissected: the pericardium and both atria were removed with sterile
instruments. The hearts were then cut into smaller pieces and centrifuged at 100× g speed
for 3 min to separate and remove any remaining blood. The pellet was resuspended in 2.5%
trypsin-EDTA (GIBCO®, Life Technologies Limited, Inchinnan, UK) solution supplemented
with papain solution (10 UA for one heart), and then incubated in the fridge overnight. After
incubation, cells were homogenised with Pasteur pipettes. The primary cell suspension was
centrifuged at 500× g for 5 min, twice. The supernatant was removed and the pellet was
resuspended in growth medium—DMEM with GlutaMAXTM (GIBCO®, Life Technologies
Limited, Inchinnan, UK) supplemented with 10% of foetal bovine serum (FBS) (GIBCO®,
Life Technologies Limited, Inchinnan, UK) and 1% penicillin–streptomycin (GIBCO®, Life
Technologies Corporation, Carlsbad, CA, USA). The cell suspension was filtered through a
40 µm pore size strainer. Afterwards, cells were counted using Trypan Blue Solution (Sigma-
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Aldrich, Gillingham, UK) via a haemocytometer chamber and seeded for experiments in
cell culture dishes, covered with 0.1% gelatine, and kept at 37 ◦C and 5% CO2 incubator.

According to morphological assessment by specific actin pattern stained with Alexa
Fluor™ 568 Phalloidin (Thermo Fisher Scientific, Cambridge, UK), the isolated primary
culture comprised 65–70% cardiomyocytes, 25–30% fibroblasts, and up to 10% endothelial
cells. Cardiac muscle fibres are composed of myofibrils that are defined by a homoge-
nous succession of transverse stripes containing repeating individual units. Cytoskeleton
from actin forms the scaffold of the cell, as it regulates shape, pattern, and, importantly,
structure framework [49]. A representative image of a primary cardiomyocyte is shown in
Appendix A Figure A1.

4.3. Cell Metabolic Activity Evaluation

Cell metabolic activity was evaluated using PrestoBlueTM Cell Viability Reagent
(InvitrogenTM, Life Technologies Limited, Cambridge, UK). It is a membrane-permeable,
non-toxic, and resazurin-based solution, due to which living cells undergo the reduction
process of non-fluorescent resazurin to highly fluorescent resorufin. The conversion rate
is directly correlated with cell metabolic activity; therefore, it can be used as a cell health
indicator to accurately quantify cell viability. The experiment was performed according to
the manufacturer’s protocol. First, cells were seeded to two 96-well plates at a density of
8 × 104 cells/well. One plate was kept at normoxia conditions; the other was transferred
to 24 h hypoxia followed by 24 h reoxygenation. The medium in the wells was changed
after hypoxia and after normoxia. Cell metabolic activity was evaluated 48 h after the cells
were seeded, then 10 µL of PrestoBlueTM reagent was combined with 90 µL of cell culture
medium in each well of a 96-well plate. The plate was then stored in the dark at 37 ◦C for
30 min. After incubation, the medium was collected and put into the non-translucent black
plate for fluorescence assessment by multimode plate reader Infinite 200 Pro M Nano Plex
(Tecan, Männedorf, Switzerland) at 560 nm (excitation) and 590 nm (emission) wavelengths.
The results were expressed as an average percentage of control cells in normoxia ± standard
deviation.

4.4. Gene Expression Assay

Primary rat cardiomyocyte cells were seeded in a 12-well plate at 2 × 105 cells per
well and incubated overnight for cell attachment under standard conditions. On the day
of the experiment, cells were treated with SARS-CoV-2 Spike protein epitope for 24 h. For
hypoxia–reoxygenation experiments, cells were incubated under hypoxic conditions and
then reoxygenated for 24 h. After incubation, the total RNA extraction procedure was
performed using PureLink RNA mini kit (Thermo Fisher Scientific, Vilnius, Lithuania)
according to the manufacturer’s manual and single-stranded cDNA was synthesised by
High-Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific, Vilnius, Lithua-
nia). Real-time quantitative PCR using Power SYBR green chemistry (Thermo Fisher
Scientific, Vilnius, Lithuania) was performed to evaluate changes in interleukin 6 (IL-6),
C-X-C motif chemokine ligand 1 (Cxcl1), interleukin 1 beta (IL-1β), tumour necrosis factor
(TNF), and nuclear factor kappa beta subunit 1 (NF-kβ1) gene expression. The glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH) gene was used as an endogenous control.
Changes in relative gene expression were normalised to untreated cells and represented as
fold change values. The sequences of PCR primers used are listed in Appendix C Table A1.

4.5. Detection of Inflammation Protein Markers

The production of inflammation protein markers was evaluated in cell culture super-
natants. Cytokines IL-1β, 6, TNFα, granulocyte-macrophage colony-stimulating factor
(GM-CSF), and monocyte chemoattractant protein-1 (CCL2) were quantified using Rat
Custom ProcartaPlex Mix&Match 5-Plex Kit (Thermo Fisher Scientific, Vilnius, Lithuania),
while IL8 was quantified using Rat ELISA Kit (Abbexa Ltd., Cambridge, UK). All proce-
dures were performed according to the manufacturers’ provided protocols. In general, for
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multiplex immunoassay, cell culture supernatants were incubated with specific antibodies
captured to different microbead regions, and then those complexes were labelled by sec-
ond antibodies with distinct fluorescent probes and the fluorescence signals that occurred
were measured by Luminex® 100/200 xMAP instrument (Luminex Corporation, Austin,
TX, USA). The results were analysed by ProcartaPlex Analyst 1.0 software (Affymetrix,
Santa Clara, CA, USA). For the ELISA plate, an optical density at 450 nm wavelength was
measured by multimode plate reader Infinite 200 Pro M Nano Plex (Tecan, Männedorf,
Switzerland).

4.6. Assessment of Cell Functionality

For the evaluation of the functionality of cardiomyocytes, their contraction parameters
were analysed. Primary cell culture was cultivated for 5–7 days until the first contractions
appeared. All four experimental groups remained as previously described in Section 4.1.
Prior to the evaluation, cells were stimulated with a 0.1 mM adrenaline (Warszawskie
Zaklady Farmaceutyczne Polfa, Warsaw, Poland) solution in a growth medium for 10 min
at 37 ◦C. After incubation, primary cardiomyocyte cultures were investigated with a light
microscope Leica DMi1 (Leica Microsystems, Veclar, Germany) at 40-fold magnification
to capture single cardiomyocytes. Videos of contractions were recorded using the Leica
camera system. The obtained videos were analysed using the Myocyter plugin for ImageJ
software (version 1.52a), as described by Grune et al. [50]. Cells with apparent contractions
were marked and their amplitude changes over time were plotted in a graph (Figure 8).
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Figure 8. Plotted example of the numerical output of the Myocyter plugin.

The amplitude is artificially divided by thresholds at 10, 20, 50, and 90% and was recal-
culated for every single recognised contraction. The contractions represent the difference
between the local minima and the following maxima. The distance between two subsequent
maxima determines the contraction time. We chose to evaluate the contraction time from a
10% threshold to a 90% threshold of the amplitude (both systolic and diastolic) to avoid
any excessive deviations. Also, the program allows the measurement of the maximum
amplitudes and contraction frequency. Summarised graphical images were created with
GraphPad Prism 9.0.0 (Dotmatics, Boston, MA, USA).

4.7. Evaluation of Mitochondrial Respiration

The mitochondrial respiration functionality of cardiomyocytes was assessed by Sea-
horse XFp Analyser (Agilent Technologies, Santa Clara, CA, USA) using commercial reagent
kit Seahorse XFp Cell Mito Stress Test Kit (Agilent Technologies, Santa Clara, CA, USA) and
following the manufacturer’s instructions. First, cells were seeded at a 5 × 104 cells/well
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density in Seahorse XFp well plates and cultivated for 4–5 days in a complete growth
medium (described in Section 4.2) until 60–90% confluency was observed. Prior to this
investigation, cells were treated with 100 ng/mL of SARS-CoV-2 spike protein RBD-epitope
for 24 h and kept in 48 h normoxia and 24 h hypoxia followed 24 h reoxygenation. Another
experiment was conducted with acute SARS-CoV-2 spike protein RBD-epitope treatment
for 3 h, and then cells were kept in a cell culture incubator at 37 ◦C. In parallel, control
samples were tested. Following the incubation period, the wells were rinsed with PBS, and
then each well was filled with assay medium and repeatedly incubated at 37 ◦C for 1 h
in a non-CO2 incubator (Thermo Fisher Scientific, Austin, TX, USA). The assay medium
consisted of Seahorse XF DMEM Medium (Agilent Technologies Inc., Santa Clara, CA, USA)
supplemented with 10 mM glucose, 1 mM sodium pyruvate, and 2 mM L-glutamine. After-
wards, a Mito Stress Test was performed. During the test, a few mitochondrial respiration
modulators, one by one, were injected into each well. The final concentrations in the well
of these substances were 1.5 µM oligomycin, 2 µM carbonyl cyanide 4-phenylhydrazone
(FCCP), 0.5 µM antimycin A, and 0.5 µM rotenone. The obtained result values of the oxygen
consumption rate (OCR) and extracellular acidification rate (ECAR) were normalised to
total cellular protein content by Bradford assay. After reaction with the Bradford reagent
(Sigma-Aldrich, Hamburg, Germany), optical density was assessed by multimode plate
reader Infinite 200 Pro M Nano Plex (Tecan, Männedorf, Switzerland) at 595 nm wavelength.
Individual run reports were generated and analysed by Wawe 2.6.1 software (Agilent Tech-
nologies, Santa Clara, CA, USA), while summarised graphical images were created with
GraphPad Prism 9.0.0 (Dotmatics, Boston, MA, USA).

4.8. Statistical Analysis

The quantitative results are presented as mean ± standard deviation of 3–6 replicates.
Gene expression data are represented as fold changes ± standard deviation. The statistical
data analysis was performed by applying the ANOVA with LSD post hoc test or non-
parametric Mann–Whitney U test. Differences were considered statistically significant
when p < 0.05. The data and statistical analysis were processed using GraphPad Prism 9.0.0
(Dotmatics, Boston, MA, USA) software.
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Figure A1. Representative image of primary culture cardiomyocyte stained with Alexa Fluor™ 568 
Phalloidin to observe specific actin pattern. Cardiac muscle fibres are composed of myofibrils that 
are defined by a homogenous succession of transverse stripes containing repeating individual units. 
Cytoskeleton from actin forms the scaffold of the cell as it regulates shape, pattern, and, importantly, 
structure framework. (Left)—brightfield, (Right)—fluorescence view. Scale bar: 50 µm. 

Appendix B 

Figure A1. Representative image of primary culture cardiomyocyte stained with Alexa Fluor™ 568
Phalloidin to observe specific actin pattern. Cardiac muscle fibres are composed of myofibrils that
are defined by a homogenous succession of transverse stripes containing repeating individual units.
Cytoskeleton from actin forms the scaffold of the cell as it regulates shape, pattern, and, importantly,
structure framework. (Left)—brightfield, (Right)—fluorescence view. Scale bar: 50 µm.

Appendix B

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 16 of 18 
 

 

 
Figure A2. The dose-dependent effect on cell metabolic activity under hypoxia–reoxygenation 
conditions after treatment with SARS-CoV-2 spike protein RBD-epitope 370–394. Results are 
expressed as an average percentage of untreated cells ± standard deviation. * p < 0.05; LSD post hoc 
test. 
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IL-1β 
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F: AATTGCCCCGGCAT 
R: TCCCGTAACCGCGTA 
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